JPH08286537A - Heat generating resistor and heater for fixing device of electrophotographic printer - Google Patents

Heat generating resistor and heater for fixing device of electrophotographic printer

Info

Publication number
JPH08286537A
JPH08286537A JP8926795A JP8926795A JPH08286537A JP H08286537 A JPH08286537 A JP H08286537A JP 8926795 A JP8926795 A JP 8926795A JP 8926795 A JP8926795 A JP 8926795A JP H08286537 A JPH08286537 A JP H08286537A
Authority
JP
Japan
Prior art keywords
temperature
powder
heating resistor
heater
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8926795A
Other languages
Japanese (ja)
Inventor
Hiromi Takahashi
博実 高橋
Yoshiro Takahashi
良郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8926795A priority Critical patent/JPH08286537A/en
Publication of JPH08286537A publication Critical patent/JPH08286537A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a heat generating resistor in which the temp. rising speed of the heater is increased to reduce the rising time to a stabilized temp. and to provide a heater for a fixing device of an electrophotographic printer using this resistor. CONSTITUTION: This heat generating resistor is produced by mixing a base resin and a conductive powder and has a temp. controlling function. The resin contains a Ti2 O3 powder and a conductive powder having <=4×10<-5> Ω.cm resistivity as a conductive powder. As for the conductive powder having <=4×10<-5> Ω.cm resistivity, at least one kind of powder of RuO2 , Ag, Cu and Ni is used. The obtd. heat generating resistor is used as a heater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度調節機能を有する
発熱抵抗体に係り、詳しくは温度上昇の速い発熱抵抗体
と、これを用いてなる電子写真プリンタ定着器用ヒータ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat generating resistor having a temperature adjusting function, and more particularly to a heat generating resistor having a rapid temperature rise and a heater for an electrophotographic printer fixing device using the heat generating resistor.

【0002】[0002]

【従来の技術】従来、温度調節機能を有する発熱抵抗体
に関連する技術として、例えば特公昭61−35223
号公報に開示されたものがある。この技術では、導電性
金属、導電性酸化物、カーボンブラック等を樹脂(ポリ
イミド等)に混合した複合材料が示されており、この複
合材料によれば、これを用いて形成された発熱抵抗体の
抵抗値の温度依存性が、母材となる樹脂(ポリイミド
等)の熱膨張係数に大きく依存するとされている。すな
わち、室温では母材中における導体の接触によって抵抗
ネットワークが形成されているものの、温度上昇ととも
に母材の熱膨張によって導体粉間の距離が増加し、抵抗
ネットワーク内の粉体間の接触がとれなくなって抵抗ネ
ットワークの数が減少してしまうからである。
2. Description of the Related Art Conventionally, as a technique related to a heating resistor having a temperature adjusting function, for example, Japanese Patent Publication No. Sho 61-35223.
Is disclosed in Japanese Patent Application Laid-Open Publication No. HEI 9-203 (1995). This technology discloses a composite material in which a conductive metal, a conductive oxide, carbon black, etc. are mixed with a resin (polyimide, etc.). According to this composite material, a heating resistor formed using this It is said that the temperature dependence of the resistance value of 1 depends largely on the thermal expansion coefficient of the resin (polyimide or the like) as the base material. That is, at room temperature, the resistance network is formed by the contact of the conductors in the base material, but as the temperature rises, the distance between the conductor powders increases due to the thermal expansion of the base material, and the contact between the powders in the resistance network is eliminated. This is because the number of resistance networks will decrease and the number of resistance networks will decrease.

【0003】そして、このように温度上昇に伴って抵抗
ネットワークの数が減少してしまうことから、前記複合
材料で形成された発熱抵抗体は温度上昇に伴ってその抵
抗値が増加するものとなり、これにより温度変化に対し
て常にPTC特性(PositiveTemperature Coefficien
t)を示すものとなる。なお、PTC特性とは、抵抗値
の温度変化の係数が正、つまり抵抗が温度上昇とともに
増加することを意味している。ところで、この発熱抵抗
体に電圧を印加した場合に、該抵抗体の発熱(ジュール
熱)によってその温度が上昇したとき、該抵抗体の抵抗
が急激に増加するため高抵抗となり、流れる電流値が制
限されることから、ある温度で該抵抗体の温度が安定す
るという温度調節機能がこの抵抗体に発現する。
Since the number of resistance networks decreases as the temperature rises, the resistance value of the heating resistor made of the composite material increases with the temperature rise. As a result, PTC characteristics (Positive Temperature Coefficien
t). The PTC characteristic means that the coefficient of resistance value change with temperature is positive, that is, the resistance increases as the temperature rises. By the way, when a voltage is applied to the heating resistor and its temperature rises due to heat generation (Joule heat) of the resistor, the resistance of the resistor rapidly increases and becomes a high resistance. Since it is limited, the temperature control function of stabilizing the temperature of the resistor at a certain temperature is exhibited in this resistor.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記発
熱抵抗体を用いたヒータでは、温度調節機能をもってい
るものの、以下に説明するように安定温度に到達するま
での時間(立ち上がり時間)を速くすることができない
といった問題がある。本発明は前記事情に鑑みてなされ
たもので、その目的とするところは、ヒータの温度の上
昇を速くして安定温度までの立ち上がり時間を短くする
ことのできる発熱抵抗体と、これを用いてなる電子写真
プリンタ定着器用ヒータとを提供することにある。
However, although the heater using the heating resistor has a temperature adjusting function, it is necessary to shorten the time (rise time) until the temperature reaches a stable temperature, as will be described below. There is a problem that you cannot do it. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heating resistor capable of speeding up the temperature rise of a heater and shortening the rise time to a stable temperature, and using the heating resistor. Another object of the present invention is to provide a heater for an electrophotographic printer fixing device.

【0005】[0005]

【課題を解決するための手段】本発明者は、前記課題を
解決するため鋭意研究した結果、以下に述べる知見を得
た。一般に、発熱抵抗体に加えられた電力エネルギーと
発熱抵抗体の温度上昇との間には、次の式(1)の関係
が成り立つ。
Means for Solving the Problems The inventors of the present invention have earnestly studied to solve the above-mentioned problems, and as a result, have obtained the following findings. Generally, the relationship of the following formula (1) is established between the electric energy applied to the heating resistor and the temperature rise of the heating resistor.

【数1】 IVdt=HdT+D(T−Troom)dt …(1) IVdt;dt時間内に発熱抵抗体に入った電気エネル
ギー、 HdT;発熱抵抗体が温度dT上昇するために費やされ
た熱エネルギー、 D(T−Troom)dt;温度Tの発熱抵抗体からdt時
間に失われた熱放散量 D;放散係数(W/K)、T;発熱抵抗体の温度
(K)、 Troom;発熱抵抗体の周囲温度(室温)(K)。 そして、この式(1)より発熱抵抗体の温度上昇速度
は、次の式(2)として表される。
[Equation 1] IVdt = HdT + D (T−Troom) dt (1) IVdt; electric energy entering the heating resistor within dt time, HdT; thermal energy spent for raising the temperature dT of the heating resistor , D (T-Troom) dt; heat dissipation amount lost from the heating resistor of temperature T in dt time D: dissipation coefficient (W / K), T; temperature of heating resistor (K), Troom; heating resistance Ambient temperature of the body (room temperature) (K). Then, the temperature rising rate of the heating resistor is expressed by the following expression (2) from the expression (1).

【数2】 dT/dt=〔IV−D(T−Troom)〕/H …(2)## EQU00002 ## dT / dt = [IV-D (T-Troom)] / H (2)

【0006】ここで、充分時間がたった後の温度安定時
には発熱抵抗体の温度上昇がなくなり、その場合にdT
/dt=0となることから、IV=D(T−Troom)と
なって入力電気エネルギーと熱放散量とが等しいものと
なる。電圧一定の場合、発熱抵抗体の入力エネルギーは
2 /R(T)で決定され、したがってV2 /R(T)
=D(T−Troom)となることから、抵抗値の温度依存
性が安定時の温度Tを決定することになる。
[0006] Here, when the temperature stabilizes after a sufficient time has elapsed, the temperature rise of the heating resistor stops, and in that case dT
Since / dt = 0, IV = D (T-Troom) and the input electric energy and the heat dissipation amount are equal. For voltage constant, the input energy of the heating resistor is determined by V 2 / R (T), hence V 2 / R (T)
Since = D (T-Troom), the temperature dependence of the resistance value determines the temperature T when the temperature is stable.

【0007】図5に、発熱抵抗体の温度と電圧印加時間
との関係の、温度依存性を表すグラフを示す。また、図
6に、入力エネルギー〔V2 /R(T)〕と熱放散量
〔D(T−Troom)〕との関係の、温度依存性を表すグ
ラフを示す。なお、測定に供した発熱抵抗体としては、
エポキシ樹脂(PR−52;チバガイキー社製)にRu
2 粉末〔酸化ルテニウム(IV)〕を、エポキシ樹脂:
RuO2 粉末=69wt%:31wt%となるように混
合して作製した発熱抵抗体を用いた。
FIG. 5 is a graph showing the temperature dependence of the relationship between the temperature of the heating resistor and the voltage application time. Further, FIG. 6 is a graph showing the temperature dependence of the relationship between the input energy [V 2 / R (T)] and the heat dissipation amount [D (T-Troom)]. As the heating resistor used for the measurement,
Ru on epoxy resin (PR-52; manufactured by Ciba-Gaiki)
O 2 powder [ruthenium (IV) oxide] was mixed with epoxy resin:
A heating resistor prepared by mixing RuO 2 powder = 69 wt%: 31 wt% was used.

【0008】図5より、印加電圧の上昇とともに安定温
度(飽和温度)も上昇(20Vで120℃、40Vで1
65℃、60Vで180℃)していることが分かる。そ
して、この結果から、120℃、165℃、180℃で
の熱放散量〔D(T−Troom)〕が求められ、さらに、
得られた値から図6におけるD(T−Troom)の曲線が
得られる。
From FIG. 5, the stable temperature (saturation temperature) rises as the applied voltage rises (120 ° C. at 20 V, 1 at 40 V).
It can be seen that the temperature is 65 ° C and 180 ° C at 60V). Then, from this result, the heat dissipation amount [D (T-Troom)] at 120 ° C., 165 ° C., and 180 ° C. is obtained.
From the obtained values, the D (T-Troom) curve in FIG. 6 is obtained.

【0009】また、前記式(2)より、安定温度までの
温度上昇速度が速いためには、入力電気エネルギーと熱
放散量との差が大きいほど立ち上がり速度が速くなり、
これにより安定温度までの立ち上がり時間が短くなるこ
とが分かる。さらに、入力電気エネルギーと熱放散量と
の差が大きくなるためには、熱放散量の温度上昇による
増加よりも入力電気エネルギーV2 /R(T)の温度上
昇による増加のほうが大きくなる必要がある。
From the above equation (2), in order to increase the temperature rising speed to a stable temperature, the rising speed increases as the difference between the input electric energy and the heat dissipation amount increases.
This shows that the rise time to the stable temperature is shortened. Further, in order for the difference between the input electric energy and the heat dissipation amount to become large, the increase in the input electric energy V 2 / R (T) due to the temperature increase needs to be larger than the increase in the heat dissipation amount due to the temperature increase. is there.

【0010】図7に、理想的な入力エネルギー〔V2
R(T)〕の温度上昇による変化を示す。さらに、この
入力電気エネルギーの温度変化を満足する抵抗値の温度
依存性を求めると、W=V2 /Rより、図8に示すよう
に安定温度の直前の温度まではNTC特性(Negative T
emperature Coefficient)を示し、安定温度の直前の温
度以降はNTC特性を示す必要がある。つまり、ヒータ
の温度の上昇を速くして安定温度までの立ち上がり時間
を短くするためには、安定温度の直前温度まではNTC
特性を有し、安定温度の直前温度からはPTC特性を有
する発熱抵抗体を形成する必要があるのである。なお、
NTC特性とは、抵抗値の温度変化の係数が負、つまり
抵抗が温度上昇とともに減少することを意味している。
FIG. 7 shows the ideal input energy [V 2 /
R (T)] changes due to temperature rise are shown. Furthermore, when the temperature dependence of the resistance value satisfying this temperature change of the input electric energy is obtained, it can be seen from W = V 2 / R that the NTC characteristic (Negative T
It is necessary to show the emperature coefficient, and to show the NTC characteristic after the temperature just before the stable temperature. That is, in order to speed up the temperature rise of the heater and shorten the rise time to the stable temperature, the NTC is maintained until the temperature just before the stable temperature.
Therefore, it is necessary to form a heat generating resistor having the characteristics and the PTC characteristics from the temperature immediately before the stable temperature. In addition,
The NTC characteristic means that the coefficient of temperature change of the resistance value is negative, that is, the resistance decreases as the temperature rises.

【0011】そして、本発明者はこのような知見に基づ
き、以下に述べる手段によって本発明を完成させ、前記
課題を解決した。すなわち、本発明の発熱抵抗体は、母
材となる樹脂に導電性粉末を混合して形成された温度調
節機能を有する発熱抵抗体であり、前記導電性粉末とし
て、Ti 2 3 粉末と、抵抗率が4×10-5Ω・cm以
下の導電性粉末とを含有したものである。この発熱抵抗
体において、母材となる樹脂としては、エポキシ樹脂や
ポリイミド樹脂が好適に用いられる。
The present inventor has based on such findings.
The present invention is completed by the means described below.
Solved the problem. That is, the heating resistor of the present invention is
Temperature control formed by mixing conductive powder with resin used as material
A heating resistor having a node function, which is made of the conductive powder.
, Ti 2O3Powder and resistivity of 4 × 10-FiveΩ · cm or less
It contains the lower conductive powder. This heating resistance
In the body, as the base material resin, epoxy resin or
Polyimide resin is preferably used.

【0012】また、Ti2 3 粉末は、その抵抗値の温
度変化がNTC特性を有する導電性粉末であり、したが
って得られる発熱抵抗体に対し、その安定温度の直前温
度までNTC特性を付与するものである。なお、Ti2
3 粉末は、図2に示すようにその抵抗率が、室温(1
000/300K=3.33)から200℃(1000
/473K=2.11)までの間に10-2Ω・cm(即
ち、10-4Ω・m)から2×10-4Ω・cm(即ち、2
×10-6Ω・m)にまで減少するものである。
The Ti 2 O 3 powder is a conductive powder whose resistance value changes with temperature and has an NTC characteristic, and therefore imparts NTC characteristics to the heat generating resistor obtained up to a temperature just before its stable temperature. It is a thing. Note that Ti 2
As shown in FIG. 2, the O 3 powder has a resistivity of room temperature (1
000 / 300K = 3.33) to 200 ° C (1000
/473K=2.11) from 10 -2 Ω · cm (that is, 10 −4 Ω · m) to 2 × 10 −4 Ω · cm (that is, 2)
X 10 −6 Ω · m).

【0013】また、抵抗率が4×10-5Ω・cm(即
ち、4×10-7Ω・m)以下の導電性粉末(以下、低抵
抗粉末と称する)としては、抵抗率が4×10-5Ω・c
m(即ち、4×10-7Ω・m)であるRuO2 粉末、さ
らにはこれより抵抗率が低いAg、Cu、Ni等の各粉
末から選択された一種あるいは複数種のものが用いられ
る。ここで、この低抵抗粉末を前記Ti2 3 粉末と共
に用い、母材樹脂に混合するのは、前記したように室温
でのTi2 3 の抵抗率が10-2Ω・cm(即ち、10
-4Ω・m)と高いため、抵抗率が4×10-5Ω・cm
(即ち、4×10-7Ω・m)以下と低い低抵抗粉末を混
合することにより、得られる発熱抵抗体の室温での抵抗
値を下げるためである。
Further, as a conductive powder having a resistivity of 4 × 10 −5 Ω · cm (that is, 4 × 10 −7 Ω · m) or less (hereinafter referred to as low resistance powder), the resistivity is 4 ×. 10 -5 Ω ・ c
RuO 2 powder having m (that is, 4 × 10 −7 Ω · m), and one or more kinds selected from powders such as Ag, Cu, and Ni having a lower resistivity than that are used. Here, this low resistance powder is used together with the Ti 2 O 3 powder and mixed with the base material resin so that the resistivity of Ti 2 O 3 at room temperature is 10 −2 Ω · cm (that is, 10
-4 Ω ・ m), the resistivity is 4 × 10 -5 Ω ・ cm
This is because the resistance value of the obtained heating resistor at room temperature is lowered by mixing the low resistance powder having a low value (ie, 4 × 10 −7 Ω · m) or less.

【0014】これら母材樹脂と導電性粉末との混合比と
しては、樹脂の種類や導電性粉末の種類によっても異な
るものの、概ね、母材樹脂100重量部に対し、Ti2
3粉末と低抵抗粉末との合計量を50〜250重量部
程度とするのが好ましい。すなわち、導電性粉末の合計
量が50重量部未満となると、得られる発熱抵抗体の導
電性が低くなり過ぎ、ヒータとして用いた場合に高抵抗
のため印加する電圧を高くしなければならないからであ
り、導電性粉末の合計量が250重量部を越えると、母
材樹脂成分が少なくなり過ぎて発熱抵抗体に成形する場
合に成形不良が発生したり、高価な導電性粉末の比率が
高くなることによってコストアップとなるからである。
[0014] The mixing ratio of these matrix resin and a conductive powder, although varies depending on the kind of the resin type and the conductive powder, generally, with respect to 100 parts by weight of the matrix resin, Ti 2
It is preferable that the total amount of the O 3 powder and the low resistance powder is about 50 to 250 parts by weight. That is, when the total amount of the conductive powder is less than 50 parts by weight, the conductivity of the obtained heating resistor becomes too low, and when used as a heater, the applied voltage must be increased because of high resistance. If the total amount of conductive powder exceeds 250 parts by weight, the resin component of the base material becomes too small and molding defects occur when molding into a heating resistor, or the ratio of expensive conductive powder increases. This is because the cost will increase.

【0015】また、導電性粉末間の混合比としては、T
2 3 粉末100重量部に対し、低抵抗粉末を40〜
100重量部とするのが好ましい。すなわち、低抵抗粉
末が40重量部未満になると、得られる発熱抵抗体の抵
抗が高くなり過ぎるからであり、100重量部を越える
と、Ti2 3 粉末を加えることによる効果が低くな
り、得られる発熱抵抗体をヒータとして場合に、該ヒー
タの安定温度までの立ち上がり時間を充分短くすること
ができなくなるからである。
The mixing ratio between the conductive powders is T
40 to 40 parts of low resistance powder to 100 parts by weight of i 2 O 3 powder.
It is preferably 100 parts by weight. That is, if the low resistance powder is less than 40 parts by weight, the resistance of the heat generating resistor obtained becomes too high, and if it exceeds 100 parts by weight, the effect of adding the Ti 2 O 3 powder becomes low and This is because when the generated heating resistor is used as a heater, it is not possible to sufficiently shorten the rise time until the heater reaches a stable temperature.

【0016】また、本発明の電子写真プリンタ定着器用
ヒータでは、前記発熱抵抗体を用いてなることを前記課
題の解決手段とした。ここで、前記発熱抵抗体からなる
定着器用ヒータとしては、いわゆるサーフ(Surface Ra
pid Fusing)方式、あるいはオン・デマンド方式と呼ば
れる、一般的なタイプのものとして構成される。
In the heater for the electrophotographic printer fixing device of the present invention, the heating resistor is used as the means for solving the above problems. Here, as the heater for the fixing device including the heating resistor, a so-called surf (Surface Ra) is used.
pid Fusing) method, or on-demand method, which is configured as a general type.

【0017】[0017]

【作用】本発明の発熱抵抗体によれば、導電性粉末とし
て、抵抗値の温度変化がNTC特性を有するTi2 3
粉末を用いていることから、該発熱抵抗体はその安定温
度の直前温度までNTC特性を有するものとなる。した
がって、本発明の発熱抵抗体は、このNTC特性を有す
る範囲において従来のものに比べその温度上昇速度が増
大したものとなる。
According to the heating resistor of the present invention, as the conductive powder, Ti 2 O 3 whose resistance value changes with temperature has NTC characteristics.
Since the powder is used, the heating resistor has NTC characteristics up to a temperature just before its stable temperature. Therefore, the heating resistor of the present invention has an increased temperature rising rate in comparison with the conventional one in the range having the NTC characteristics.

【0018】[0018]

【実施例】以下、本発明の発熱抵抗体を実施例により詳
しく説明する。母材となる樹脂として、ガラス転移温度
が120℃のエポキシ樹脂(PR−52;チバガイギー
社製)を用いた。そして、この母材樹脂に、Ti2 3
粉末とRuO2 粉末とを、エポキシ樹脂:Ti2 3
RuO2 =47wt%:35wt%:18wt%となる
ようにして混合した。なお、使用したTi2 3 粉末、
RuO2 粉末については、その粉体粒径として、Ti2
3 が10μm未満(平均粒径8μm)、RuO2
1.0μm未満(平均粒径0.2μm)のものを用い
た。そして、このような各材料を公知の方法で混合した
後、150℃で30分間加熱して硬化させ、幅0.2c
m、長さ2.5cm、厚さ約0.01cmの薄膜状の発
熱抵抗体(以下、本発明品と称する)を得た。
EXAMPLES The heating resistor of the present invention will be described in detail below with reference to examples. An epoxy resin (PR-52; manufactured by Ciba-Geigy) having a glass transition temperature of 120 ° C. was used as a base material resin. Then, with this base material resin, Ti 2 O 3
Powder and RuO 2 powder with epoxy resin: Ti 2 O 3 :
RuO 2 = 47 wt%: 35 wt%: 18 wt% were mixed. In addition, the used Ti 2 O 3 powder,
For RuO 2 powder, the powder particle size is Ti 2
Those having O 3 of less than 10 μm (average particle size 8 μm) and RuO 2 of less than 1.0 μm (average particle size 0.2 μm) were used. Then, after mixing each of these materials by a known method, the mixture is heated at 150 ° C. for 30 minutes to be cured, and the width is 0.2 c.
A thin-film heating resistor (hereinafter, referred to as a product of the present invention) having m, a length of 2.5 cm, and a thickness of about 0.01 cm was obtained.

【0019】また、比較のため、前記エポキシ樹脂に前
記RuO2 粉末のみを、エポキシ樹脂:RuO2 =69
wt%:31wt%となるようにして混合し、すなわち
図5、図6に示した従来の発熱抵抗体と同一となるよう
に形成し、前記本発明品と同一寸法の発熱抵抗体(以
下、従来品と称する)を得た。そして、これら本発明
品、従来品についてそれぞれ、銀ペーストによってその
長さ方向の両端に電極を形成した。
For comparison, only the RuO 2 powder is added to the epoxy resin, and the epoxy resin: RuO 2 = 69.
wt%: 31 wt% were mixed, that is, formed so as to be the same as the conventional heating resistor shown in FIGS. 5 and 6, and the heating resistor having the same size as the product of the present invention (hereinafter, The conventional product) is obtained. Then, electrodes of the present invention product and the conventional product were formed on both ends in the lengthwise direction by silver paste.

【0020】このようにして得られた発熱抵抗体(本発
明品、従来品)の、温度による抵抗値の変化、すなわち
抵抗値の温度依存性を調べ、その結果を図1に示す。図
1より、本発明品は、室温からガラス転移温度付近まで
NTC特性を示し、150℃からサーミスタ機能(温度
調節機能)の働くことが分かる。一方、従来品では、室
温からPTC特性を示し、120℃からサーミスタ機能
の働くことが分かる。
With respect to the heat generating resistors (product of the present invention, conventional product) thus obtained, change in resistance value with temperature, that is, temperature dependence of resistance value was examined, and the result is shown in FIG. From FIG. 1, it can be seen that the product of the present invention exhibits NTC characteristics from room temperature to near the glass transition temperature and has a thermistor function (temperature adjusting function) from 150 ° C. On the other hand, it can be seen that the conventional product exhibits PTC characteristics at room temperature and has a thermistor function at 120 ° C.

【0021】また、本発明品と従来品とに、それぞれに
形成した電極を通じて同じ入力電気エネルギー(7W)
を通じ、抵抗体の温度上昇の時間変化を測定した。得ら
れた結果を図3に示す。図3より、電圧印加時には入力
電気エネルギーが等しく、どちらも約12℃/秒の温度
上昇速度を示しているものの、100℃に温度が上昇し
た時点での温度上昇速度では、本発明品が約10℃/秒
であり、従来品が約2℃/秒であることから、本発明品
の温度上昇の方が従来品の温度上昇より速いことが分か
る。
Further, the same input electric energy (7 W) is applied to the product of the present invention and the product of the related art through electrodes formed respectively.
Through, the time change of the temperature rise of the resistor was measured. FIG. 3 shows the obtained results. From FIG. 3, the input electric energy is equal when a voltage is applied, and both show a temperature rise rate of about 12 ° C./sec. However, the temperature rise rate at the time when the temperature rises to 100 ° C. Since it is 10 ° C./sec and that of the conventional product is about 2 ° C./sec, it can be seen that the temperature rise of the product of the present invention is faster than that of the conventional product.

【0022】したがって、このような結果から、本発明
は以下に述べる作用を奏する。一般に母材樹脂、例えば
エポキシ樹脂は、そのガラス転移温度tgの前後の熱膨
張係数がα1 、α2 と表される。これら熱膨張係数
α1 、α2 は、いずれも正の値をもっており、α1 はα
2 より小さい値となっている。ところで、発熱抵抗体
は、室温では前述したように母材中の導体の接触によっ
て抵抗ネットワークを形成する。そして、ガラス転移温
度までは温度上昇とともに母材が熱膨張し、これにより
導体粉間の距離が増加して抵抗ネットワーク内の粉体間
の接触がとれなくなり、抵抗ネットワークの数が減少し
ていく。したがって、複合材で形成された発熱抵抗体の
抵抗値は、ガラス転移温度までは温度上昇とともにゆる
やかに増加してゆくことになる。さらに、ガラス転移温
度以上では、母材の熱膨張係数α2 がα1 に比べ大きい
ため、温度上昇による粉体間の距離の増加がtg以下の
温度の場合よりも大きくなり、このため粉体間の接触が
急にとれなくなって抵抗値が急激に増大する。
Therefore, from such a result, the present invention has the following effects. Generally, a matrix resin, for example, an epoxy resin, has a coefficient of thermal expansion of α 1 and α 2 around the glass transition temperature tg. These thermal expansion coefficients α 1 and α 2 are both positive values, and α 1 is α
It is less than 2 . By the way, the heating resistor forms a resistance network at room temperature by contact with the conductor in the base material as described above. Then, as the temperature rises up to the glass transition temperature, the base material thermally expands, which increases the distance between the conductor powders, making it impossible to make contact between the powders in the resistance network and decreasing the number of resistance networks. . Therefore, the resistance value of the heating resistor formed of the composite material gradually increases with the temperature increase up to the glass transition temperature. Further, at the glass transition temperature or higher, the coefficient of thermal expansion α 2 of the base material is larger than that of α 1 , so that the increase in the distance between the powders due to the temperature rise is larger than that at the temperature of tg or lower. The contact between them cannot be suddenly stopped and the resistance value rapidly increases.

【0023】その結果、複合材で形成された発熱抵抗体
は、tg以下の温度では小さなPTC特性を示し、tg
以上の温度では大きなPTC特性を示すことになる。し
たがって、この発熱抵抗体に電圧を印加すると、抵抗体
の発熱(ジュール熱)によって抵抗体の温度が上昇した
とき、抵抗体の抵抗が急激に増加して高抵抗となり、流
れる電流値が制限され、ある温度で温度が安定するとい
う温度調節機能が発現することになるのである。
As a result, the heating resistor formed of the composite material exhibits a small PTC characteristic at a temperature of tg or lower,
At the above temperature, large PTC characteristics are exhibited. Therefore, when voltage is applied to this heating resistor, when the temperature of the resistor rises due to heat generation (Joule heat) of the resistor, the resistance of the resistor rapidly increases and becomes high resistance, and the flowing current value is limited. That is, the temperature regulation function that the temperature becomes stable at a certain temperature is exhibited.

【0024】ところで、図1に示したように本発明品
は、室温から150℃まではNTC特性を示しているの
に対し、従来品は室温からPTC特性を示している。し
たがって、その入力電気エネルギーは、W=V2 /R、
R=V2 /Wより、図4に示すように本発明品の方が1
50℃まで増加し続けるのに対し、従来品の方は減少し
続けることになる。ここで、熱放散量〔D(T−Troo
m)〕は、図4に示すように温度上昇とともに増加して
いく。
As shown in FIG. 1, the product of the present invention exhibits NTC characteristics from room temperature to 150 ° C., whereas the conventional product exhibits PTC characteristics from room temperature. Therefore, its input electrical energy is W = V 2 / R,
As shown in FIG. 4, the product of the present invention is 1 more than R = V 2 / W.
While the temperature continues to increase up to 50 ° C, the conventional product will continue to decrease. Here, the amount of heat dissipation [D (T-Troo
m)] increases as the temperature rises as shown in FIG.

【0025】このとき、各々の抵抗体の温度上昇速度
は、前記式(2)より入力電気エネルギーと熱放散量の
差で決定されることから、本発明品の方が従来品よりも
その温度上昇が速いことになる。一方、電圧印加時には
入力電力が7Wと等しいことから、温度上昇速度は、ど
ちらも約12℃/秒と等しくなる。しかし、100℃で
の温度上昇速度をみると、図3から求められるように本
発明品では約10℃/秒であるのに対し、従来品では約
2℃/秒と小さくなっている。これは、図4で100℃
でのIV−D(T−Troom)をみると、従来品に対して
本発明品は約3倍になっていることとほぼ一致する。
At this time, the temperature rising rate of each resistor is determined by the difference between the input electric energy and the amount of heat dissipation according to the equation (2), so that the temperature of the product of the present invention is higher than that of the conventional product. The climb will be fast. On the other hand, when the voltage is applied, since the input power is equal to 7 W, the rate of temperature rise is equal to about 12 ° C./sec in both cases. However, the temperature rising rate at 100 ° C. is about 10 ° C./sec for the product of the present invention as determined from FIG. 3, whereas it is as small as about 2 ° C./sec for the conventional product. This is 100 ℃ in Figure 4
Looking at IV-D (T-Troom), the value of the present invention is approximately three times that of the conventional product.

【0026】そして、この温度上昇速度の増大は、本発
明品の抵抗値の温度変化が、NTC特性である範囲によ
って生じる作用なのである。したがって、このような本
発明品は、これをヒータとした場合に、その温度上昇が
速く、これにより安定温度までの立ち上がり時間が短い
ものとなる。また、このような本発明の発熱抵抗体を電
子写真プリンタ用定着器ヒータとして用いれば、前記し
た理由により温度立ち上がり時間が短いものとなる。な
お、この電子写真プリンタ用定着器ヒータの構成につい
ては、従来に比べその発熱抵抗体のみが代わるだけで他
の構成要素については同様であることから、他の構成要
素の具体的説明は省略する。
The increase in the temperature rise rate is an action caused by the temperature change of the resistance value of the product of the present invention depending on the range of NTC characteristics. Therefore, in such a product of the present invention, when it is used as a heater, the temperature rises quickly, and thus the rise time to a stable temperature is short. Further, when such a heating resistor of the present invention is used as a heater for a fixing device for an electrophotographic printer, the temperature rise time becomes short because of the above reason. It should be noted that the configuration of the fixing device heater for the electrophotographic printer is the same as that of the conventional one except that only the heat generating resistor is replaced, and other components are the same, so a detailed description of the other components will be omitted. .

【0027】[0027]

【発明の効果】以上説明したように本発明の発熱抵抗体
は、導電性粉末として抵抗値の温度変化がNTC特性を
有するTi2 3 粉末を用いたことにより、その安定温
度の直前温度までNTC特性を有したものであるから、
このNTC特性を有する範囲において従来のものに比べ
その温度上昇速度が増大したものとなる。したがって、
これをヒータとして用いた場合に、元来有するサーミス
タ機能(温度調節機能)に加えて前述したように温度上
昇速度が増大していることから、安定温度に上昇するま
での時間を短くすることができる。よって、例えばこの
発熱抵抗体を電子写真プリンタ用定着用ヒータとして用
いれば、温度の立ち上がり時間の短い定着器を作製する
ことができる。
As described above, the heat generating resistor of the present invention uses Ti 2 O 3 powder having a resistance change with temperature as the NTC characteristic as the conductive powder, so that the temperature immediately before its stable temperature is reached. Since it has NTC characteristics,
In the range having the NTC characteristics, the temperature rising speed is increased as compared with the conventional one. Therefore,
When this is used as a heater, the temperature rise rate increases as described above in addition to the thermistor function (temperature adjustment function) originally possessed, so it is possible to shorten the time until the temperature rises to a stable temperature. it can. Therefore, for example, if this heating resistor is used as a fixing heater for an electrophotographic printer, a fixing device with a short temperature rise time can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】発熱抵抗体の抵抗値の温度依存性を示すグラフ
である。
FIG. 1 is a graph showing the temperature dependence of the resistance value of a heating resistor.

【図2】Ti2 3 の抵抗率の温度依存性を示すグラフ
である。
FIG. 2 is a graph showing the temperature dependence of the resistivity of Ti 2 O 3 .

【図3】発熱抵抗体の温度上昇の時間変化を示すグラフ
である。
FIG. 3 is a graph showing the time change of the temperature rise of the heating resistor.

【図4】入力電気エネルギーと熱放散量の温度依存性を
示すグラフである。
FIG. 4 is a graph showing temperature dependence of input electric energy and heat dissipation amount.

【図5】発熱抵抗体の温度と電圧印加時間との関係を示
すグラフである。
FIG. 5 is a graph showing the relationship between the temperature of the heating resistor and the voltage application time.

【図6】入力エネルギーと熱放散量との関係の、温度依
存性を示すグラフである。
FIG. 6 is a graph showing the temperature dependence of the relationship between input energy and heat dissipation.

【図7】理想的な入力エネルギーの温度依存性を示すグ
ラフである。
FIG. 7 is a graph showing temperature dependence of ideal input energy.

【図8】理想的な抵抗値の温度依存性を示すグラフであ
る。
FIG. 8 is a graph showing temperature dependence of ideal resistance value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母材となる樹脂に導電性粉末を混合して
形成された温度調節機能を有する発熱抵抗体であって、 前記導電性粉末として、Ti2 3 粉末と、抵抗率が4
×10-5Ω・cm以下の導電性粉末とを含有してなるこ
とを特徴とする発熱抵抗体。
1. A heat-generating resistor having a temperature adjusting function, which is formed by mixing conductive powder into a resin as a base material, wherein the conductive powder is Ti 2 O 3 powder and has a resistivity of 4
A heat-generating resistor, characterized in that it contains a conductive powder of x10 -5 Ω · cm or less.
【請求項2】 前記抵抗率が4×10-5Ω・cm以下の
導電性粉末として、RuO2 、Ag、Cu、Niのうち
の少なくとも一種の粉末が用いられてなることを特徴と
する請求項1記載の発熱抵抗体。
2. The conductive powder having a resistivity of 4 × 10 −5 Ω · cm or less is made of at least one kind of powder of RuO 2 , Ag, Cu and Ni. Item 3. A heating resistor according to item 1.
【請求項3】 請求項1記載の発熱抵抗体をヒータとし
て用いてなることを特徴とする電子写真プリンタ定着器
用ヒータ。
3. A heater for an electrophotographic printer fixing device, wherein the heating resistor according to claim 1 is used as a heater.
JP8926795A 1995-04-14 1995-04-14 Heat generating resistor and heater for fixing device of electrophotographic printer Pending JPH08286537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8926795A JPH08286537A (en) 1995-04-14 1995-04-14 Heat generating resistor and heater for fixing device of electrophotographic printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8926795A JPH08286537A (en) 1995-04-14 1995-04-14 Heat generating resistor and heater for fixing device of electrophotographic printer

Publications (1)

Publication Number Publication Date
JPH08286537A true JPH08286537A (en) 1996-11-01

Family

ID=13965985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8926795A Pending JPH08286537A (en) 1995-04-14 1995-04-14 Heat generating resistor and heater for fixing device of electrophotographic printer

Country Status (1)

Country Link
JP (1) JPH08286537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130639A (en) * 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd Thermistor
JP2012242642A (en) * 2011-05-20 2012-12-10 Konica Minolta Business Technologies Inc Heat generating fixing belt, and image forming apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130639A (en) * 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd Thermistor
JP2012242642A (en) * 2011-05-20 2012-12-10 Konica Minolta Business Technologies Inc Heat generating fixing belt, and image forming apparatus using the same

Similar Documents

Publication Publication Date Title
US4238812A (en) Circuit protection devices comprising PTC elements
US4329726A (en) Circuit protection devices comprising PTC elements
US4352083A (en) Circuit protection devices
US4317027A (en) Circuit protection devices
JPS6265401A (en) Regulating method for ordinary heating temperature in thermosensitive electric resistance compositiion
EP0228808B1 (en) A temperature sensitive device
JPH08339904A (en) Positive temperature coefficient composition
JPH097802A (en) Ptc resistance
GB2061075A (en) Ptc heating apparatus
JPH08286537A (en) Heat generating resistor and heater for fixing device of electrophotographic printer
US4730103A (en) Compact PTC resistance heater
JP2852778B2 (en) Heat-sensitive electrical resistance composition
US2375497A (en) Circuit arrangement for resistance elements having a high resistancetemperature coefficient
JPS59226493A (en) Self-temperature controllable heater
JP4134386B2 (en) Composite material for PTC thermistor, manufacturing method thereof, and use thereof
JP3283898B2 (en) PTC heating device
JP4724838B2 (en) Current control resistor element
JPS5963688A (en) Panel heater and method of producing same
JP2531025B2 (en) Planar heating element
JPH11329675A (en) Ptc composition
JPH05326113A (en) Ptc heater
Besch 2.3 Thermal Properties
JPH0945466A (en) Self temperature adjusting heating resistor material, conductive powder used therein, and self temperature adjusting heater using heating resistor material
JPH0399402A (en) Temperature sensitive resistance element
JPH03159091A (en) Exothermic body having thermister characteristics