JPH0687426B2 - Heating element - Google Patents

Heating element

Info

Publication number
JPH0687426B2
JPH0687426B2 JP59266670A JP26667084A JPH0687426B2 JP H0687426 B2 JPH0687426 B2 JP H0687426B2 JP 59266670 A JP59266670 A JP 59266670A JP 26667084 A JP26667084 A JP 26667084A JP H0687426 B2 JPH0687426 B2 JP H0687426B2
Authority
JP
Japan
Prior art keywords
resistance
heating element
resistor
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59266670A
Other languages
Japanese (ja)
Other versions
JPS61143989A (en
Inventor
和典 石井
誠之 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59266670A priority Critical patent/JPH0687426B2/en
Publication of JPS61143989A publication Critical patent/JPS61143989A/en
Publication of JPH0687426B2 publication Critical patent/JPH0687426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具及び、一般の加熱装置等として有用
な発熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat collecting tool and a heating element useful as a general heating device.

従来の技術 従来の正の抵抗温度係数をもつ(以下PTCと称す)発熱
体は、例えば特公昭57−43995号公報や特公昭55−40161
号公報に示されているように、第5図のような構造にな
っていた。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance (hereinafter referred to as PTC) is disclosed in, for example, Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-40161.
As shown in the publication, the structure is as shown in FIG.

すなわち絶縁基板1上に相対向する一対の帯状電極2が
設けられ、その上からPTC抵抗体3が設けられる構成の
ものであり、このPTC特性により適宜な温度に自己制御
されるものであった。
That is, a pair of opposed strip electrodes 2 are provided on an insulating substrate 1, and a PTC resistor 3 is provided on the strip electrodes 2. The PTC resistor 3 is self-controlled to an appropriate temperature. .

発明が解決しようとする問題点 しかし、このような構成のものでは、特にPTC発熱体3
が高発熱量の場合に、温度分布が異常に不均一になり、
異常な高温部とほとんど発熱しない部分が生じるばかり
か、異常高温部は、発煙、発火現象を呈する危険性を有
するという問題があった。
Problems to be Solved by the Invention However, in the case of such a configuration, especially the PTC heating element 3
When the heat generation is high, the temperature distribution becomes abnormally uneven,
There is a problem that not only an abnormally high temperature portion and a portion that hardly generates heat are generated, but also the abnormally high temperature portion has a risk of exhibiting smoke and ignition phenomena.

これは以下の現象による。This is due to the following phenomenon.

いま、このPTC発熱体3に電圧を印加し通電させようと
すると、理論的には第6図の実線aで示すように、PTC
抵抗体3部においてほぼ均一な発熱温度であり、例えば
第7図のようなPTC特性によりある温度に自己制御され
る。しかし、このPTC抵抗体3の抵抗分布の不均一性、
外部よりの断熱状態の部分的差異、あるいは外部よりの
局所加熱等により、一対の電極2間方向の抵抗分布が若
干不均一になり抵抗値が相対的に大きい部分Aが生じた
場合に、A部にかかる電圧は大きくなり、A部はその他
の部分より発熱量が大きくなり第6図の破線bのような
温度分布が生じてくる。これに伴ないA部の抵抗値はPT
C特性のためにさらに高抵抗となり、A部にかかる電圧
もさらに大きくなっていき、A部はさらに高温になって
いく。このようにして、最終的には、第8図で示すよう
に高温な発熱箇所Aを呈する。この時の一対の電極2間
方向の発熱量分布を第9図に示す。このように一旦温度
分布が若干でも生じるとPTC抵抗体3のPTC特性により温
度差が助長され増大される。この現象を以下の説明で
は、電圧集中現象と呼ぶことにする。
Now, when a voltage is applied to the PTC heating element 3 to energize it, theoretically, as shown by the solid line a in FIG.
The heat generation temperature is substantially uniform in the resistor 3 part, and is self-controlled to a certain temperature by the PTC characteristic as shown in FIG. 7, for example. However, the non-uniformity of the resistance distribution of this PTC resistor 3,
In the case where the resistance distribution in the direction between the pair of electrodes 2 becomes slightly nonuniform due to a partial difference in the adiabatic state from the outside, local heating from the outside, etc. The voltage applied to the portion becomes large, the amount of heat generated in the portion A becomes larger than that in the other portions, and the temperature distribution as shown by the broken line b in FIG. 6 occurs. Along with this, the resistance of part A is PT
Due to the C characteristic, the resistance becomes even higher, the voltage applied to the A portion becomes larger, and the A portion becomes even hotter. In this way, finally, as shown in FIG. 8, the high-temperature heat generating portion A is exhibited. FIG. 9 shows the heat generation distribution in the direction between the pair of electrodes 2 at this time. In this way, once a slight temperature distribution occurs, the PTC characteristic of the PTC resistor 3 promotes and increases the temperature difference. This phenomenon will be called a voltage concentration phenomenon in the following description.

この電圧集中現象は、高発熱量のものほど発生しやす
く、従来のPTC発熱体3は、発熱量を制限したり、ある
いは、非常に熱伝導性の良い絶縁基板1を用いるかし
て、この電圧集中現象に対処せねばならなかった。
This voltage concentration phenomenon is more likely to occur as the amount of heat generation increases, and the conventional PTC heating element 3 limits the amount of heat generation or uses the insulating substrate 1 having very good thermal conductivity. I had to deal with the voltage concentration phenomenon.

ところで、熱伝導性の優れた抵抗体すなわち、チタン酸
バリウム等を用いたセラミック係抵抗体素子を用いる
と、この電圧集中現象を抑える発熱量の限界をかなり大
きくすることができるが、この抵抗体では、加工性の面
で大きさ、形状をかなり大きくすることができるが、こ
の抵抗体では、加工性の面で大きさ、形状をかなり制約
せざるを得ず、面積の大きい加熱体等においては非常に
多くのこの小さな素子を配設せざるを得ず、給電用接続
等が複雑になるばかりか、可撓性がなく割れやすく放熱
体等に熱的に結合しにくいという本発明の産業上の利用
分野では実際には実現性に乏しいという大きな問題点を
有していた。
By the way, when a resistor having excellent thermal conductivity, that is, a ceramic resistance element using barium titanate or the like is used, the limit of the amount of heat generated for suppressing this voltage concentration phenomenon can be considerably increased. Then, the size and shape can be considerably increased in terms of workability, but this resistor has no choice but to limit the size and shape in terms of workability, so that it is suitable for heating elements with a large area. Has to arrange a large number of these small elements, which complicates the connection for power supply and the like, is not flexible and is easily broken, and is difficult to be thermally coupled to a radiator or the like. In the above-mentioned field of use, there was a big problem that it was not practically practical.

そこで、本発明は、このような従来の問題点を解消し、
安全で信頼性の高い発熱体を提供することを目的とす
る。
Therefore, the present invention eliminates such conventional problems,
The purpose is to provide a safe and highly reliable heating element.

問題点を解決する手段 上記問題点を解決する手段は、一対の電極と、これらの
電極間に電気的に導通する如く配置され、かつ結晶性高
分子中に導電性微粒子を分散させた組成物を主成分とす
る正の抵抗温度係数を有する抵抗体とを備え、前記一対
の電極間の前記抵抗体材料自身、あるいは前記抵抗体を
薄肉状に構成し前記一対の電極との接合面に、抵抗が負
の電圧依存特性領域を形成してなる構成としている。
Means for Solving the Problems A means for solving the above problems is a composition in which conductive fine particles are dispersed in a pair of electrodes and electrically conductive between the electrodes and in a crystalline polymer. A resistor having a positive temperature coefficient of resistance containing as a main component, the resistor material itself between the pair of electrodes, or on the joint surface with the pair of electrodes to configure the resistor thinly, It is configured to form a voltage-dependent characteristic region having a negative resistance.

作用 この技術的手段による作用は次のようになる。Action The action of this technical means is as follows.

すなわち、PTC抵抗体の抵抗分布が不均一であったり、
断熱状態が異なったりした場合などにPTC抵抗体の温度
分布が生じ、このPTC特性により相対的に温度の高い部
位の抵抗値が大きくなり、この部位にかかる電圧が大き
くなってくる作用と、これに伴ない、この部位の抵抗値
は前記抵抗の電圧依存特性により小さくなっていく作用
とが生じ、この両者がうまく打ち消し合い、前記電圧集
中現象による異常な発熱分布、発煙、発火等を防止する
ことができ、高発熱量可能な安全で信頼性の高い発熱体
を実現できる。
That is, the resistance distribution of the PTC resistor is non-uniform,
The temperature distribution of the PTC resistor occurs when the adiabatic state is different, etc., and the PTC characteristic increases the resistance value of the part with relatively high temperature, and the action of increasing the voltage applied to this part. Along with this, the resistance value of this portion will become smaller due to the voltage-dependent characteristic of the resistance, and these two will cancel each other well, preventing abnormal heat distribution, smoke, ignition, etc. due to the voltage concentration phenomenon. It is possible to realize a safe and highly reliable heating element capable of generating a large amount of heat.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

一般に、PTC発熱体は一対の電極間にPTC抵抗体を配する
構成であり、この抵抗体は、例えば、粒径50ミリミクロ
ンのカーボンブラック30重量パーセントとポリエチレン
70重量パーセントとを十分に混練しよく分散させた材料
をアニーリングの後、常温にて5×104Ωcmという高固
有抵抗になるように設定して得ることができる。
Generally, a PTC heating element has a structure in which a PTC resistor is arranged between a pair of electrodes, and the resistor is, for example, 30% by weight of carbon black having a particle size of 50 mm and polyethylene.
It can be obtained by annealing a material sufficiently kneaded with 70% by weight and well dispersed and setting it to have a high specific resistance of 5 × 10 4 Ωcm at room temperature.

第1図は、本発明の一実施例の斜視図であるが、銅材料
の平板状に接近して対面する電極板7,8に前記した様に
して得られた高固有抵抗のPTC抵抗体9を配したもので
ある。この一対の電極間に抵抗温度特性図及び抵抗電圧
特性図はそれぞれ第2図及び第3図に示す特性図の様に
なり、これらの図よりわかるように、この発熱体は、従
来のようにPTC抵抗体と同様にPTC特性を有する一方、こ
の抵抗値電圧上昇とともに小さくなっていく特性であ
る。これは、電極板7,8と非常に高固有抵抗のPTC抵抗体
との間に電圧バリアー層が形成されるため、このバリア
ー層間で抵抗の負の電圧依存特性が現出されることに起
因する。
FIG. 1 is a perspective view of an embodiment of the present invention, in which a PTC resistor having a high specific resistance obtained as described above is provided on the electrode plates 7 and 8 that closely face and face each other in the shape of a copper material. 9 is arranged. The resistance temperature characteristic diagram and the resistance voltage characteristic diagram between the pair of electrodes are as shown in FIG. 2 and FIG. 3, respectively. As can be seen from these figures, this heating element is different from the conventional one. While it has the PTC characteristic like the PTC resistor, it has the characteristic of becoming smaller as the resistance value voltage increases. This is because the voltage barrier layer is formed between the electrode plates 7 and 8 and the PTC resistor having a very high specific resistance, and the negative voltage dependence characteristic of the resistance appears between the barrier layers. To do.

このように抵抗が負の電圧依存特性を有していると、一
対の電極間の抵抗分布が不均一であったり、断熱状態が
局部的に異なっていた場合などに相対的に高温になった
部位の抵抗値はこのPTC特性により大きくなるが、これ
に伴いこの部位にかかる電圧も大きくなり前記抵抗の電
圧依存特性により抵抗値は小さくなり、これにより、ま
たこの電圧が小さくなっていき、最終的には均一な発熱
状態を現出でき、電圧集中現象による異常は発熱分布、
発煙・発火等起こらず安全である。例えば、電極7側の
部位が高温になった場合、電極7側に抵抗値が大きくな
り、これに接近した電極7側のバリアー層を含めた領域
にかかる電圧も大きくなるが、一方これに伴いこの領域
の抵抗値は小さくなっていくので、安全で信頼性の高い
発熱体を現出できる。
When the resistance has a negative voltage-dependent characteristic, the temperature becomes relatively high when the resistance distribution between the pair of electrodes is non-uniform or the adiabatic state is locally different. The resistance value of the part increases due to this PTC characteristic, but with this, the voltage applied to this part also increases, and the resistance value decreases due to the voltage-dependent characteristic of the resistance. As a result, a uniform heat generation state can be revealed, and the abnormality due to the voltage concentration phenomenon is heat generation distribution.
It is safe because it does not emit smoke or fire. For example, when the temperature on the electrode 7 side becomes high, the resistance value increases on the electrode 7 side and the voltage applied to the region including the barrier layer on the electrode 7 side close to the electrode 7 also increases. Since the resistance value in this region becomes smaller, a safe and highly reliable heating element can be obtained.

次に、第4図は上記のような電極板との接合面を用いる
ことなく、PTC抵抗体材料自身に負の電圧依存特性とも
たせた実施例であり、以下のように加工して実現するこ
とができた。
Next, FIG. 4 shows an embodiment in which the PTC resistor material itself is provided with a negative voltage dependence characteristic without using the above-mentioned bonding surface with the electrode plate, which is realized by processing as follows. I was able to.

まず、粒径20ミリミクロンのカーボンブラック50重量パ
ーセントとポリエチレン50重量パーセントとをこのポリ
エチレンの融点より100℃高い高温度で十分に混練し、
カーボンを十分に均一に分散させた組成物を得た。次に
この組成物60重量パーセントとポリプロピレン25重量パ
ーセントとポリアミド15重量パーセントとを220℃の温
度で十分に混練し、この組成物を得た。次に第4図の如
く、一対の電極10,11間に電気的に導通する如くこの組
成物12を220℃の温度で構成した後、180℃の温度でアニ
ーリングし、この後、5メガラドで電子線照射して、発
熱体を得た。この発熱体の抵抗温度特性と抵抗の電圧依
存特性を測定してみたところそれぞれ第2図及び第3図
とほど同一の特性カーブが得られ、これに通電開始時7W
/cm2の高電力密度で発熱させたが、異常な発熱分布、発
煙・発火等のない安全な発熱体を現出できた。これは前
記と全く同一の現象によるものであるが、この抵抗の負
の電圧依存特性は非常によく分散されたカーボンとポリ
エチレンに対して非相溶性のポリアミドとにより仮想的
なバリヤー層が前記カーボンの連鎖の各所で形成される
ためである。
First, 50 weight percent of carbon black having a particle size of 20 millimicrons and 50 weight percent of polyethylene are sufficiently kneaded at a high temperature 100 ° C. higher than the melting point of polyethylene,
A composition in which carbon was sufficiently and uniformly dispersed was obtained. Next, 60% by weight of this composition, 25% by weight of polypropylene and 15% by weight of polyamide were thoroughly kneaded at a temperature of 220 ° C. to obtain this composition. Next, as shown in FIG. 4, the composition 12 was formed at a temperature of 220 ° C. so as to establish electrical conduction between the pair of electrodes 10 and 11, and then annealed at a temperature of 180 ° C., and then at 5 megarads. Irradiation with an electron beam gave a heating element. When the resistance temperature characteristics and the voltage dependence characteristics of the resistance of this heating element were measured, the same characteristic curves were obtained as in Fig. 2 and Fig. 3, respectively.
Although heat was generated at a high power density of / cm 2, a safe heating element without abnormal heat distribution, smoke, or ignition was revealed. This is due to exactly the same phenomenon as described above, but the negative voltage-dependent characteristic of this resistance is that the virtual barrier layer is formed by the carbon which is very well dispersed and the polyamide which is incompatible with polyethylene. This is because it is formed at various places in the chain.

PTC抵抗体は、前記実施例ではカーボンブラックとポリ
エチレン等の樹脂を用いたが、カーボンブラックを中心
とする粒子状導電剤を含有させた高分子組成物を主成分
とする抵抗体であれば、どのような材料であってもよ
い。例えばこれに用いる樹脂としてはポリエチレン−酢
酸ビニル共重合体、ポリエチレン−エチルアクリレート
共重合体、ポリエチレン、ポリプロピレン等のポリオレ
フィンやポリアミド、ポリハロゲン化ビニリデン、ポリ
エステル等の結晶性樹脂があり、各々の結晶変態点付近
で急激な正の温度係数を示すものである。
The PTC resistor is a resin such as carbon black and polyethylene in the above examples, but if the resistor is mainly composed of a polymer composition containing a particulate conductive agent centered on carbon black, Any material may be used. For example, as the resin used for this, there are crystalline resins such as polyethylene-vinyl acetate copolymers, polyethylene-ethyl acrylate copolymers, polyolefins such as polyethylene and polypropylene, polyamides, polyvinylidene halides, polyesters, etc. It shows a sharp positive temperature coefficient near the point.

発明の効果 以上のように本発明の発熱体によれば、次の効果が得ら
れる。
Effects of the Invention As described above, according to the heating element of the present invention, the following effects are obtained.

(1)一対の電極間の抵抗体材料自身、あるいは薄肉抵
抗体と一対の電極との接合面に、抵抗が負の電圧依存特
性領域を形成しているので、高発熱量においても電圧集
中現象による異常過熱、発煙、発火等なく、均一な発熱
が得られしかも安全である。
(1) Since a voltage-dependent characteristic region having a negative resistance is formed on the resistor material itself between the pair of electrodes or on the joint surface between the thin-walled resistor and the pair of electrodes, the voltage concentration phenomenon occurs even at a high heat generation amount. It is safe because it can generate uniform heat without abnormal overheating, smoking, or ignition.

(2)一対の電極及び抵抗体の発熱部分で前記電圧集中
現象を防止する機能をもたらせるので、即応性がよく、
安全性はきわめて高く、信頼性も高い。
(2) Since the pair of electrodes and the heat generating portion of the resistor can provide the function of preventing the voltage concentration phenomenon, the responsiveness is good,
It is extremely safe and highly reliable.

(3)熱伝導性に優れた基板等を用いることなく、簡易
が構成で上記の高い安全性、高い信頼性を実現できるば
かりでなく、可とう性をもたせることも容易であり、多
種形態のPTC発熱体に適用できるものであり、きわめて
有益な発明である。
(3) Not only can the above-mentioned high safety and high reliability be realized with a simple structure without using a substrate having excellent thermal conductivity, but also it is easy to have flexibility, and various forms can be obtained. It is applicable to PTC heating elements and is a very useful invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の発熱体の斜視図、第2図
は、本発明の一実施例の発熱体の抵抗温度特性図、第3
図は同抵抗電圧特性図、第4図は本発明の他の実施例の
発熱体の斜視図、第5図は、従来の発熱体の平面図、第
6図は、同発熱体の発熱温度分布図、第7図は同発熱体
のPTC特性図、第8図は同発熱体の電圧集中現象発生の
模式図、第9図は同電圧集中現象発生時の発熱量分布図
である。 7,8,10,11……電極 9,12……PTC抵抗体。
FIG. 1 is a perspective view of a heating element according to an embodiment of the present invention, FIG. 2 is a resistance temperature characteristic diagram of a heating element according to an embodiment of the present invention, and FIG.
FIG. 4 is a resistance voltage characteristic diagram, FIG. 4 is a perspective view of a heating element of another embodiment of the present invention, FIG. 5 is a plan view of a conventional heating element, and FIG. 6 is a heating temperature of the heating element. FIG. 7 is a distribution diagram, FIG. 7 is a PTC characteristic diagram of the same heating element, FIG. 8 is a schematic diagram of occurrence of voltage concentration phenomenon of the same heating element, and FIG. 9 is a heat generation amount distribution chart when the same voltage concentration phenomenon occurs. 7,8,10,11 …… Electrode 9,12 …… PTC resistor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対の電極と、これらの電極間に電気的に
導通する如く配置され、かつ結晶性高分子中に導電性微
粒子を分散させた組成物を主成分とする正の抵抗温度係
数を有する抵抗体とを備え、前記一対の電極間の前記抵
抗体材料自身、あるいは前記抵抗体を薄肉状に構成し前
記一対の電極との接合面に、抵抗が負の電圧依存特性領
域を形成してなる発熱体。
1. A positive temperature coefficient of resistance comprising a pair of electrodes and a composition in which conductive fine particles are dispersed in a crystalline polymer, which are arranged so as to be electrically conductive between the electrodes, as a main component. And a resistor having a resistance, and the resistor material itself between the pair of electrodes, or the resistor is formed into a thin wall, and a resistance-negative voltage-dependent characteristic region is formed on a joint surface with the pair of electrodes. A heating element.
JP59266670A 1984-12-18 1984-12-18 Heating element Expired - Lifetime JPH0687426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266670A JPH0687426B2 (en) 1984-12-18 1984-12-18 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266670A JPH0687426B2 (en) 1984-12-18 1984-12-18 Heating element

Publications (2)

Publication Number Publication Date
JPS61143989A JPS61143989A (en) 1986-07-01
JPH0687426B2 true JPH0687426B2 (en) 1994-11-02

Family

ID=17434058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266670A Expired - Lifetime JPH0687426B2 (en) 1984-12-18 1984-12-18 Heating element

Country Status (1)

Country Link
JP (1) JPH0687426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033403B2 (en) * 2006-11-22 2012-09-26 ナミックス株式会社 Conductive molded body, electronic component and electric device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426541A (en) * 1977-08-01 1979-02-28 Matsushita Electric Ind Co Ltd Self control type heating unit
JPS6230793Y2 (en) * 1980-04-04 1987-08-07

Also Published As

Publication number Publication date
JPS61143989A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US4954696A (en) Self-regulating heating article having electrodes directly connected to a PTC layer
JPH0690962B2 (en) Method for manufacturing PTC element
JPH0690964B2 (en) Method for manufacturing PTC element
JPH0687426B2 (en) Heating element
JPS63146380A (en) Positive resistane-temperature coefficient heater
JPH02148681A (en) Positive resistance-temperature coefficient heater
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JPS6242459Y2 (en)
JP2643398B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH0737679A (en) Heater element with positive temperature coefficient of resistance
JPH0785436B2 (en) Positive resistance temperature coefficient heating element
JPS6242460Y2 (en)
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JP3024372B2 (en) Hot air generator
JPH05135855A (en) Heating unit with positive resistance temperature coefficient
JPS61143987A (en) Heat generating body
JP3047465B2 (en) Positive resistance temperature coefficient heating element
JPH0531277B2 (en)
JPH0646073Y2 (en) Sheet heating element
JP2773244B2 (en) Manufacturing method of positive resistance temperature coefficient heating element
JPS6132377A (en) Heater
JPS6239594Y2 (en)
JPH0746628B2 (en) Positive resistance temperature coefficient heating element
JPH0632275B2 (en) Heating element
JPH05343164A (en) Positive resistance temperature coefficient heating element and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term