JPS6230793Y2 - - Google Patents

Info

Publication number
JPS6230793Y2
JPS6230793Y2 JP4614780U JP4614780U JPS6230793Y2 JP S6230793 Y2 JPS6230793 Y2 JP S6230793Y2 JP 4614780 U JP4614780 U JP 4614780U JP 4614780 U JP4614780 U JP 4614780U JP S6230793 Y2 JPS6230793 Y2 JP S6230793Y2
Authority
JP
Japan
Prior art keywords
resistor
heating wire
temperature
resistance
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4614780U
Other languages
Japanese (ja)
Other versions
JPS56147594U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4614780U priority Critical patent/JPS6230793Y2/ja
Publication of JPS56147594U publication Critical patent/JPS56147594U/ja
Application granted granted Critical
Publication of JPS6230793Y2 publication Critical patent/JPS6230793Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、自己制御特性を有するほぼ平板状の
加熱線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substantially flat heating wire with self-regulating properties.

平行な2導体(電極)または3導体の間に、ゴ
ム、プラスチツク材を基材とした抵抗体を配置
し、導体の電極間に電圧を印加し、発熱させる加
熱線が加熱部材として用いられている。
A resistor made of rubber or plastic is placed between two or three parallel conductors (electrodes), and a heating wire is used as the heating member to generate heat by applying a voltage between the conductor electrodes. There is.

第1図は従来の加熱線を示し、電極1,1間は
半導電材の押出層により形成された抵抗体2によ
つて接続され、抵抗体2の表面は絶縁被覆3によ
つて覆われ、絶縁被覆3の外側に保護シース4が
設けられている。
FIG. 1 shows a conventional heating wire, in which electrodes 1 and 1 are connected by a resistor 2 formed by an extruded layer of semiconducting material, and the surface of the resistor 2 is covered with an insulating coating 3. , a protective sheath 4 is provided on the outside of the insulation coating 3.

この加熱線の抵抗体2は、正の抵抗温度係数を
有しており、温度上昇によつて抵抗値が上昇し、
所定温度以上では抵抗増大のため、通電電流が抑
制されて自己制御する特性が付与されている。
The resistor 2 of this heating wire has a positive temperature coefficient of resistance, and the resistance value increases as the temperature rises.
At a temperature above a predetermined temperature, the resistance increases, so the current flow is suppressed and a self-control characteristic is provided.

そして、この加熱線は、幅方向にほぼ均一の厚
さを持つ平板状のゴム・プラスチツクの導電体
(抵抗体)により発熱部が形成されている。
The heating portion of this heating wire is formed of a flat rubber/plastic conductor (resistor) having a substantially uniform thickness in the width direction.

そして、抵抗体2、電極部1に課電時の電流
は、加熱線の電極1から対向する電極1に向かつ
て幅方向に抵抗体2内を第2図の如く流れる。
When the resistor 2 and the electrode portion 1 are energized, a current flows inside the resistor 2 in the width direction from the electrode 1 of the heating wire toward the opposing electrode 1 as shown in FIG.

この抵抗体2の温度(T)と抵抗値(R)との
特性は、横軸に温度Tをとり、縦軸に抵抗値Rを
取つて示した第3図の曲線Aのように、一定温度
に達すると、抵抗値は上昇し飽和値に達する。
The characteristics of the temperature (T) and resistance value (R) of this resistor 2 are constant, as shown in curve A in Figure 3, where the horizontal axis represents the temperature T and the vertical axis represents the resistance value R. When the temperature is reached, the resistance value increases and reaches the saturation value.

今、この加熱線に電圧を加えると、当初は抵抗
値が小さいため、突入電流が流れる。この電流が
流れる両端の電極1,1は形状上から両端は加熱
されない放散面となつているため、横軸に電極間
位置dをとり、縦軸に温度Tをとつて示した第4
図の曲線Bのような電極間温度分布が形成され
る。そして、中間の温度が比較的高い状態で通電
を行うと、抵抗は温度−抵抗値特性に従つて上昇
し、電極1,1間ではどこでも電流は同じである
ものの、抵抗値の大きくなる中間部は急激な放散
も難かしく、益々中間部が過熱される結果とな
る。
Now, when voltage is applied to this heating wire, an inrush current flows because the resistance value is initially small. Because the electrodes 1, 1 at both ends through which this current flows are shaped as dissipating surfaces that are not heated, the horizontal axis represents the interelectrode position d, and the vertical axis represents the temperature T.
A temperature distribution between the electrodes as shown by curve B in the figure is formed. When current is applied while the temperature in the middle is relatively high, the resistance increases according to the temperature-resistance characteristic, and although the current is the same everywhere between electrodes 1 and 1, the resistance increases in the middle part. It is also difficult to rapidly dissipate the heat, resulting in the intermediate portion becoming increasingly overheated.

この変遷状況は、第4図と同様に表示された第
5図において曲線a−b−cの順に矢印で示した
如く時間の経過とともに電極1,1中間部が上昇
する。そして、これに伴ない電位分布も横軸に電
極間位置dをとり、縦軸に電圧Eをとつて示した
第6図の曲線e,f,gに示す如く上昇する。
In FIG. 5, which is displayed similarly to FIG. 4, the intermediate portions of the electrodes 1 and 1 rise with the passage of time as shown by arrows in the order of curves a-b-c. Along with this, the potential distribution also rises as shown by curves e, f, and g in FIG. 6, where the horizontal axis represents the interelectrode position d and the vertical axis represents the voltage E.

このように、課電時に電極1,1間中間部が繰
り返し、局部過熱される可能性がある。
In this way, there is a possibility that the intermediate portion between the electrodes 1 and 1 will be repeatedly overheated locally when electricity is applied.

また、電界が中間部程高く電界集中となり、局
部的に部分破壊や電気的劣化の可能性が強くなる
などの欠点がある。
In addition, there is a drawback that the electric field is higher in the middle part and becomes concentrated, increasing the possibility of local partial destruction or electrical deterioration.

本考案の目的は、上記欠点を解消し、均一に加
熱ができて長期安定寿命が得られる加熱線を提供
することにある。
An object of the present invention is to provide a heating wire that eliminates the above-mentioned drawbacks, can heat uniformly, and has a long stable life.

通常、加熱線の電極間中間部の温度上昇を減少
し抵抗の局部増大を防止する手段としては、抵抗
を少なくする、または熱放散をよくするなどの対
策が考えられる。そして、同一固有抵抗をもつ抵
抗体では断面積を増せば抵抗を下げることがで
き、さらに体積を増加することにより、熱容量が
大きくなることから温度上昇の速さが遅くなり、
放熱面が大きくなるので温度の平均化が図れる。
Usually, as a means to reduce the temperature rise at the intermediate portion between the electrodes of the heating wire and prevent a local increase in resistance, measures such as reducing resistance or improving heat dissipation can be considered. For resistors with the same specific resistance, the resistance can be lowered by increasing the cross-sectional area, and by increasing the volume, the heat capacity increases, which slows down the rate of temperature rise.
Since the heat dissipation surface becomes larger, the temperature can be averaged.

また、電極間中間位置の抵抗体内に導電部材を
配置しても温度の平均化ができる。
Furthermore, even if a conductive member is placed inside the resistor at a position intermediate between the electrodes, the temperature can be averaged.

本考案の加熱線は、複数個の電極間を抵抗体を
介し接続し通電することにより、温度を上昇させ
抵抗値の上昇に伴ない所定温度以上で通電電流が
抑制されるように形成された自己制御特性を有
し、上記抵抗体の電極間中間位置の抵抗を減少さ
せる手段を設けたものである。
The heating wire of the present invention is formed in such a way that the temperature is increased by connecting multiple electrodes through a resistor and energizing them, and as the resistance value increases, the current flowing is suppressed at a predetermined temperature or higher. The resistor has self-control characteristics and is provided with means for reducing the resistance at an intermediate position between the electrodes of the resistor.

以下本考案の加熱線の一実施例を従来と同部品
は同符号で示し、同部分の説明は省略し、第7図
により説明する。
Hereinafter, an embodiment of the heating wire of the present invention will be described with reference to FIG. 7, with the same parts as those in the prior art being designated by the same reference numerals and explanations of the same parts being omitted.

電極1,1間には、架橋ポリエチレン、架橋ポ
リオレフイン、弗素樹脂、テフロン等のプラスチ
ツク系材料にカーボンを配合または重合した材料
を押し出し成形して、半導電層の抵抗体2を形成
している。
Between the electrodes 1 and 1, a resistor 2 as a semiconductive layer is formed by extrusion molding a material in which carbon is blended or polymerized with a plastic material such as crosslinked polyethylene, crosslinked polyolefin, fluororesin, or Teflon.

そして、抵抗体2は図示の如く、電極1,1の
中間部が厚く電極1の近傍が薄く押し出し成形さ
れている。
As shown in the figure, the resistor 2 is extruded so that the middle part between the electrodes 1 is thicker and the area near the electrode 1 is thinner.

この中間部を厚くしたことにより、この部分の
抵抗が低くなり、通電によつて急激に抵抗増加を
することなく、そして電界も集中しないため、中
心部のみ加熱されることが無くなる。
By making this middle part thicker, the resistance of this part is lowered, and the resistance does not suddenly increase when electricity is applied, and the electric field is not concentrated, so that only the center part is not heated.

また、熱容量も大きくなるとともに熱放散もよ
くなることから、初期温度分布も平均化させるこ
とが可能となる。
Furthermore, since the heat capacity increases and heat dissipation improves, it becomes possible to even out the initial temperature distribution.

第8図は、他の実施例を示す。上記実施例と異
なるところは、上記実施例は中間部の抵抗体2の
厚さを厚くしたのに対し、本実施例の抵抗体2の
厚さを厚くしないで、抵抗体2の厚さを均一に
し、中間部分の抵抗体2に銅条5を内蔵したもの
であり、抵抗を下げることができるとともに、熱
容量を大きくして効果を上げるようにしたもの
で、上記実施例と同様の作用効果を有する。
FIG. 8 shows another embodiment. The difference from the above embodiment is that in the above embodiment, the thickness of the resistor 2 in the intermediate portion is increased, whereas in this embodiment, the thickness of the resistor 2 is not increased, and the thickness of the resistor 2 is increased. The copper strip 5 is made uniform and the resistor 2 in the middle part has a built-in copper strip 5, which can lower the resistance and increase the heat capacity to increase the effect, and has the same effect as the above embodiment. has.

この場合、銅条5は電源等に接続する必要はな
い。また、上記各実施例は導体2本の場合につい
て述べたが、導体3本平行に配設しても作用効果
は同じである。
In this case, the copper strip 5 does not need to be connected to a power source or the like. Further, although each of the above embodiments has been described with reference to the case of two conductors, the same effect can be obtained even if three conductors are arranged in parallel.

尚、中間部の抵抗を下げるために電源1近傍は
高抵抗材を用い、中間部を抵抗材を用いて形成す
ることも考えられるが、製造上難しく、現実的で
はない。
In order to lower the resistance of the intermediate portion, it is conceivable to use a high resistance material near the power supply 1 and form the intermediate portion using a resistive material, but this is difficult and impractical in terms of manufacturing.

このように両実施例の加熱線は形成されている
ので、電圧課電時の温度上昇の幅方向の平均化を
計ることができ、急激な抵抗変化が避けられるた
め、中間部に加熱が集中することなく、加熱線の
長期安定寿命が得られる。
Since the heating wires of both embodiments are formed in this way, it is possible to average the temperature rise in the width direction when voltage is applied, and sudden changes in resistance are avoided, so heating is concentrated in the middle part. A long-term stable life of the heating wire can be obtained without any damage.

以上記述した如く本考案の加熱線は、均一に加
熱ができて長期安定寿命が得られる効果を有する
ものである。
As described above, the heating wire of the present invention has the effect of uniformly heating and having a long and stable life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の加熱線の断面図、第2図は第1
図の加熱線の通電時の説明図、第3図は第1図の
加熱線の通電時の温度、抵抗の関係説明図、第4
図ないし第6図は電極間位置と温度、電位分布の
関係を示し、第4図は通電初期の温度分布説明
図、第5図は時間の経過とともに変化する温度説
明図、第6図は時間の経過とともに変化する電位
分布説明図、第7図は本考案の加熱線の一実施例
の断面図、第8図は本考案の加熱線の他の実施例
の断面図である。 1:電極、2:抵抗体、3:絶縁被覆、4:保
護シース、5:銅条。
Figure 1 is a cross-sectional view of a conventional heating wire, and Figure 2 is a cross-sectional view of a conventional heating wire.
Fig. 3 is an explanatory diagram of the relationship between temperature and resistance when the heating wire of Fig. 1 is energized;
Figures 6 to 6 show the relationship between the interelectrode position, temperature, and potential distribution. Figure 4 is an illustration of temperature distribution at the initial stage of energization, Figure 5 is an illustration of temperature changing over time, and Figure 6 is an illustration of temperature distribution over time. FIG. 7 is a sectional view of one embodiment of the heating wire of the present invention, and FIG. 8 is a sectional view of another embodiment of the heating wire of the present invention. 1: Electrode, 2: Resistor, 3: Insulating coating, 4: Protective sheath, 5: Copper strip.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数個の電極間を抵抗体を介し接続し通電する
ことにより、温度を上昇させ抵抗値の上昇に伴な
い所定温度以上で通電電流が抑制されるように形
成された自己制御特性を有する加熱線において、
上記抵抗体の電極間中間位置の抵抗を減少させる
手段を設けたことを特徴とする加熱線。
A heating wire with self-control characteristics that is formed by connecting multiple electrodes through a resistor and applying current to increase the temperature and suppress the current flowing above a predetermined temperature as the resistance value increases. In,
A heating wire characterized in that the heating wire is provided with means for reducing the resistance at an intermediate position between the electrodes of the resistor.
JP4614780U 1980-04-04 1980-04-04 Expired JPS6230793Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4614780U JPS6230793Y2 (en) 1980-04-04 1980-04-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4614780U JPS6230793Y2 (en) 1980-04-04 1980-04-04

Publications (2)

Publication Number Publication Date
JPS56147594U JPS56147594U (en) 1981-11-06
JPS6230793Y2 true JPS6230793Y2 (en) 1987-08-07

Family

ID=29641194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4614780U Expired JPS6230793Y2 (en) 1980-04-04 1980-04-04

Country Status (1)

Country Link
JP (1) JPS6230793Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154788A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Heater
JPH0687426B2 (en) * 1984-12-18 1994-11-02 松下電器産業株式会社 Heating element
JPH0632263B2 (en) * 1985-09-27 1994-04-27 キヤノン株式会社 Liquid jet recording head

Also Published As

Publication number Publication date
JPS56147594U (en) 1981-11-06

Similar Documents

Publication Publication Date Title
US4246468A (en) Electrical devices containing PTC elements
US4314145A (en) Electrical devices containing PTC elements
US4922083A (en) Flexible, elongated positive temperature coefficient heating assembly and method
US4271350A (en) Blanket wire utilizing positive temperature coefficient resistance heater
US3410984A (en) Flexible electrically heated personal warming device
US4309597A (en) Blanket wire utilizing positive temperature coefficient resistance heater
KR910000829B1 (en) Elongate electrical heaters
EP0417097B1 (en) Heating element and method for making such a heating element
US4317027A (en) Circuit protection devices
US4352083A (en) Circuit protection devices
US4329726A (en) Circuit protection devices comprising PTC elements
US4334148A (en) PTC Heaters
US4783587A (en) Self-regulating heating article having electrodes directly connected to a PTC layer
JPH0461578B2 (en)
US10863588B2 (en) Heater cable having a tapered profile
JPS6221235B2 (en)
CN110651534B (en) Voltage leveling heater cable with adjustable power output
US4673801A (en) PTC heater assembly
JPS6230793Y2 (en)
JPS63281375A (en) Electric heating cable and assembly of the same
JPH0526316B2 (en)
JPH0331029Y2 (en)
JPS59226493A (en) Self-temperature controllable heater
JP2000040579A (en) Sheet heating element
JPH07107870B2 (en) Positive resistance temperature coefficient heating element