JP3283898B2 - PTC heating device - Google Patents
PTC heating deviceInfo
- Publication number
- JP3283898B2 JP3283898B2 JP08988092A JP8988092A JP3283898B2 JP 3283898 B2 JP3283898 B2 JP 3283898B2 JP 08988092 A JP08988092 A JP 08988092A JP 8988092 A JP8988092 A JP 8988092A JP 3283898 B2 JP3283898 B2 JP 3283898B2
- Authority
- JP
- Japan
- Prior art keywords
- resistance value
- ptc
- heating device
- heaters
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fixing For Electrophotography (AREA)
- Control Of Resistance Heating (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子複写機、ファクシ
ミリ等のトナーの定着、あるいはビニール封着等の目的
に使用するPTC発熱装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PTC heating device used for fixing toner of an electronic copying machine, a facsimile or the like, or for sealing vinyl.
【0002】[0002]
【従来の技術】PTCサーミスタを用いたヒータは、キ
ュリー点において、急激にその抵抗値が増大するため、
安全性が高い、立上り温度が速い、温度制御装置が不要
であるといった数々のメリットがあり、様々な分野で利
用されている。これらの特性のうち、立上り温度が速い
という長所を利用する場合、突入電流が大きくなり過ぎ
るという欠点があった。2. Description of the Related Art A heater using a PTC thermistor rapidly increases its resistance at the Curie point.
It has many advantages such as high safety, fast rising temperature, and no need for a temperature control device, and is used in various fields. When utilizing the advantage that the rising temperature is fast among these characteristics, there is a disadvantage that the rush current becomes too large.
【0003】この欠点を解決するために、特開昭55−
97143号公報には、PTCサーミスタを負特性サー
ミスタと直列接続することが記載されている。特開昭5
4−115445号公報には、オーム性電極と非オーム
性電極を接合することが記載されている。特開昭49−
27932号公報には、キュリー点の異なる正特性サー
ミスタを組み合わせることが記載されている。また特開
昭63−218184号公報には、位相温度制御装置を
使用することが記載されている。In order to solve this drawback, Japanese Patent Laid-Open No.
JP 97143 describes that a PTC thermistor is connected in series with a negative characteristic thermistor. JP 5
Japanese Patent Application Laid-Open No. 4-115445 describes joining an ohmic electrode and a non-ohmic electrode. JP-A-49-
Japanese Patent No. 27932 describes that positive temperature coefficient thermistors having different Curie points are combined. Japanese Patent Laid-Open Publication No. Sho 63-218184 describes the use of a phase temperature control device.
【0004】ところが、このような従来の技術では、回
路が複雑になり、工数がかかるという問題があった。特
に特開昭49−27932号公報に記載されたものの場
合、表面温度の低い所ができ、表面温度の均一性が要求
される定着装置等の用途には適さないという欠点があ
る。そのほかに、時間間隔を設けて複数の棒状PTCサ
ーミスタ素子を入電したり、出力と室温抵抗値から設定
する方法も考えられている。[0004] However, such a conventional technique has a problem that a circuit is complicated and a man-hour is required. In particular, in the case of Japanese Patent Application Laid-Open No. 49-27932, there is a disadvantage that a portion having a low surface temperature is formed, and is not suitable for use in a fixing device or the like which requires a uniform surface temperature. In addition, a method has been considered in which a plurality of rod-shaped PTC thermistor elements are input with time intervals, or set based on the output and the room temperature resistance value.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、これら
の方法によっても、立上り時間を短くし、かつ、比較的
大きな熱量と所定の表面温度を得ようとすると、使用す
る本数分だけの突入電流を避けることはできないという
欠点がある。また、前記のように1本だけ入電後、時間
間隔を設けて追加入電していく方法は、構成が複雑にな
るという欠点があった。However, even with these methods, in order to shorten the rise time and to obtain a relatively large amount of heat and a predetermined surface temperature, it is necessary to avoid an inrush current corresponding to the number of wires used. There is a drawback that you can not. Further, as described above, the method of providing additional time with a time interval after only one power is input has a disadvantage that the configuration is complicated.
【0006】そこで本発明が解決すべき課題は、付加的
回路や素子を用いることなく、PTCサーミスタ自体で
突入電流を抑制しながら、なおかつ立上りが速く、熱容
量の大きな発熱装置を提供することにある。The problem to be solved by the present invention is to provide a heat generating device which has a fast rise time and a large heat capacity while suppressing an inrush current by a PTC thermistor itself without using an additional circuit or element. .
【0007】[0007]
【課題を解決するための手段】この課題を解決するた
め、本発明は、PTC素子を用いた棒状のヒータを(n
+1)本、並列接続して形成したPTC発熱装置におい
て、突入電流防止のために必要な且つ立ち上がりを速く
するために必要とする総合抵抗値をxΩとし、そのうち
1本の抵抗値を(x+z)Ω、残りn本の抵抗値をyΩ
(但し、xΩを超える)としたとき、y=nx(x/z
+1)Ω(但し、0<z<x)・・・(1)の式を満た
すように各抵抗値を設定したPTC発熱装置において、
ヒータの周辺にシリコン樹脂、エポキシ樹脂およびフッ
素樹脂のいずれかによりヒータを互いに熱的に絶縁した
ことを特徴とする。なお、前記の抵抗値は、PTC素子
の公称の抵抗値、すなわち、20℃における抵抗値であ
る。本発明では、総合抵抗値のxΩ、(x+z)Ωを決
定し、(1)の式を満たすようにyΩを決定する。In order to solve this problem, the present invention provides a rod-shaped heater using a PTC element (n).
+1) In a PTC heating device formed in parallel and formed, the total resistance value required for preventing inrush current and required for quick rise is xΩ, and one of the resistance values is (x + z) Ω, and the remaining n resistance values are yΩ
(However, when it exceeds xΩ ), y = nx (x / z
+1) Ω (where 0 <z <x)... In a PTC heating device in which each resistance value is set so as to satisfy the expression (1),
The heater is thermally insulated from each other around the heater by one of silicon resin, epoxy resin and fluorine resin. The above resistance value is a nominal resistance value of the PTC element, that is, a resistance value at 20 ° C. In the present invention, xΩ and (x + z) Ω of the total resistance value are determined, and yΩ is determined so as to satisfy the expression (1).
【0008】また、複数本のヒータの周辺にシリコン樹
脂、エポキシ樹脂およびフッ素樹脂等により放熱板部分
以外の部分を固定する。Further, a portion other than the heat radiating plate portion is fixed around the plurality of heaters with a silicone resin, an epoxy resin, a fluororesin or the like.
【0009】(1)式は、図2の抵抗回路によって求め
ることができる。1つの抵抗の抵抗値をx+z、残りの
n本の抵抗の抵抗値をy、並列接続回路全体の抵抗値を
xとすると、次の式が成り立つ。 1/x=1/(x+z)+n×(1/y) 移項して、 1/x−1/(x+z)=n/y 通分して、 z/x(x+z)=n/y これから、 y=nx(x+z)/z=nx(x/z+1) として、(1)式が得られる。Equation (1) can be obtained by the resistance circuit shown in FIG. Assuming that the resistance value of one resistor is x + z, the resistance value of the remaining n resistors is y, and the resistance value of the entire parallel connection circuit is x, the following equation is established. 1 / x = 1 / (x + z) + n × (1 / y) By transposing, 1 / x−1 / (x + z) = n / y, z / x (x + z) = n / y Equation (1) is obtained as y = nx (x + z) / z = nx (x / z + 1).
【0010】以上は抵抗値の関係を規制するものである
が、立上り特性を考慮して、(1)式の但し書きの条件
を付ける。すなわち、zをxより小さいと規定した理由
は、xとzが同じ値をとった場合には、例えば総計2本
としたとき、y=1・x・(1+1)=2xとなり、そ
れぞれのヒータの抵抗値は2xとなって同じ値になる。
このような抵抗値の2本のヒータに通電した場合、両方
に同じ電流が同じ時間で流れるため、昇温速度が著しく
遅くなる。よってzはxより小さい値をとる必要があ
り、より速く昇温させようとする場合にはzは0に近い
値の方がよい。The above description regulates the relationship between the resistance values, but the condition of the proviso of the equation (1) is given in consideration of the rising characteristic. That is, the reason that z is smaller than x is that when x and z have the same value, for example, when the total is two, y = 1.x. (1 + 1) = 2x, and each heater Is 2x, which is the same value.
When the two heaters having such resistance values are energized, the same current flows in both at the same time, so that the rate of temperature rise is significantly reduced. Therefore, it is necessary that z has a value smaller than x, and when it is desired to raise the temperature more quickly, z is preferably a value closer to 0.
【0011】[0011]
【作用】本発明においては、電気的に複数本並列接続し
た発熱装置のヒータの抵抗値が(1)式を満たすのであ
れば、使用機器がどんな物でも許容される電流値を超え
ることがない。そのため、同時に複数本のヒータを入電
しても、最も抵抗値の低いヒータに大きな電流が流れ、
所定の温度に達すると同時に、他の高い抵抗値のヒータ
にも電流が流れていくため、突入電流をあまり大きくせ
ずに、立上りが速く、所定の温度に到達して、なおか
つ、全体の熱容量も大きな特性の発熱装置を得ることが
できる。In the present invention, as long as the resistance value of the heater of a plurality of electrically connected heating devices satisfies the equation (1), the current value of any equipment used does not exceed the allowable current value. . Therefore, even if a plurality of heaters are turned on at the same time, a large current flows through the heater with the lowest resistance,
At the same time as the temperature reaches the predetermined temperature, the current also flows to other heaters with a high resistance value. Also, it is possible to obtain a heat generating device having large characteristics.
【0012】[0012]
【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 〔実施例〕図3(a)に示すように、キュリー点が22
0℃の5mm幅×10mm長さ×2.5mm厚のチタン
酸バリウムよりなるPTC素子1の相対する表面にNi
メッキで電極膜2,2を形成した後、図3(b)に示す
ように0.3mmのアルミニウム電極板3,3間にPT
C素子1を5個並列に接着してPTCヒータ4を得て、
抵抗値を測定したところ、80Ωであった。さらに熱容
量を増すために同様に抵抗値の大きなPTC素子を使用
して、抵抗値の総計が90Ω以下になるように、(1)
式のzに3を入れて算出し、PTCヒータ5を2本得
た。これらの抵抗値は5.5KΩと5.6KΩであっ
た。これらのPTCヒータ4,5を図4に示すように3
本並列接続し、各々のヒータの間には断熱材を介在さ
せ、図1に示すようにシリコーン樹脂6により固定し
た。こうして得られた発熱素子に100Vを印加したと
ころ、8秒以内で表面温度は210℃に到達し、最大突
入電流は3.5Aであった。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. [Embodiment] As shown in FIG.
The opposite surface of the PTC element 1 made of barium titanate of 5 mm width × 10 mm length × 2.5 mm thickness at 0 ° C.
After the electrode films 2 and 2 are formed by plating, as shown in FIG.
By bonding five C elements 1 in parallel, a PTC heater 4 was obtained,
When the resistance value was measured, it was 80Ω. In order to further increase the heat capacity, similarly, a PTC element having a large resistance value is used so that the total resistance value becomes 90Ω or less.
The calculation was performed by adding 3 to z in the equation, and two PTC heaters 5 were obtained. These resistance values were 5.5 KΩ and 5.6 KΩ. These PTC heaters 4 and 5 are connected as shown in FIG.
This parallel connection was performed, and a heat insulating material was interposed between the heaters, and the heaters were fixed with a silicone resin 6 as shown in FIG. When 100 V was applied to the heating element thus obtained, the surface temperature reached 210 ° C. within 8 seconds, and the maximum inrush current was 3.5 A.
【0013】〔比較例1〕実施例と同様の操作により、
3本のPTCヒータ4,5,5の抵抗値をそれぞれ27
0Ω,260Ω,275Ωにして発熱装置を組み立て、
100Vを印加したところ、最大突入電流は3.6Aと
実施例と変わらなかったが、表面温度が210℃に到達
するまで20秒近くかかった。これは、ヒータに流れる
電流が3本に均一に流れたためである。Comparative Example 1 By the same operation as in the embodiment,
The resistance value of each of the three PTC heaters 4, 5, and 5 is 27
Assemble the heat generator with 0Ω, 260Ω, 275Ω,
When a voltage of 100 V was applied, the maximum inrush current was 3.6 A, which was not different from that of the embodiment, but it took about 20 seconds until the surface temperature reached 210 ° C. This is because the current flowing through the heater flowed uniformly into three lines.
【0014】〔比較例2〕実施例と同様の操作により、
3本のPTCヒータ4,5,5の抵抗値をそれぞれ93
Ω,90Ω,91Ωにして発熱装置を組み立て、100
Vを印加したところ、10秒以内で表面温度は210℃
に到達したが、最大突入電流は10.1Aであった。こ
れは、ヒータ全体の抵抗値が低くなったためである。Comparative Example 2 By the same operation as in the example,
The resistance values of the three PTC heaters 4, 5, and 5 were set to 93, respectively.
Ω, 90Ω, 91Ω and assemble the heating device,
When V was applied, the surface temperature was 210 ° C within 10 seconds.
, But the maximum inrush current was 10.1A. This is because the resistance value of the entire heater has decreased.
【0015】〔比較例3〕実施例と同様の操作により、
3本のPTCヒータ4,5,5の抵抗値をそれぞれ18
0Ω,362Ω,360Ω(x=zの例)にして発熱装
置を組み立て、100Vを印加したところ、最大突入電
流は3.7Aであったが、表面温度が210℃に到達す
るまで17秒近くかかった。これは、ヒータに流れる電
流が3本に分散したためである。Comparative Example 3 By the same operation as in the example,
The resistance value of each of the three PTC heaters 4, 5, and 5 is set to 18
When the heating device was assembled with 0 Ω, 362 Ω, and 360 Ω (x = z) and 100 V was applied, the maximum inrush current was 3.7 A, but it took nearly 17 seconds for the surface temperature to reach 210 ° C. Was. This is because the current flowing through the heater was dispersed into three.
【0016】〔比較例4〕実施例と同様の操作により、
3本のPTCヒータ4,5,5の抵抗値をそれぞれ80
Ω,5.6KΩ,5.9KΩにして、ヒータ間に間隔を
設けず、接近させて発熱装置を組み立て、100Vを印
加したところ、最大突入電流は3.6Aであったが、表
面温度が210℃に到達するまで25秒近くかかった。
これは、速く立ち上がったヒータの熱が他の2本に拡散
したためである。Comparative Example 4 By the same operation as in the example,
The resistance value of each of the three PTC heaters 4, 5, and 5 is set to 80
Ω, 5.6 KΩ, 5.9 KΩ, the heaters were assembled close to each other without any space between heaters, and 100 V was applied. As a result, the maximum inrush current was 3.6 A, but the surface temperature was 210 A. It took nearly 25 seconds to reach ° C.
This is because the heat of the heater that started up quickly diffused into the other two heaters.
【0017】以上の実施例と比較例とを対比してわかる
ように、(1)式により規定された抵抗値をもつPTC
ヒータを互いに熱的に絶縁して並列接続することによ
り、突入電流が抑えられるとともに、立上りが速い発熱
装置を得ることができた。As can be seen by comparing the above embodiment and the comparative example, the PTC having the resistance value defined by the equation (1)
By connecting the heaters in parallel with each other while being thermally insulated from each other, a rush current can be suppressed, and a heat generating device with a fast rise can be obtained.
【0018】[0018]
【発明の効果】以上に説明したように、本発明によれば
下記の効果を奏する。 (1)式を満たす抵抗値のヒータを単に並列接続す
るという簡単な構成により、突入電流を抑えながら、な
おかつ立上りが速く、熱容量の大きな発熱装置を得るこ
とができる。 (1)式のzの値を変化させることにより、任意に
立上りまでの時間、突入電流を抑制することができる。As described above, according to the present invention, the following effects can be obtained. With a simple configuration in which heaters having resistance values satisfying the expression (1) are simply connected in parallel, it is possible to obtain a heat generation device that suppresses inrush current, has a fast rise, and has a large heat capacity. By changing the value of z in the equation (1), it is possible to arbitrarily suppress the rush current during the time until the rise.
【図1】 本発明の実施例を示す発熱装置の斜視図であ
る。FIG. 1 is a perspective view of a heat generating device according to an embodiment of the present invention.
【図2】 (1)式を導き出すための並列回路の回路図
である。FIG. 2 is a circuit diagram of a parallel circuit for deriving equation (1).
【図3】 本発明の実施例のヒータの構成を示す説明図
である。FIG. 3 is an explanatory diagram illustrating a configuration of a heater according to the embodiment of the present invention.
【図4】 実施例および比較例のPTCヒータの接続回
路図である。FIG. 4 is a connection circuit diagram of PTC heaters of an example and a comparative example.
1 PTC素子、2 電極膜、3 電極板、4,5 P
TCヒータ、6 シリコーン樹脂1 PTC element, 2 electrode film, 3 electrode plate, 4,5P
TC heater, 6 silicone resin
Claims (1)
1)本、並列接続して形成したPTC発熱装置におい
て、突入電流防止のために必要な且つ立ち上がりを速く
するために必要とする総合抵抗値をxΩとし、そのうち
1本の抵抗値を(x+z)Ω、残りn本の抵抗値をyΩ
(但しxΩを超える)としたとき、y=nx(x/z+
1)Ω(但し0<z<x)の式を満たすように各抵抗値
を設定したPTC発熱装置において、ヒータの周辺にシ
リコン樹脂、エポキシ樹脂およびフッ素樹脂のいずれか
によりヒータを互いに熱的に絶縁したことを特徴とする
PTC発熱装置。A bar-shaped heater using a PTC element is provided as (n +
1) This, in the PTC heating device formed by parallel connection, and xΩ the total resistance value required for and fast rise necessary for preventing inrush current, of which one the resistance value (x + z) Ω, and the remaining n resistance values are yΩ
(However, it exceeds xΩ), y = nx (x / z +
1) In a PTC heating device in which each resistance value is set so as to satisfy the expression of Ω (where 0 <z <x), the heaters are thermally connected to each other around the heater by using one of silicon resin, epoxy resin and fluororesin. An insulated PTC heating device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08988092A JP3283898B2 (en) | 1992-03-13 | 1992-03-13 | PTC heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08988092A JP3283898B2 (en) | 1992-03-13 | 1992-03-13 | PTC heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05258840A JPH05258840A (en) | 1993-10-08 |
JP3283898B2 true JP3283898B2 (en) | 2002-05-20 |
Family
ID=13983087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08988092A Expired - Fee Related JP3283898B2 (en) | 1992-03-13 | 1992-03-13 | PTC heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3283898B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3862587B2 (en) | 2002-03-29 | 2006-12-27 | キヤノン株式会社 | Inkjet recording head |
JP2010132055A (en) * | 2008-12-03 | 2010-06-17 | Panasonic Corp | Vehicle heater |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4927932A (en) * | 1972-07-12 | 1974-03-12 | ||
JPH0737848B2 (en) * | 1989-07-18 | 1995-04-26 | 三洋電機株式会社 | Heating cooker |
-
1992
- 1992-03-13 JP JP08988092A patent/JP3283898B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05258840A (en) | 1993-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4017715A (en) | Temperature overshoot heater | |
US5512732A (en) | Switch controlled, zone-type heating cable and method | |
US4317027A (en) | Circuit protection devices | |
EP0417097B1 (en) | Heating element and method for making such a heating element | |
US4352083A (en) | Circuit protection devices | |
JPH0461578B2 (en) | ||
US5231371A (en) | Overcurrent protection circuit | |
JP3283898B2 (en) | PTC heating device | |
JPS6091583A (en) | Heat generator | |
US4792877A (en) | Electric motor armature current control circuit | |
EP0304196B1 (en) | Electric motor armature current control circuit | |
Ting | Self-regulating PTC heating systems: A new approach for electric heating appliances | |
US2375497A (en) | Circuit arrangement for resistance elements having a high resistancetemperature coefficient | |
JP2662322B2 (en) | Temperature control device for electric carpet | |
JPS6230793Y2 (en) | ||
JP3368615B2 (en) | Heating equipment | |
JP3257746B2 (en) | Inrush current suppression type PTC heating device | |
JP3199177B2 (en) | Driving method of overcurrent protection element | |
JP4724838B2 (en) | Current control resistor element | |
RU2168876C1 (en) | Electrode for electrode-type water boiler | |
RU2168875C1 (en) | Electrode for electrode-type liquid heater | |
JP2000058232A (en) | Heating device and image forming device | |
JPS63168710A (en) | Protective circuit for power unit | |
JPH0737679A (en) | Heater element with positive temperature coefficient of resistance | |
JPH03216987A (en) | Control method for self-temperature control type heating element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020122 |
|
LAPS | Cancellation because of no payment of annual fees |