JPH11121203A - Manufacture of current-limiting element - Google Patents
Manufacture of current-limiting elementInfo
- Publication number
- JPH11121203A JPH11121203A JP28334497A JP28334497A JPH11121203A JP H11121203 A JPH11121203 A JP H11121203A JP 28334497 A JP28334497 A JP 28334497A JP 28334497 A JP28334497 A JP 28334497A JP H11121203 A JPH11121203 A JP H11121203A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- ptc
- limiting element
- current limiting
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、正の抵抗温度係
数を持つ酸化バナジウム系〔( V1-X AX )2 O 3 、A
はアルミニウム、クロム、スカンジウムまたはランタノ
イドから選ばれた少なくとも1種の元素〕PTC抵抗体
(以下V2 O3 系PTC抵抗体と略す)を用いる限流素
子に係り、特に長期にわたる信頼性に優れる限流素子の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
Vanadium oxide based [(V1-XAX)TwoO Three , A
Is aluminum, chromium, scandium or lantano
At least one element selected from the group consisting of PTC resistors]
(Hereinafter VTwoOThreeCurrent limiter using PTC resistor)
Of the current limiting element, which has excellent long-term reliability
It relates to a manufacturing method.
【0002】[0002]
【従来の技術】近年、低圧配電系統においても大容量化
が進展し、それに伴い負荷が短絡した際に流れる過電流
も大電流化しており、ブレーカについても高遮断容量化
が望まれている。このような技術動向に対応して、大電
流、大電力用の過電流保護素子として例えば、V2 O3
系PTC抵抗体を用いる限流素子の利用が期待されてい
る。2. Description of the Related Art In recent years, the capacity of a low-voltage distribution system has been increased, and the overcurrent flowing when a load is short-circuited has also been increased. As a result, the breaker is also required to have a higher breaking capacity. In response to such technical trends, for example, V 2 O 3 is used as an overcurrent protection element for large current and large power.
The use of a current limiting element using a system PTC resistor is expected.
【0003】V2 O3 系PTC抵抗体は100〜200
℃の間で金属から絶縁物に転移する性質(M−I転移)
を有しており、室温付近では比抵抗が10-3Ω・cmと
小さいが、室温から100〜150℃にかけてゆるやか
に増加し、150℃付近で2桁程度急激に増大し(この
急増する温度を転移温度と称する)、150〜200℃
においてピークとなるというPTC特性を有している。
それ以上の温度では再び抵抗率は低下する。また、この
特性は降温時には昇温時に比べ約50℃ピーク温度が低
下するというヒステリシスを有する。[0003] V 2 O 3 -based PTC resistors are 100 to 200
The property of transition from metal to insulator at ℃ (MI transition)
Although the specific resistance is as small as 10 −3 Ω · cm near room temperature, it gradually increases from room temperature to 100 to 150 ° C., and rapidly increases by about two digits near 150 ° C. (this rapidly increasing temperature). Is referred to as a transition temperature), 150 to 200 ° C.
Has a PTC characteristic of peaking at.
At higher temperatures, the resistivity drops again. In addition, this characteristic has a hysteresis in which the peak temperature decreases by about 50 ° C. when the temperature is lowered compared to when the temperature is raised.
【0004】このような性質を有するV2 O3 系PTC
抵抗体は過電流が流れた際のジュール熱により温度が上
昇し抵抗値が増大することを利用して、その抵抗増大に
より過電流を限流することができる。そのため、これに
電極を接合して限流素子として用いられる。V2 O3 系
PTC抵抗体のPTC現象は、転移時のバンド構造の変
化により比抵抗が急増するものである。そしてこのバン
ド構造の変化に伴い、c軸が0.6%収縮するのに対し
て、a軸は1.0%膨張するため、V2 O3 系PTC抵
抗体の熱膨張係数は、M−I転移時に負の膨張を示すと
いう非直線的な変化となっている。[0004] V 2 O 3 -based PTC having such properties
By utilizing the fact that the temperature of the resistor increases due to Joule heat when the overcurrent flows and the resistance value increases, the overcurrent can be limited by the increase in resistance. Therefore, an electrode is joined to this to use as a current limiting element. The PTC phenomenon of the V 2 O 3 -based PTC resistor is such that the specific resistance increases rapidly due to a change in the band structure at the time of transition. And with the change of the band structure, while the c-axis is contracted 0.6%, since the a-axis to expand 1.0%, the thermal expansion coefficient of the V 2 O 3 based PTC resistor, M- This is a non-linear change indicating a negative expansion during the I transition.
【0005】[0005]
【発明が解決しようとする課題】ところで、PTC抵抗
体は焼結体であるため、焼結直後には結晶粒界に残留応
力があり、この残留応力が転移時の特性変化に大きな影
響を及ぼしている。図2は、焼結体のPTC抵抗体と、
同じ添加物量xの単結晶との転移における抵抗変化を示
した図である。焼結体のPTC抵抗体では、単結晶に比
べて転移温度が低くなり、PTC倍率が大きくなってい
ることがわかる。なお、単結晶は、融体を凝固させた結
晶から切り出した。Incidentally, since the PTC resistor is a sintered body, there is residual stress in the crystal grain boundaries immediately after sintering, and this residual stress has a great effect on the change in characteristics at the time of transition. ing. FIG. 2 shows a sintered PTC resistor,
FIG. 3 is a diagram showing a change in resistance in transition with a single crystal having the same additive amount x. It can be seen that the transition temperature of the sintered PTC resistor is lower than that of the single crystal and the PTC magnification is higher. In addition, the single crystal was cut out from the crystal obtained by solidifying the melt.
【0006】焼結体のPTC抵抗体では、通電加熱によ
る転移を繰り返すうちに、上で述べた転移時のc軸およ
びa軸の収縮・膨張により結晶粒界にマイクロクラック
が進行していき、残留応力が緩和されて単結晶の値に近
づいていく現象が起きる。すなわち、特性が焼結直後に
比べ大きく変化(転移温度が高くなり、PTC倍率が低
下する)してしまう。[0006] In the sintered PTC resistor, micro-cracks proceed to the crystal grain boundaries due to the contraction and expansion of the c-axis and the a-axis during the above-mentioned transition during the repetition of the transition caused by the electric heating. A phenomenon occurs in which the residual stress is relaxed and approaches the value of the single crystal. That is, the characteristics change greatly (the transition temperature increases and the PTC magnification decreases) as compared to immediately after sintering.
【0007】このPTC倍率の低下は、主に高温側の抵
抗の低下によるものであるため、初期は過電流の遮断が
可能であっても、数回繰り返すうちに遮断器との協調が
取れなくなり遮断不能となってしまうという問題があ
る。本発明は上述の問題点を解決するためになされその
目的は、安定した特性を示し、長期信頼性に優れる限流
素子の製造方法を提供することにある。[0007] This decrease in the PTC magnification is mainly due to the decrease in the resistance on the high temperature side. Therefore, even if the overcurrent can be cut off at the initial stage, the coordination with the circuit breaker is lost after several repetitions. There is a problem that it becomes impossible to shut off. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method of manufacturing a current-limiting element having stable characteristics and excellent long-term reliability.
【0008】[0008]
【課題を解決するための手段】上記課題解決のため本発
明は、バナジウム系セラミックス(V1-X AX )2 O 3
〔Aはアルミニウム、クロム、スカンジウムまたはラン
タノイドから選ばれた少なくとも1種の元素で、0.0
01≦x≦0.30〕からなり、正の抵抗温度特性を有
する焼結体のPTC抵抗体を用いた限流素子の製造方法
において、昇降温により金属―絶縁体転移を繰り返す安
定化処理を行うものとする。[MEANS FOR SOLVING THE PROBLEMS]
Akira is a vanadium-based ceramic (V1-XAX)TwoO Three
[A is aluminum, chromium, scandium or run
At least one element selected from the group consisting of
01 ≦ x ≦ 0.30] and has a positive resistance temperature characteristic.
For manufacturing a current limiting element using a sintered PTC resistor
, The metal-insulator transition is repeated
It is assumed that a stabilization process is performed.
【0009】図1は転移繰り返し時のPTC倍率の変化
を示す図である。このように、V2O3 系PTC抵抗体
を用いた限流素子では、転移を繰り返すとき、初期には
大きな変化が見られ、次第に少なくなって行くことがわ
かる。従って、あらかじめ、昇温・降温の安定化処理を
施すことにより、PTC特性の変動を抑制したPTC抵
抗体とすることができる。これは、PTC特性変動の要
因である結晶粒界の残留応力が次第に開放されて行くた
めである。なお、図1に見られるように、転移繰り返し
の初期にかなりのPTC倍率の低下が起きるので、予め
その分を見込んで元素Aの添加量xを少し高い量に設定
してPTC倍率の高い(約100倍)素子を作製してお
くとよい。ただし、添加量xを大きくしすぎると、転移
温度が低くなって実用に適さなくなるので、添加量xが
大きい程良いと言うわけではない。FIG. 1 is a diagram showing a change in the PTC magnification at the time of repeated transfer. As described above, in the current limiting element using the V 2 O 3 -based PTC resistor, when the transition is repeated, a large change is observed at the initial stage, and the current gradually decreases. Therefore, a PTC resistor in which the fluctuation of the PTC characteristics is suppressed can be obtained by performing the temperature stabilization processing of the temperature rise / fall in advance. This is because the residual stress at the crystal grain boundaries, which is a cause of PTC characteristic fluctuation, is gradually released. As shown in FIG. 1, since the PTC magnification considerably decreases at the beginning of the repetition of the transition, the addition amount x of the element A is set to a slightly higher amount in anticipation of the decrease, and the PTC magnification is increased. (Approximately 100 times) It is preferable to prepare an element. However, if the addition amount x is too large, the transition temperature becomes low and it becomes unsuitable for practical use. Therefore, the larger the addition amount x, the better.
【0010】特に安定化処理としては、昇温時の抵抗率
の最大値(ρu max)が出現する温度より少なくとも3
0℃以上昇温し、降温時の抵抗率の最大値(ρd max)
が出現する温度より30℃以下まで降温する熱サイクル
の繰り返しをおこなうものとする。これは、転移を完全
に進行させるためであり、そのようにすれば特性が安定
する。[0010] In particular, the stabilization treatment is at least three times lower than the temperature at which the maximum value (ρ u max) of the resistivity at the time of temperature rise appears.
The maximum value of resistivity when the temperature rises by 0 ° C or more (ρ d max)
It is assumed that a thermal cycle of lowering the temperature to 30 ° C. or lower from the temperature at which the temperature occurs appears. This is to allow the transition to proceed completely, so that the characteristics are stabilized.
【0011】更に、熱サイクルを10回以上施すとよ
い。そのようにすれば、例えばPTC倍率の変化が1%
以下というように、非常に安定した特性とすることがで
きる。Further, it is preferable that the heat cycle is performed 10 times or more. By doing so, for example, the change in PTC magnification is 1%
Very stable characteristics can be obtained as described below.
【0012】[0012]
【発明の実施の形態】次にこの発明の実施の形態を実施
例に基づいて説明する。 [実施例]図3は、本発明の実施例にかかる限流素子の
断面図である。図3において1はPTC抵抗体であり、
寸法は例えばφ12×20mmである。φ15×5mm
のモリブデン(Mo)電極であり、限流素子エレメント
1とはAg−Cu共晶ろう3で活性金属ろう付けされて
いる。2は、銅(Cu)電極でもよい。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described based on examples. [Embodiment] FIG. 3 is a sectional view of a current limiting device according to an embodiment of the present invention. In FIG. 3, 1 is a PTC resistor,
The dimensions are, for example, φ12 × 20 mm. φ15 × 5mm
And an active metal brazing with a current limiting element element 1 using an Ag-Cu eutectic solder 3. 2 may be a copper (Cu) electrode.
【0013】この限流素子の製造は以下の手順でおこな
っている。 (1)V2 O5 またはV2 O3 、Cr2 O3 、Fe2 O
3 粉末を、焼成後の組成が(V0.996 Cr0.004 )2 O
3 +Fe5wt%となるように配合したものを、湿式ボ
ールミルで12時間混合粉砕する。 (2)上記粉末を金型に入れて加圧成形し、その成形体
を、水素気流中 1550℃で1時間焼成して、PTC
抵抗体1を得る。 (3)PTC抵抗体1にAg−Cu共晶ろう箔3を介し
てMo電極2を、真空中で750℃×5分間の熱処理に
よりろう付けし、限流素子とする。 (4)安定化処理として、200℃←→0℃の温度サイ
クルを10回おこない、金属−絶縁体転移を繰り返し行
わせしめた。例えば昇温時の転移温度(ρmax )が15
0℃、降温時の転移温度が100℃の本素子の場合、1
80℃以上←→70℃以下の温度サイクルであれば、安
定化処理として有効である。図1に示したように繰り返
し回数が3〜5回以上で、変化率が飽和傾向にある。し
かし、安定化を完全にするには10回以上が望ましい。The manufacture of this current limiting element is performed in the following procedure. (1) V 2 O 5 or V 2 O 3 , Cr 2 O 3 , Fe 2 O
3 The composition after firing is (V 0.996 Cr 0.004 ) 2 O
A mixture of 3 + Fe of 5 wt% is mixed and pulverized for 12 hours by a wet ball mill. (2) The above-mentioned powder was put into a mold and pressed, and the formed body was fired at 1550 ° C. for 1 hour in a hydrogen stream to obtain a PTC.
The resistor 1 is obtained. (3) The Mo electrode 2 is brazed to the PTC resistor 1 through the Ag-Cu eutectic brazing foil 3 by heat treatment at 750 ° C. for 5 minutes in a vacuum to form a current limiting element. (4) As a stabilization treatment, a temperature cycle of 200 ° C. → 0 ° C. was performed 10 times, and a metal-insulator transition was repeatedly performed. For example, the transition temperature (ρ max ) at the time of temperature rise is 15
In the case of this element having a transition temperature of 0 ° C. and a temperature drop of 100 ° C., 1
A temperature cycle of 80 ° C. or more →→ 70 ° C. or less is effective as a stabilization process. As shown in FIG. 1, when the number of repetitions is 3 to 5 or more, the change rate tends to be saturated. However, 10 or more times are desirable for complete stabilization.
【0014】数十倍のPTC倍率を得るには、Crの添
加量xを0.0035とすれば十分であるのに対し、本
実施例の限流素子は、Crの添加量xを0.004とし
て、初期のPTC倍率を高くし、安定化処理後も数十倍
のPTC倍率を確保できるようにした。このようにして
製作した限流素子Aと、安定化処理を実施していない従
来の限流素子Bとにおける500Aの繰り返し通電試験
によるPTC特性(PTC倍率)の変化率を表1に示
す。In order to obtain a PTC magnification of several tens of times, it is sufficient to set the additive amount x of Cr to 0.0035. On the other hand, in the current limiting element of this embodiment, the additive amount x of Cr is set to 0.1. As 004, the initial PTC magnification was increased so that a PTC magnification of several tens of times could be secured even after the stabilization processing. Table 1 shows the rate of change of the PTC characteristic (PTC magnification) of the current limiting element A manufactured in this manner and the conventional current limiting element B which has not been subjected to the stabilization process, in a 500 A repetitive energizing test.
【0015】[0015]
【表1】 表1から明らかなように、従来の限流素子Bでは、大き
なPTC倍率の変化が見られたのに対して、本発明によ
る限流素子Aでは繰り返し通電試験を実施しても殆どP
TC倍率に変化がなく、安定した特性が得られることが
確認された。[Table 1] As is clear from Table 1, a large change in the PTC magnification was observed in the conventional current limiting element B, whereas almost no PTC was found in the current limiting element A according to the present invention even when the repetitive current test was performed.
It was confirmed that there was no change in the TC magnification and stable characteristics were obtained.
【0016】[0016]
【発明の効果】以上説明したようにこの発明によれば、
V2 O3 系PTC抵抗体を用いた限流素子の製造方法に
おいて、あらかじめ昇温・降温による金属―絶縁体転移
を繰り返す安定化処理を施すことによって、PTC特性
の変動が少なく、長期信頼性の著しく向上した限流素子
とすることができる。As described above, according to the present invention,
In a method of manufacturing a current-limiting element using a V 2 O 3 -based PTC resistor, a stabilization process in which a metal-insulator transition is repeatedly performed by raising and lowering the temperature in advance to minimize fluctuations in PTC characteristics and long-term reliability Can be obtained as a current limiting element having a significantly improved current limiting element.
【図1】(V0.996 Cr0.004 )2 O3 PTC抵抗体
(焼結体)の転移繰り返し時のPTC倍率の変化を示す
図FIG. 1 is a diagram showing a change in PTC magnification when transition of a (V 0.996 Cr 0.004 ) 2 O 3 PTC resistor (sintered body) is repeated.
【図2】焼結体および単結晶の(V0.996 Cr0.004 )
2 O3 PTC抵抗体のPTC特性比較図FIG. 2 (V 0.996 Cr 0.004 ) of a sintered body and a single crystal
Comparison chart of PTC characteristics of 2 O 3 PTC resistor
【図3】限流素子の断面図FIG. 3 is a sectional view of a current limiting element.
1 PTC抵抗体 2 Mo電極 3 Ag−Cu共晶ろう 1 PTC resistor 2 Mo electrode 3 Ag-Cu eutectic solder
───────────────────────────────────────────────────── フロントページの続き (72)発明者 国原 健二 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Kunihara 1-1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd.
Claims (3)
X )2 O3 〔Aはアルミニウム、クロム、スカンジウム
またはランタノイドから選ばれた少なくとも1種の元素
で、0.001≦x≦0.30〕からなり、正の抵抗温
度特性を有する焼結体のPTC抵抗体を用いた限流素子
の製造方法において、昇降温により金属―絶縁体転移を
繰り返す安定化処理を行ったことを特徴とする限流素子
の製造方法 1. A vanadium oxide-based ceramic (V1 - XA)
X ) 2 O 3 [A is at least one element selected from the group consisting of aluminum, chromium, scandium and lanthanoids, and is comprised of 0.001 ≦ x ≦ 0.30] and has a positive resistance temperature characteristic. A method of manufacturing a current limiting element using a PTC resistor, characterized in that a stabilization process of repeating a metal-insulator transition by raising and lowering the temperature is performed.
(ρu max)が出現する温度より少なくとも30℃以上
昇温し、降温時の抵抗率の最大値(ρd max)が出現す
る温度より30℃以下まで降温する熱サイクルの繰り返
しであることを特徴とする請求項1記載の限流素子の製
造方法2. The stabilization treatment is to raise the temperature by at least 30 ° C. from the temperature at which the maximum value of the resistivity (ρ u max) appears at the time of temperature rise, and the maximum value of the resistivity (ρ d max) at the time of temperature decrease. 2. The method for manufacturing a current limiting element according to claim 1, wherein the thermal cycle is repeated in which the temperature is lowered to 30 ° C. or less from the temperature at which the temperature appears.
する請求項2記載の限流素子の製造方法3. The method for manufacturing a current limiting element according to claim 2, wherein the thermal cycle is performed 10 times or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28334497A JPH11121203A (en) | 1997-10-16 | 1997-10-16 | Manufacture of current-limiting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28334497A JPH11121203A (en) | 1997-10-16 | 1997-10-16 | Manufacture of current-limiting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11121203A true JPH11121203A (en) | 1999-04-30 |
Family
ID=17664277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28334497A Pending JPH11121203A (en) | 1997-10-16 | 1997-10-16 | Manufacture of current-limiting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11121203A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100825738B1 (en) | 2006-03-28 | 2008-04-29 | 한국전자통신연구원 | Voltage control system using abruptly metal-insulator transition |
-
1997
- 1997-10-16 JP JP28334497A patent/JPH11121203A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100825738B1 (en) | 2006-03-28 | 2008-04-29 | 한국전자통신연구원 | Voltage control system using abruptly metal-insulator transition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6472972B1 (en) | PTC composite material | |
US3510820A (en) | Thermistor | |
JP2017143090A (en) | Semiconductor ceramic composition and ptc thermistor | |
JP3493384B2 (en) | Voltage non-linear resistance element and method of manufacturing the same | |
JP2007173313A (en) | Current-voltage nonlinear resistor | |
JPS5823722B2 (en) | Manufacturing method of voltage nonlinear resistor porcelain | |
JP5445689B2 (en) | Semiconductor ceramic and resistance element | |
US5973589A (en) | Zno varistor of low-temperature sintering ability | |
JPH11121203A (en) | Manufacture of current-limiting element | |
US4219518A (en) | Method of improving varistor upturn characteristics | |
JPS63312616A (en) | Semiconductor porcelain composition | |
JP2789714B2 (en) | Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor | |
CN106946561B (en) | Y3+、Nb5+Composite donor doped ZnO pressure-sensitive ceramic and preparation method thereof | |
JP2830322B2 (en) | Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor | |
CN103964837A (en) | Voltage-sensitive ceramic resistor | |
JP7359329B1 (en) | Antimony oxide substitute zinc oxide element | |
JPH07201531A (en) | Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain | |
JP3334264B2 (en) | Semiconductor ceramic element | |
JP2625178B2 (en) | Varistor manufacturing method | |
JP3183933B2 (en) | Power resistor | |
JP2010010009A (en) | Method of flattening of resistance temperature curve of molten silicon electrical heating alloy | |
JP2816258B2 (en) | Method of manufacturing voltage non-linear resistor and lightning arrester | |
JPH10340801A (en) | Ptc resistor | |
JPS5858801B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JPH1116705A (en) | Current-limiting element |