JPH0526316B2 - - Google Patents

Info

Publication number
JPH0526316B2
JPH0526316B2 JP58067662A JP6766283A JPH0526316B2 JP H0526316 B2 JPH0526316 B2 JP H0526316B2 JP 58067662 A JP58067662 A JP 58067662A JP 6766283 A JP6766283 A JP 6766283A JP H0526316 B2 JPH0526316 B2 JP H0526316B2
Authority
JP
Japan
Prior art keywords
metal conductor
heating device
composite heating
heater
proximal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58067662A
Other languages
Japanese (ja)
Other versions
JPS5963690A (en
Inventor
Aasaa Mitsudogurei Jon
Eichi Haretsuta Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raychem Corp
Original Assignee
Raychem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raychem Corp filed Critical Raychem Corp
Publication of JPS5963690A publication Critical patent/JPS5963690A/en
Publication of JPH0526316B2 publication Critical patent/JPH0526316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Heating (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Thermistors And Varistors (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multi-Conductor Connections (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

Elongate electrical devices, comprising two conductors with electrical elements connected in parallel between them, have improved performance if the power supply is connected to one conductor at the near end and to the other conuuctor at the far end. Particularly useful devices are heaters, e.g. PTC conductive polymer heaters. The power supply is connected to the far end of the device through a connection means whose electrical properties can be correlated with those of the device in order to obtain a wide range of useful results. For example the connection means can have PTC, NTC or ZTC character and can be a simple conductor or another elongate device. The power supply can be DC or single-phase, two-phase or three-phase AC. A circuit of the invention is shown in Figure 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、長い電気装置、特にヒータおよびヒ
ータを備えた電気回路に関する。 化学工業において、加熱パイプ、タンクおよび
その他の装置等に使用される多数の長い電気ヒー
タは、電源装置の一端と接続されヒータ全長を動
作させる比較的低抵抗な2つ(あるいは2つ以
上)の導体を備えている。これら導体の間には、
複数の加熱素子が互いに並列に接続されている。
このようなヒータの利点は、もしも必要であれ
ば、ある長さに切断することができることにあ
る。第1種の上記ヒータでは、加熱素子は、複数
の導体間に位置する連続したあるいは分割された
導電性ポリマである。多くの使用者にとつて、細
長ヒータは自己調整機能を有することが好まし
い。これは、少なくとも一部分がPTC特性を示
す導電性ポリマの連続した細片を使用することに
よつて達成可能である。 上述の細長ヒータの導体は比較的低抵抗である
けれども、電源装置からの距離が増大した場合
に、2つの導体間にやはり最終的な電位の損失が
発生する。そして、加熱素子から発生する熱量は
部分的に両導体間の電位差に依存しているので、
上記の損失は使用可能なヒータの長さを制限す
る。このようなヒータの使用可能最大長さは、導
体の形状を大きくすることによつて増大できる
が、この方法は費用がかかり、ヒータをより重く
するとともにその柔軟性を減少させる。自己調整
ヒータの別の制限は、低温時にしばしばヒータの
抵抗が定常動作状態におけるそれらの抵抗よりも
大幅に小さくなる点にある。すなわち、ヒータが
スイツチオンとされる最初の時点に非常に大きな
電流がヒータに流れるので、電流流入の問題に悩
まされるのである。多くのヒータにとつて制限と
なる他の点は、それらがある特定範囲内の供給電
圧によつてのみ動作可能であることにある。 いく種類かの細いヒータ、および上述のヒータ
に使用される導電性ポリマは、アメリカ合衆国特
許出願No.2952761、2978665、3243753、3351882、
3571777、3757086、3793716、3823217、3858144、
3861029、4017715、4072848、4085086、4117312、
4177376、4177446、4188276、4237441、4242573、
4246468、4250400、4255698、4272471、4314230、
4315237、4318881、4330704、4334351および
4361799、既刊雑誌ポリマ・サイエンス19号812〜
815頁(クラソンとクバート著);雑誌ポリマ・エ
ンジニアリング・アンド・サイエンス18号649〜
653頁(1978年、ナーキス・エト・アル著);西ド
イツ特許出願No.2634992;2755077;2746602;
2755076;および2821799;既行のヨーロツパ特許
出願No.0038713、0038714、0038715、0038718、
0063440および0067679に開示されている。 本発明者によつて見出されたところによれば、
2つの長い電気導体と複数のPTC電気素子とを
備えた長い電気ヒータの性能を実質的に改良する
ことができる。装置の一部端にて電源装置を第1
電気導体の1つに接続し、装置の他端部にてヒー
タ装置を第2導体に接続することによつて、複数
のPTC電気素子は、2つの導体の間にて並列に
接続されている。 この発明においては非常に長い回路であつても
電流流入の問題を生じることなく、加熱を均一に
行なえる回路構成を提供する。この発明によれば
PTC導電性ポリマヒータ素子を含む3種の同様
のヒータと3相電源とを組み合わせ、平衡するよ
うに構成される。 本発明の1つの発明においては、3相電源φ
1,φ2,φ3と中性点Nと、上記電源に接続さ
れた3つの長い自己調整型のヒータとを備え、 (A) 各ヒータは実質的に同じであり、 (B) 各ヒータは (a) ヒータの両端に位置する近端部と遠端部を有
し、近端部は遠端部より電源8に近く、 (b)(i) 近端と遠端とを有し、近端は遠端より電源
8に近い第1の長い金属導体1と、 (ii) 第1の金属導体に隣接して設けられ、近端と
遠端とを有し、近端は遠端より電源8に近い第
2の長い金属導体2と、 (iii) PTC導電性ポリマ11にてなる1つの連続
帯状体を有し、第1及び第2の金属導体1,2
の間で互いに並列に接続された複数のPTC電
気加熱素子と、 を備え、 (C) 各ヒータは複合加熱装置の一部であり、 (a) 長い自己調整ヒータと、 (b) 近端と遠端とを有し、近端は遠端より電源8
に近い第3の長い金属導体111と、 (c) 近端と遠端とを有し、近端は遠端より電源8
に近い第4の長い金属導体112と、 (d) 近端と遠端とを有し、近端は遠端より電源8
に近い第5の長い金属導体113と、 (e) ヒータ、第3、第4、第5金属導体を包囲す
る電気絶縁ジヤケツト41と を備え、各導体は各複合加熱装置の全長から絶縁
されており、 (D) 3つの複合加熱装置が端どうしを突き合わせ
て、かつ第1複合加熱装置が電源に最も近く、第
3複合加熱装置が電源に最も遠く、第2複合加熱
装置が両者の間に位置するように配置され、 (B) 第1ヒータの第1金属導体1の近端が電源8
の第3相φ3に接続され、 (F) 第2ヒータの第1金属導体1の近端が第1複
合加熱装置の第3金属導体の遠端に接続されると
ともに第1複合加熱装置の第3金属導体の近端が
電源8の第2相に接続され、 (G) 第3ヒータの第1金属導体1の近端が第2複
合加熱装置の第3金属導体の遠端に接続されると
ともに第2複合加熱装置の第3金属導体の近端が
第1複合加熱装置の第4金属導体の遠端に接続さ
れ、第1複合加熱装置の第4金属導体の近端が電
源8の第1相φ1に接続され、 (H) 第1ヒータの第2金属導体2の遠端が第2複
合加熱装置の第4金属導体の近端に接続されると
ともに第2複合加熱装置の第4金属導体の遠端が
第3複合加熱装置の第4金属導体の近端に接続さ
れ、第3複合加熱装置の第4金属導体の遠端が第
3ヒータの第2金属導体の遠端に接続され、 (I) 第2ヒータの第2金属導体の遠端が第3複合
加熱装置の第3金属導体の近端に接続されるとと
もに第3複合加熱装置の第3金属導体の遠端が第
3ヒータの第2金属導体の遠端に接続され、 (J) 第1複合加熱装置の第5金属導体の近端が電
源8の中性点Nに接続され、 (K) 第1複合加熱装置の第5金属導体の遠端が第
2複合加熱装置の第5金属導体の近端に接続さ
れ、 (L) 第2複合加熱装置の第5金属導体の遠端が第
3複合加熱装置の第5金属導体の近端に接続さ
れ、 (M) 第3複合加熱装置の第5金属導体の遠端が(a)
第3ヒータの第2金属導体の遠端、(b)第3複合加
熱装置の第3金属導体の遠端、(c)第3複合加熱装
置の第4金属導体の遠端とに接続されていること
を特徴とする電気回路を提供する。 本発明の他の発明は上記第1の発明に使用され
る加熱装置を提供するものであり、さらに他の発
明は第1の発明を構成するに適した組立て体(ア
センブリ)を提供する。本発明の記述と特許請求
の範囲の記載の簡易化および明瞭化のために、本
明細書中では、“近端部”および“遠端部”とい
う用語は、複数の細長い導体とそれらを備えた装
置の端部を表わすのに用いられる。しかしなが
ら、たとえば、1つのループ内にて“遠端部”が
“近端部”よりも電源装置に位置上では近いよう
に、あるいは遠近両端部が電源装置から等距離に
あるように改良された装置もまた、本発明に包含
されることが理解されるだろう。 本発明の記述の簡単化と明瞭化のために、“長
い自己調整電気ヒータ”という用語は、本明細書
中では、 (a) ヒータの両端に位置する近端部と遠端部を有
し、 (b)(i) 近端と遠端とを有し、第1の長い金属導体
1と、 (ii) 第1の金属導体に隣接して設けられ、近端と
遠端とを有し、第2の長い金属導体2と、 (iii) PTC導電性ポリマ11にてなる1つの連続
帯状体を有し、第1及び第2の金属導体1,2
の間で互いに並列に接続された複数のPTC電
気加熱素子と、 を備えている。 種々の電気導体は、たとえば(単線または撚線
である)円形状の金属電線や平板状の金属細片等
の、同一あるいは異なつた部材にて構成されてお
り本明細書中では時々単に導体と記載されてい
る。一般に、1つの(あるいは複数の各)長い並
列装置において、(a)第1および第2導体が互いに
同じであり;(b)各導体が実質的に装置全体にわた
つて同じ断面形状を有し;(c)導体の抵抗が、重
量、可撓性およびコスト等の他の要因に対して矛
盾しないようにできるだけ低く;さらに(d)各導体
が他の導体から一定距離にある(それらは、たと
えば直線状あるいは渦巻線状であつてよい)こと
が望ましい。 前述したように、本発明特有の特徴によれば、
電力をより長い回路に配分使用することができ
る。 PTC電気ヒータ素子cは、第1と第2導体の
間に互いに並列に接続されているので、通常、互
いに等しいけれども、このことは必要でない。該
PTC素子は、導電性ポリマあるいはセラミツク
にて構成されてよい。PTC素子それ自体は単一
の加熱素子であることが可能で;選択的には
PTC素子はそれと直列に接続されたZTC抵抗に
てなる加熱素子を有することができる。PTC素
子の形態は、たとえば導電性ポリマの連続した1
つの細片やウエブ、あるいは導電性ポリマにてな
る複数の切片といつた、導電性ポリマによつて構
成される少なくとも1つの素子であることが可能
である。導電性ポリマ素子の組成は全体的に均一
であつても部分的に変化してもよい。適切な導電
性ポリマ素子は、装置が自己調整ヒータであるよ
うにPTC導電性ポリマ素子を備えた素子即ち本
質的に単一のPTC導電性ポリマにて構成された
素子、あるいは単一のZTC構成素子およびたと
えば長い導体の1つを包囲する少なくとも1つの
PTC構成素子を備えた素子とを含んでいる。 第3図はこの発明の複合加熱装置の断面図であ
り、該複合加熱装置では、ポリマ性絶縁ジヤケツ
トを有する一つのPTC導電性ポリマヒータ10
1と、それぞれポリマ性絶縁ジヤケツトを有する
3本の電線導体111,112,113とが、ポ
リマ性絶縁材料でなるジヤケツト41で物理的に
結合されている。上記PTC導電性ポリマヒータ
101は、第1の長い金属導体1と第2の長い金
属導体2とを備え、これら両金属導体1及び2は
導電性ポリマ素子の細片に電気的に接続されてお
り、第3図においては、導電性ポリマ11の帯状
体に埋設されている。上記金属導体1及び2に
は、いずれも金属コアを覆う絶縁層は設けられて
いない。第3の長い金属導体111、第4の長い
金属導体112及び第5の長い金属導体113
は、それぞれ電気的な絶縁層で覆われている。こ
れら3本の金属導体111,112,113は、
PTC導電性ポリマヒータ101の一部ではない
が、複合加熱装置の一部をなすものである。導電
性ポリマ内に埋設された第1及び第2の長い金属
導体1及び2を含む上記ヒータ101、第3、第
4及び第5の金属導体111,112及び113
は、複合加熱装置の全長に渡つて互いに電気的に
絶縁されるとともに、ポリマ性絶縁材料でなるジ
ヤケツト41で物理的に結合されている。 実施例 本発明は、後述するいくつかの実施例によつて
説明されるが、その中でヒータの両端が単相電源
で駆動されたときの改良効果と3相電源で駆動さ
れたときの改良効果が示されている。これらの実
施例において、電源装置は120V交流用であり、
ヒータは、商標10PTV1を標示してレイケム・コ
ーポレイシヨンの権利下に使用できる自己調整導
電性ポリマ細片ヒータであつた。ヒータには、発
光性の交差結合されたポリ(ビニリデン基弗化
物)中に分散されたカーボンブラツクを含む
PTC導電性ポリマの1つの細片内に固定される
とともに、すずを表面メツキされた一対の標準的
な18AWGの銅電極線が備えられていた。ヒータ
は、約9watts/footの消費電力を定常状態下に有
した。ヒータは、引き続いて10、150、10、150お
よび10feetの長さを有する部分に切断された。単
に公知の抵抗値を有する小形状の複数の抵抗が、
電極線の相異なる部分を接続するのに使用され
た。これらの実施例において、それらの各抵抗で
の低下電圧が測定され、その結果から接続手段の
相異なる部分における電流流入が計算された。実
施例1および2では、ヒータの先端から170feet
の部分のみが使用され(ヒータの残りの部分は接
合されず)、実施例3では、330feetのヒータ全体
が使用された。実施例1では、これは本発明によ
らない比較のための実施例であるので、(第1図
に示すように)通常の方法によつて電源装置に接
続された。実施例2および3では、ヒータは(第
2図に示すように)本発明による方法にて電源装
置に接続され、ヒータに固定されたすずを表面メ
ツキした標準的な18AWGの絶縁線にてなる第3
接続手段が使用された。各実施例において、ヒー
タおよび第3接続手段は、粘着性のテープによつ
て、内部を循環する約9℃の水を有する直径
2inchの1つのスチールパイプに固定されるとと
もに、それから厚さ1inchの断熱部材によつて覆
われた。実施例3の装置は、第4図に図式的に示
されており、第4図において、電源装置に最も近
い長さ10フイートのヒータ断片は断片1と指名さ
れ、断片1から160フイート離れた長さ10フイー
トのヒータ断片は断片2と指名され、さらに電源
装置から最も離れた長さ10フイートのヒータ断片
は断片3と指名されている。実施例2に用いられ
る装置が、第4図に示されている。ただし、第3
の電線が断片2の端部に接続されていることは図
示されていない。 上述の実施例から得られた結果は後に示す表に
要約されている。この表には、流入要因(即ち、
定常状態での電流に対する電流の比率)のうち初
期値、と10、60および120秒経過後の値と;各断
片1,2および3の各搬送線(電極)における
(amps単位の)電流と;各断片1,2および3に
おける両搬送線間の(volts単位の)降下電圧
と;(a)ヒータの搬送線、(b)ヒータ内の導電性ポリ
マ素子、(c)装置内の第3の搬送線、および(d)断片
全体における、各断片1,2および3についての
(watts/foot単位の)消費電力とが示されてい
る。 後記の表から得られる種々の特徴より、上述さ
れた実施例は、本発明が有する利点の量的評価よ
りもむしろ質的評価を得るためになされたもので
あることがわかる。したがつて、相異なるそれら
の特徴間の前述した関係が、不当に信頼されては
ならない。しかしながら、それらの特徴が明瞭に
示すところによれば、第3の接続手段を介して電
源装置をヒータの遠端部に接続することによつ
て、流入電流の減少、ヒータ全長にわたる均等な
電力分配、および導電性ポリマ細片両端間の低下
電圧の減下が得られる。
The present invention relates to elongated electrical devices, in particular heaters and electrical circuits with heaters. Many long electric heaters, such as those used in the chemical industry for heating pipes, tanks, and other equipment, have two (or more) relatively low-resistance heaters connected to one end of the power supply and operating the entire length of the heater. Equipped with a conductor. Between these conductors,
A plurality of heating elements are connected in parallel with each other.
The advantage of such a heater is that it can be cut to length if required. In the first type of heater described above, the heating element is a continuous or segmented conductive polymer located between a plurality of conductors. For many users, it is preferred that the elongated heater be self-adjusting. This can be achieved by using a continuous strip of conductive polymer, at least in part exhibiting PTC properties. Although the elongated heater conductors described above have relatively low resistance, there is still a net potential loss between the two conductors as the distance from the power supply increases. And since the amount of heat generated by the heating element depends in part on the potential difference between both conductors,
The above losses limit the usable heater length. The maximum usable length of such a heater can be increased by increasing the shape of the conductor, but this method is expensive, makes the heater heavier and reduces its flexibility. Another limitation of self-regulating heaters is that at low temperatures the resistance of the heaters is often much lower than their resistance under steady state operating conditions. That is, a very large current flows through the heater the first time the heater is switched on, resulting in current inflow problems. Another limitation of many heaters is that they can only be operated with a supply voltage within a certain range. Several types of thin heaters and the conductive polymers used in the heaters described above are described in U.S. Patent Application No. 2952761, 2978665, 3243753, 3351882;
3571777, 3757086, 3793716, 3823217, 3858144,
3861029, 4017715, 4072848, 4085086, 4117312,
4177376, 4177446, 4188276, 4237441, 4242573,
4246468, 4250400, 4255698, 4272471, 4314230,
4315237, 4318881, 4330704, 4334351 and
4361799, published magazine Polymer Science 19 No. 812~
815 pages (by Clason and Kubert); Magazine Polymer Engineering and Science No. 18, 649~
653 pages (1978, by Narkis et al.); West German Patent Application No. 2634992; 2755077; 2746602;
2755076; and 2821799; existing European patent applications No. 0038713, 0038714, 0038715, 0038718,
0063440 and 0067679. According to the findings of the present inventor,
The performance of a long electric heater with two long electrical conductors and multiple PTC electrical elements can be substantially improved. Connect the power supply to the first power supply at one end of the device.
A plurality of PTC electrical elements are connected in parallel between the two conductors by connecting one of the electrical conductors and connecting the heater device to the second conductor at the other end of the device. . The present invention provides a circuit configuration that can uniformly heat the circuit without causing current flow problems even in a very long circuit. According to this invention
Three similar heaters, including PTC conductive polymer heater elements, are combined and balanced with a three-phase power supply. In one aspect of the present invention, a three-phase power supply φ
1, φ2, φ3 and a neutral point N, and three long self-regulating heaters connected to the power source, (A) each heater is substantially the same, and (B) each heater is ( a) having a proximal end and a distal end located at opposite ends of the heater, the proximal end being closer to the power source 8 than the distal end; (b)(i) having a proximal end and a distal end, the proximal end (ii) is provided adjacent to the first metal conductor and has a near end and a far end, the near end being closer to the power source 8 than the far end; (iii) one continuous strip of PTC conductive polymer 11, with the first and second metal conductors 1, 2 close to each other;
a plurality of PTC electric heating elements connected in parallel with each other between; (C) each heater being part of a composite heating device; (a) a long self-regulating heater; (b) a proximal end and and a far end, and the near end is connected to the power source 8 from the far end.
(c) having a near end and a far end, the near end being closer to the power source 8 than the far end;
(d) having a near end and a far end, the near end being more connected to the power source 8 than the far end;
(e) an electrically insulating jacket 41 surrounding the heater, third, fourth and fifth metal conductors, each conductor being insulated from the entire length of each composite heating device; (D) three combined heating devices are end-to-end, and the first combined heating device is closest to the power source, the third combined heating device is furthest from the power source, and the second combined heating device is located between them. (B) The proximal end of the first metal conductor 1 of the first heater is connected to the power source 8.
(F) The near end of the first metal conductor 1 of the second heater is connected to the far end of the third metal conductor of the first composite heating device, and the (G) the proximal end of the first metal conductor 1 of the third heater is connected to the far end of the third metal conductor of the second composite heating device; The proximal end of the third metal conductor of the second composite heating device is connected to the far end of the fourth metal conductor of the first composite heating device, and the proximal end of the fourth metal conductor of the first composite heating device is connected to the fourth metal conductor of the first composite heating device. (H) The far end of the second metal conductor 2 of the first heater is connected to the near end of the fourth metal conductor of the second composite heating device, and the fourth metal conductor of the second composite heating device is connected to the fourth metal conductor of the second composite heating device. A far end of the conductor is connected to a proximal end of a fourth metal conductor of the third composite heating device, and a distal end of the fourth metal conductor of the third composite heating device is connected to a far end of the second metal conductor of the third heater. (I) The far end of the second metal conductor of the second heater is connected to the proximal end of the third metal conductor of the third composite heating device, and the far end of the third metal conductor of the third composite heating device is connected to the third metal conductor of the third composite heating device. (J) the proximal end of the fifth metal conductor of the first composite heating device is connected to the neutral point N of the power source 8; (L) the distal end of the fifth metal conductor of the second composite heating device is connected to the proximal end of the fifth metal conductor of the second composite heating device; (M) the distal end of the fifth metal conductor of the third composite heating device is connected to the proximal end of the metal conductor (a);
connected to the far end of the second metal conductor of the third heater, (b) the far end of the third metal conductor of the third composite heating device, and (c) the far end of the fourth metal conductor of the third composite heating device; An electric circuit is provided. Another invention of the present invention provides a heating device used in the first invention, and still another invention provides an assembly suitable for constituting the first invention. For simplicity and clarity in the description and claims of the present invention, the terms "near end" and "distal end" are used herein to include a plurality of elongated conductors and used to represent the end of a device. However, improvements may be made such that, for example, within a loop, the "far end" is closer to the power supply than the "near end," or the near and far ends are equidistant from the power supply. It will be understood that devices are also encompassed by the invention. For simplicity and clarity in the description of the present invention, the term "elongated self-regulating electric heater" is used herein to refer to a long self-regulating electric heater having (a) a proximal end and a distal end located at opposite ends of the heater; (b)(i) a first elongated metal conductor 1 having a proximal end and a distal end; (ii) disposed adjacent to the first metal conductor and having a proximal end and a distal end; , a second long metal conductor 2; (iii) one continuous strip of PTC conductive polymer 11, the first and second metal conductors 1, 2;
a plurality of PTC electric heating elements connected in parallel with each other between; The various electrical conductors may be composed of the same or different materials, such as circular metal wires (solid or stranded) or flat metal strips, and are sometimes referred to herein simply as conductors. Are listed. Generally, in a long parallel device (or devices), (a) the first and second conductors are identical to each other; (b) each conductor has substantially the same cross-sectional shape throughout the device; (c) the resistance of the conductors is as low as possible consistent with other factors such as weight, flexibility and cost; and (d) each conductor is at a constant distance from the other conductors (they are For example, it may be linear or spiral. As mentioned above, according to the unique features of the present invention:
Power can be distributed over longer circuits. Since the PTC electric heater elements c are connected in parallel to each other between the first and second conductors, normally they are equal to each other, but this is not necessary. Applicable
The PTC element may be constructed of conductive polymer or ceramic. The PTC element itself can be a single heating element; optionally
The PTC element can have a heating element consisting of a ZTC resistor connected in series with it. The form of a PTC element is, for example, a continuous piece of conductive polymer.
The at least one element may be composed of a conductive polymer, such as a strip or a web or a plurality of sections of conductive polymer. The composition of the conductive polymer element may be uniform throughout or may vary locally. Suitable conductive polymer elements include elements with PTC conductive polymer elements such that the device is a self-regulating heater, i.e. an element constructed essentially of a single PTC conductive polymer, or a single ZTC configuration. at least one surrounding element and one of e.g. a long conductor
and an element with a PTC component. FIG. 3 is a cross-sectional view of a composite heating device of the present invention, in which one PTC conductive polymer heater 10 having a polymeric insulating jacket is used.
1 and three wire conductors 111, 112, 113, each having a polymeric insulating jacket, are physically coupled by a jacket 41 made of a polymeric insulating material. The PTC conductive polymer heater 101 comprises a first long metal conductor 1 and a second long metal conductor 2, both of which are electrically connected to a strip of conductive polymer element. , in FIG. 3, it is embedded in a strip of conductive polymer 11. Neither of the metal conductors 1 and 2 is provided with an insulating layer covering the metal core. Third long metal conductor 111, fourth long metal conductor 112, and fifth long metal conductor 113
are each covered with an electrically insulating layer. These three metal conductors 111, 112, 113 are
Although it is not part of the PTC conductive polymer heater 101, it is part of the composite heating device. Said heater 101, third, fourth and fifth metal conductors 111, 112 and 113 comprising first and second long metal conductors 1 and 2 embedded in a conductive polymer.
are electrically insulated from each other over the entire length of the composite heating device and physically connected by a jacket 41 of polymeric insulating material. Embodiments The present invention will be explained with reference to several embodiments to be described later, including improved effects when both ends of the heater are driven by a single-phase power source and improvements when driven by a 3-phase power source. It has been shown to be effective. In these examples, the power supply is for 120V AC;
The heater was a self-regulating conductive polymer strip heater bearing the trademark 10PTV1 and available under license from Raychem Corporation. The heater contains carbon black dispersed in a luminescent cross-linked poly(vinylidene-based fluoride).
A pair of standard 18 AWG copper electrode wires fixed within a strip of PTC conductive polymer and surface plated with tin were provided. The heater had a power consumption of approximately 9 watts/foot under steady state conditions. The heater was subsequently cut into sections having lengths of 10, 150, 10, 150, and 10 feet. A plurality of small resistors with known resistance values are simply
Used to connect different parts of electrode wire. In these examples, the voltage drop across each of these resistors was measured and the current inflow in different parts of the connection means was calculated from the results. In Examples 1 and 2, 170 feet from the tip of the heater
(the rest of the heater was not joined); in Example 3, the entire 330 foot heater was used. In Example 1, since this is a comparative example not according to the present invention, it was connected to the power supply in a conventional manner (as shown in FIG. 1). In Examples 2 and 3, the heaters (as shown in Figure 2) were connected to the power supply in a manner according to the invention and consisted of standard 18 AWG insulated wire with tin surface plating fixed to the heaters. Third
A means of connection was used. In each embodiment, the heater and the third connecting means have a diameter of about 9° C. with water circulating therein by means of adhesive tape.
It was fixed to a single 2 inch steel pipe and then covered with a 1 inch thick insulation. The apparatus of Example 3 is shown schematically in FIG. 4, in which the 10-foot long heater segment closest to the power supply is designated Fragment 1 and is 160 feet away from Fragment 1. The 10-foot-long heater segment is designated segment 2, and the 10-foot-long heater segment furthest from the power supply is designated segment 3. The apparatus used in Example 2 is shown in FIG. However, the third
It is not shown that the electrical wires are connected to the ends of the segment 2. The results obtained from the above examples are summarized in the table below. This table includes inflow factors (i.e.
the current (in amps) in each carrier line (electrode) of each segment 1, 2 and 3; ; the voltage drop (in volts) between both carrier lines in each segment 1, 2 and 3; (a) the carrier line of the heater; (b) the conductive polymer element in the heater; (c) the third and (d) the power consumption (in watts/foot) for each fragment 1, 2 and 3 over the entire fragment. From the various characteristics obtained from the table below, it can be seen that the examples described above were made to obtain a qualitative rather than a quantitative evaluation of the advantages of the present invention. Therefore, the aforementioned relationships between those different characteristics should not be unduly relied upon. However, those features clearly show that by connecting the power supply to the far end of the heater via a third connection means, a reduction in incoming current and an equal power distribution over the entire length of the heater can be achieved. , and a reduction in the voltage drop across the conductive polymer strip.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、導電性ポリマ細片11内に固定され
た導体1および2を備えるとともに、電源装置8
に普通に接続された普通の導電性ポリマ細片状ヒ
ータを示す上面図;第2図は、3つの導電性ポリ
マPTCヒータが3相電源装置に接続され、本発
明の回路を形成する回路図;第3図は、第2図に
使用されるのに適当な複合装置の断面図;第4図
は、実施例に使用される試験回路を示す上面図で
ある。 1,2……導体、8……電源装置、11……導
電性ポリ細片ヒータ、111,112,113…
…電線導体、101……PTC導電性ポリマヒー
タ。
FIG. 1 comprises conductors 1 and 2 fixed within a conductive polymer strip 11 and a power supply 8.
FIG. 2 is a schematic diagram showing three conductive polymer PTC heaters connected to a three-phase power supply to form the circuit of the present invention. FIG. 3 is a cross-sectional view of a composite device suitable for use in FIG. 2; FIG. 4 is a top view of a test circuit used in the example. 1, 2... Conductor, 8... Power supply device, 11... Conductive poly strip heater, 111, 112, 113...
...Wire conductor, 101...PTC conductive polymer heater.

Claims (1)

【特許請求の範囲】 1 3相電源φ1,φ2,φ3と中性点Nと、上
記電源に接続された3つの長い自己調整型のヒー
タとを備え、 (A) 各ヒータは実質的に同じであり、 (B) 各ヒータは (a) ヒータの両端に位置する近端部と遠端部を有
し、近端部は遠端部より電源8に近く、 (b)(i) 近端と遠端とを有し、近端は遠端より電源
8に近い第1の長い金属導体1と、 (ii) 第1の金属導体に隣接して設けられ、近端と
遠端とを有し、近端は遠端より電源8に近い第
2の長い金属導体2と、 (iii) PTC導電性ポリマ11にてなる1つの連続
帯状体を有し、第1及び第2の金属導体1,2
の間で互いに並列に接続された複数のPTC電
気加熱素子と、 を備え、 (C) 各ヒータは複合加熱装置の一部であり、 (a) 長い自己調整ヒータと、 (b) 近端と遠端とを有し、近端は遠端より電源8
に近い第3の長い金属導体111と、 (c) 近端と遠端とを有し、近端は遠端より電源8
に近い第4の長い金属導体112と、 (d) 近端と遠端とを有し、近端は遠端より電源8
に近い第5の長い金属導体113と、 (e) ヒータ、第3、第4、第5金属導体を包囲す
る電気絶縁ジヤケツト41と を備え、各導体は各複合加熱装置の全長から絶縁
されており、 (D) 3つの複合加熱装置が端どうしを突き合わせ
て、かつ第1複合加熱装置が電源に最も近く、第
3複合加熱装置が電源に最も遠く、第2複合加熱
装置が両者の間に位置するように配置され、 (E) 第1ヒータの第1金属導体1の近端が電源8
の第3相φ3に接続され、 (F) 第2ヒータの第1金属導体1の近端が第1複
合加熱装置の第3金属導体の遠端に接続されると
ともに第1複合加熱装置の第3金属導体の近端が
電源8の第2相に接続され、 (G) 第3ヒータの第1金属導体1の近端が第2複
合加熱装置の第3金属導体の遠端に接続されると
ともに第2複合加熱装置の第3金属導体の近端が
第1複合加熱装置の第4金属導体の遠端に接続さ
れ、第1複合加熱装置の第4金属導体の近端が電
源8の第1相φ1に接続され、 (H) 第1ヒータの第2金属導体2の遠端が第2複
合加熱装置の第4金属導体の近端に接続されると
ともに第2複合加熱装置の第4金属導体の遠端が
第3複合加熱装置の第4金属導体の近端に接続さ
れ、第3複合加熱装置の第4金属導体の遠端が第
3ヒータの第2金属導体の遠端に接続され、 (I) 第2ヒータの第2金属導体の遠端が第3複合
加熱装置の第3金属導体の近端に接続されるとと
もに第3複合加熱装置の第3金属導体の遠端が第
3ヒータの第2金属導体の遠端に接続され、 (J) 第1複合加熱装置の第5金属導体の近端が電
源8の中性点Nに接続され、 (K) 第1複合加熱装置の第5金属導体の遠端が第
2複合加熱装置の第5金属導体の近端に接続さ
れ、 (L) 第2複合加熱装置の第5金属導体の遠端が第
3複合加熱装置の第5金属導体の近端に接続さ
れ、 (M) 第3複合加熱装置の第5金属導体の遠端が(a)
第3ヒータの第2金属導体の遠端、(b)第3複合加
熱装置の第3金属導体の遠端、(c)第3複合加熱装
置の第4金属導体の遠端とに接続されていること
を特徴とする電気回路。 2 各ヒータはPTC導電性ポリマの帯状体に埋
込まれた第1と第2の導体を有する特許請求の範
囲第1項に記載の回路。 3 長い複合電気加熱装置であつて、 (A) 長い自己調整型のヒータとを備え、 (a) ヒータの両端に位置する近端部と遠端部を有
し、 (b)(i) 近端と遠端とを有し、第1の長い金属導体
1と、 (ii) 第1の金属導体に隣接して設けられ、近端と
遠端とを有し、第2の長い金属導体2と、 (iii) PTC導電性ポリマ11にてなる1つの連続
帯状体を有し、第1及び第2の金属導体1,2
の間で互いに並列に接続された複数のPTC電
気加熱素子と、 を備え、 (B) 近端と遠端とを有し、第3の長い金属導体1
11と、 (C) 近端と遠端とを有し、第4の長い金属導体1
12と、 (D) 近端と遠端とを有し、第5の長い金属導体1
13と、 (E) ヒータ、第3、第4、第5金属導体を包囲す
る電気絶縁ジヤケツト41と を備え、各導体は各複合加熱装置の全長から絶縁
されていることを特徴とする電気加熱装置。 4 3相電源φ1,φ2,φ3と中性点Nと、上
記電源に接続された3つの長い自己調整型のヒー
タとを備えたヒータ組立て体であつて、 (A) 各ヒータは実質的に同じであり、長い自己調
整型のヒータとを備え、 (a) ヒータの両端に位置する近端部と遠端部を有
し、 (b)(i) 近端と遠端とを有し、第1の長い金属導体
1と、 (ii) 第1の金属導体に隣接して設けられ、近端と
遠端とを有し、第2の長い金属導体2と、 (iii) PTC導電性ポリマ11にてなる1つの連続
帯状体を有し、第1及び第2の金属導体1,2
の間で互いに並列に接続された複数のPTC電
気加熱素子と、 を備え、 (X1) 近端と遠端とを有し、第3の長い金属導体
111と、 (X2) 近端と遠端とを有し、第4の長い金属導体
112と、 (X3) 近端と遠端とを有し、第5の長い金属導体
113と、 (X4) ヒータ、第3、第4、第5金属導体を包囲
する電気絶縁ジヤケツト41と を備え、各導体は各複合加熱装置の全長から絶縁
されており、 (B) 3つの複合加熱装置が端どうしを突き合わせ
て、かつ第1複合加熱装置が電源に最も近く、第
3複合加熱装置が電源に最も遠く、第2複合加熱
装置が両者の間に位置するように配置できるよう
に準備され、 (C) 第1ヒータの第1金属導体1の近端が電源8
の第3相φ3に接続され得るように準備され、 (D) 第2ヒータの第1金属導体1の近端が第1複
合加熱装置の第3金属導体の遠端に接続され得る
とともに第1複合加熱装置の第3金属導体の近端
が電源8の第2相に接続されるように準備され、 (E) 第3ヒータの第1金属導体1の近端が第2複
合加熱装置の第3金属導体の遠端に接続され得る
とともに第2複合加熱装置の第3金属導体の近端
が第1複合加熱装置の第4金属導体の遠端に接続
され、第1複合加熱装置の第4金属導体の近端が
電源8の第1相φ1に接続されるように準備さ
れ、 (F) 第1ヒータの第2金属導体2の遠端が第2複
合加熱装置の第4金属導体の近端に接続され得る
とともに第2複合加熱装置の第4金属導体の遠端
が第3複合加熱装置の第4金属導体の近端に接続
され、第3複合加熱装置の第4金属導体の遠端が
第3ヒータの第2金属導体の遠端に接続されるよ
うに準備され、 (G) 第2ヒータの第2金属導体の遠端が第3複合
加熱装置の第3金属導体の近端に接続され得ると
ともに第3複合加熱装置の第3金属導体の遠端が
第3ヒータの第2金属導体の遠端に接続されるよ
うに準備され、 (H) 第1複合加熱装置の第5金属導体の近端が電
源8の中性点Nに接続されるように準備され、 (I) 第1複合加熱装置の第5金属導体の遠端が第
2複合加熱装置の第5金属導体の近端に接続され
るように準備され、 (J) 第2複合加熱装置の第5金属導体の遠端が第
3複合加熱装置の第5金属導体の近端に接続され
るように準備され、 (K) 第3複合加熱装置の第5金属導体の遠端が(a)
第3ヒータの第2金属導体の遠端、(b)第3複合加
熱装置の第3金属導体の遠端、(c)第3複合加熱装
置の第4金属導体の遠端とに接続されていること
を特徴とする電気ヒータ組立て体。
[Claims] 1. A three-phase power source φ1, φ2, φ3, a neutral point N, and three long self-adjusting heaters connected to the power source, (A) Each heater is substantially the same. (B) each heater has (a) a proximal end and a distal end located at opposite ends of the heater, the proximal end being closer to the power source 8 than the distal end; and (b) (i) a proximal end. (ii) a first elongated metal conductor 1 having a proximal end and a distal end, the proximal end being closer to the power source 8 than the distal end; (iii) a continuous strip of PTC conductive polymer 11, the proximal end of which is closer to the power source 8 than the distal end; ,2
a plurality of PTC electric heating elements connected in parallel with each other between; (C) each heater being part of a composite heating device; (a) a long self-regulating heater; (b) a proximal end and and a far end, and the near end is connected to the power source 8 from the far end.
(c) having a near end and a far end, the near end being closer to the power source 8 than the far end;
(d) having a near end and a far end, the near end being more connected to the power source 8 than the far end;
(e) an electrically insulating jacket 41 surrounding the heater, third, fourth and fifth metal conductors, each conductor being insulated from the entire length of each composite heating device; (D) three combined heating devices are end-to-end, and the first combined heating device is closest to the power source, the third combined heating device is furthest from the power source, and the second combined heating device is located between them. (E) The proximal end of the first metal conductor 1 of the first heater is connected to the power source 8.
(F) The near end of the first metal conductor 1 of the second heater is connected to the far end of the third metal conductor of the first composite heating device, and the (G) the proximal end of the first metal conductor 1 of the third heater is connected to the far end of the third metal conductor of the second composite heating device; The proximal end of the third metal conductor of the second composite heating device is connected to the far end of the fourth metal conductor of the first composite heating device, and the proximal end of the fourth metal conductor of the first composite heating device is connected to the fourth metal conductor of the first composite heating device. (H) The far end of the second metal conductor 2 of the first heater is connected to the near end of the fourth metal conductor of the second composite heating device, and the fourth metal conductor of the second composite heating device is connected to the fourth metal conductor of the second composite heating device. A far end of the conductor is connected to a proximal end of a fourth metal conductor of the third composite heating device, and a distal end of the fourth metal conductor of the third composite heating device is connected to a far end of the second metal conductor of the third heater. (I) The far end of the second metal conductor of the second heater is connected to the proximal end of the third metal conductor of the third composite heating device, and the far end of the third metal conductor of the third composite heating device is connected to the third metal conductor of the third composite heating device. (J) the proximal end of the fifth metal conductor of the first composite heating device is connected to the neutral point N of the power source 8; (L) the distal end of the fifth metal conductor of the second composite heating device is connected to the proximal end of the fifth metal conductor of the second composite heating device; (M) the distal end of the fifth metal conductor of the third composite heating device is connected to the proximal end of the metal conductor (a);
connected to the far end of the second metal conductor of the third heater, (b) the far end of the third metal conductor of the third composite heating device, and (c) the far end of the fourth metal conductor of the third composite heating device; An electrical circuit characterized by: 2. The circuit of claim 1, wherein each heater has first and second conductors embedded in a strip of PTC conductive polymer. 3. An elongated composite electric heating device comprising: (A) an elongated self-regulating heater; (a) having a proximal end and a distal end located at opposite ends of the heater; (ii) a second elongated metal conductor 2 disposed adjacent to the first metal conductor and having a proximal end and a distal end; (iii) having one continuous strip made of PTC conductive polymer 11 and having first and second metal conductors 1 and 2;
a plurality of PTC electric heating elements connected in parallel with each other between; (B) a third elongated metal conductor having a proximal end and a distal end;
11; (C) a fourth elongated metal conductor 1 having a proximal end and a distal end;
(D) a fifth elongated metal conductor 1 having a proximal end and a distal end;
13; and (E) an electrically insulating jacket 41 surrounding the heater and third, fourth, and fifth metal conductors, each conductor being insulated from the entire length of each composite heating device. Device. 4. A heater assembly comprising a three-phase power source φ1, φ2, φ3, a neutral point N, and three long self-adjusting heaters connected to the power source, wherein: (A) each heater is substantially and (a) having a proximal end and a distal end located at opposite ends of the heater; (b)(i) having a proximal end and a distal end; a first elongate metal conductor 1; (ii) a second elongate metal conductor 2 disposed adjacent to the first metal conductor and having a proximal end and a distal end; and (iii) a PTC conductive polymer. 11, the first and second metal conductors 1, 2
a third elongated metal conductor 111 having (X1) a near end and a far end, and (X2) a near end and a far end; (X3) a fifth long metal conductor 113 having a near end and a far end; (X4) a heater, third, fourth, and fifth metal conductors; an electrically insulating jacket 41 surrounding the conductors, each conductor being insulated from the entire length of each composite heating device; (C) The third composite heating device is located closest to the power supply, the third composite heating device is furthest from the power source, and the second composite heating device is located between the two; The end is power supply 8
(D) The proximal end of the first metal conductor 1 of the second heater can be connected to the far end of the third metal conductor of the first composite heating device, and the first (E) the proximal end of the first metal conductor 1 of the third heater is arranged to be connected to the second phase of the power supply 8; a third metal conductor of the second composite heating device and a proximal end of a third metal conductor of the second composite heating device connected to a far end of a fourth metal conductor of the first composite heating device; The near end of the metal conductor is prepared to be connected to the first phase φ1 of the power source 8, and (F) the far end of the second metal conductor 2 of the first heater is arranged near the fourth metal conductor of the second composite heating device. and the distal end of the fourth metal conductor of the second composite heating device is connected to the proximal end of the fourth metal conductor of the third composite heating device, and the distal end of the fourth metal conductor of the third composite heating device (G) the distal end of the second metal conductor of the second heater is connected to the proximal end of the third metal conductor of the third composite heating device; (H) a fifth metal of the first composite heating device; and (H) a fifth metal of the first composite heating device; (I) the distal end of the fifth metal conductor of the first composite heating device is arranged to be connected to the neutral point N of the power source 8; (J) the distal end of the fifth metal conductor of the second composite heating device is arranged to be connected to the proximal end of the fifth metal conductor of the third composite heating device; K) The far end of the fifth metal conductor of the third composite heating device is (a)
connected to the far end of the second metal conductor of the third heater, (b) the far end of the third metal conductor of the third composite heating device, and (c) the far end of the fourth metal conductor of the third composite heating device; An electric heater assembly comprising:
JP58067662A 1982-04-16 1983-04-15 Long electric device Granted JPS5963690A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36930982A 1982-04-16 1982-04-16
US369309 1982-04-16

Publications (2)

Publication Number Publication Date
JPS5963690A JPS5963690A (en) 1984-04-11
JPH0526316B2 true JPH0526316B2 (en) 1993-04-15

Family

ID=23454938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067662A Granted JPS5963690A (en) 1982-04-16 1983-04-15 Long electric device

Country Status (10)

Country Link
EP (1) EP0092406B1 (en)
JP (1) JPS5963690A (en)
KR (1) KR910004275B1 (en)
AT (1) ATE77527T1 (en)
CA (1) CA1207366A (en)
DE (1) DE3382581T4 (en)
GB (2) GB2118810B (en)
HK (2) HK39388A (en)
IN (1) IN159153B (en)
MY (1) MY102388A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8417547D0 (en) * 1984-07-10 1984-08-15 Dreamland Electrical Apliances Electric blankets
US4849611A (en) * 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
GB2202419A (en) * 1987-03-16 1988-09-21 Raychem Gmbh Interconnection of electric heating elements
DE8811264U1 (en) * 1988-09-02 1988-11-03 Monette Kabel- U. Elektrowerk Gmbh, 3550 Marburg Parallel heating band
GB2228396A (en) * 1989-02-20 1990-08-22 Emaco Electric hotplate
ES2194133T3 (en) * 1996-02-29 2003-11-16 Beru Ag SELF-REGULATING HEATING ELEMENT.
DE19948534A1 (en) * 1999-10-08 2001-04-19 Messer Ags Gmbh Electric auxiliary heater for thawing ice for pressure build up evaporators in cryo-storage containers in cold carburetor with high liquid gas removal with pressure build up evaporator consisting of aluminum longitudinal ribbed tube
ATE385470T1 (en) * 2003-03-13 2008-02-15 Behr Gmbh & Co Kg ELECTRIC HEATING DEVICE, PARTICULARLY FOR A MOTOR VEHICLE
GB0817082D0 (en) 2008-09-18 2008-10-29 Heat Trace Ltd Heating cable
US20190141788A1 (en) * 2017-11-03 2019-05-09 Nvent Services Gmbh Pre-Heating Dual Heater With Improved In-Rush Performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972729A (en) * 1972-10-05 1974-07-13
JPS579196B2 (en) * 1972-12-19 1982-02-19

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177376A (en) * 1974-09-27 1979-12-04 Raychem Corporation Layered self-regulating heating article
US3947799A (en) * 1975-01-15 1976-03-30 Epaneshnikova Valentina Evgeni Printed resistor
GB1562086A (en) * 1975-08-04 1980-03-05 Raychem Corp Article with fabric electrodes
NL7511173A (en) * 1975-09-23 1977-03-25 Philips Nv SELF-REGULATING HEATING ELEMENT.
NL7603997A (en) * 1976-04-15 1977-10-18 Philips Nv ELECTRICAL HEATING DEVICE CONTAINING A RESISTANCE BODY OF PTC MATERIAL.
US4117312A (en) * 1976-07-22 1978-09-26 Thermon Manufacturing Company Self-limiting temperature electrical heating cable
US4246468A (en) * 1978-01-30 1981-01-20 Raychem Corporation Electrical devices containing PTC elements
GB1566151A (en) * 1978-03-13 1980-04-30 Rosemount Eng Co Ltd Printed resistance path devices
US4334351A (en) * 1980-05-19 1982-06-15 Raychem Corporation Novel PTC devices and their preparation
JPS6231995Y2 (en) * 1980-06-16 1987-08-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972729A (en) * 1972-10-05 1974-07-13
JPS579196B2 (en) * 1972-12-19 1982-02-19

Also Published As

Publication number Publication date
ATE77527T1 (en) 1992-07-15
EP0092406A3 (en) 1984-02-29
CA1207366A (en) 1986-07-08
GB8310334D0 (en) 1983-05-18
EP0092406A2 (en) 1983-10-26
IN159153B (en) 1987-04-04
HK39388A (en) 1988-06-03
MY102388A (en) 1992-06-17
GB2118810A (en) 1983-11-02
GB8525177D0 (en) 1985-11-13
KR840004656A (en) 1984-10-22
KR910004275B1 (en) 1991-06-25
DE3382581T4 (en) 1995-10-12
GB2163330A (en) 1986-02-19
GB2163330B (en) 1987-02-18
EP0092406B1 (en) 1992-06-17
JPS5963690A (en) 1984-04-11
DE3382581T2 (en) 1995-03-02
GB2118810B (en) 1987-02-25
HK39588A (en) 1988-06-03

Similar Documents

Publication Publication Date Title
US4574188A (en) Elongate electrical assemblies
US4246468A (en) Electrical devices containing PTC elements
CA1208268A (en) Self-regulating heaters
US4314145A (en) Electrical devices containing PTC elements
US4922083A (en) Flexible, elongated positive temperature coefficient heating assembly and method
EP0202896B1 (en) Electrical sheet heaters
US3582968A (en) Heaters and methods of making same
US4100673A (en) Method of making high temperature parallel resistance pipe heater
KR910009419A (en) Connecting components with electrical resistors for the mutual bonding of plastic elements by thermal welding
RU2358416C2 (en) Self-regulating electrical heating cable
EP0475458B1 (en) Elongated parallel, constant wattage heating cable
US4582983A (en) Elongate electrical assemblies
JPH0526316B2 (en)
US4659913A (en) Elongate electrical assemblies
KR940006521B1 (en) Electric heater
EP0287898B1 (en) Flexible, elongated thermistor heating cable
CA1241689A (en) Modular electrical heater
US20050252910A1 (en) Electrical heating cable
US4791276A (en) Elongate electrical assemblies
GB2236236A (en) Electric heating cable
CA2098154C (en) Heating cable
CA1173884A (en) Ptc heater assembly
CA1187309A (en) Electrical device containing ptc element
JPH0312005Y2 (en)
GB2191668A (en) Electrical heating tape