JPH0746628B2 - Positive resistance temperature coefficient heating element - Google Patents

Positive resistance temperature coefficient heating element

Info

Publication number
JPH0746628B2
JPH0746628B2 JP2810486A JP2810486A JPH0746628B2 JP H0746628 B2 JPH0746628 B2 JP H0746628B2 JP 2810486 A JP2810486 A JP 2810486A JP 2810486 A JP2810486 A JP 2810486A JP H0746628 B2 JPH0746628 B2 JP H0746628B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
heating element
resistance temperature
resistor
positive resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2810486A
Other languages
Japanese (ja)
Other versions
JPS62186487A (en
Inventor
和典 石井
誠之 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2810486A priority Critical patent/JPH0746628B2/en
Publication of JPS62186487A publication Critical patent/JPS62186487A/en
Publication of JPH0746628B2 publication Critical patent/JPH0746628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具及び、一般の加熱装置として用いる
正抵抗温度係数発熱体に関するものである。
TECHNICAL FIELD The present invention relates to a heating instrument and a positive resistance temperature coefficient heating element used as a general heating device.

従来の技術 従来の正の抵抗温度係数をもつ(以下PTCと称す)発熱
体は、例えば特公昭57-43995号公報や特公昭55-40161号
公報に示されているような構成であり、一対の電極間の
PTC抵抗体のPTC特性により適宜な温度に自己制御されて
いるものであった。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance (hereinafter referred to as PTC) has a structure as shown in, for example, Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-40161. Between the electrodes
It was self-controlled to an appropriate temperature by the PTC characteristics of the PTC resistor.

しかし、特に大きな電力密度が要求される場合には、発
熱体自体の温度分布を一様にするために一対の電極間方
向の温度分布を良好にすることが不可欠であり、この解
決策として特開昭60-28195号公報や第5図に示すように
一対の電極間距離を互いに接近させる構成があった。
However, especially when a high power density is required, it is indispensable to improve the temperature distribution in the direction between the pair of electrodes in order to make the temperature distribution of the heating element itself uniform. As shown in Japanese Patent Laid-Open No. 60-28195 and FIG. 5, there is a configuration in which the distance between a pair of electrodes is close to each other.

第5図において、1a,1bは互いに接近して設けられた一
対の平行平板状の電極であり、この間にPTC抵抗体2を
配することにより高出力のPTC発熱体を現出することが
可能となった。
In FIG. 5, 1a and 1b are a pair of parallel plate electrodes provided close to each other, and by placing a PTC resistor 2 between them, a high output PTC heating element can be revealed. Became.

発明が解決しようとする問題点 しかしながら、採暖器具や一般の加熱装置に応用する場
合特に発熱量のコントロールや、各位置への発熱コント
ロール等が要求される場合にあっては、複数個のPTC発
熱体を個々に配設し、それぞれに給電しなくてはなら
ず、給電構造が複雑となるばかりか、この給電線配設部
分も大きくなり、発熱性能を損なう面も有していた。ま
たこのように複数個のPTC発熱体を用いる場合にあって
は、過熱防止装置も個々に設けることが必要となりさら
に複雑になるばかりか、過熱防止装置よりも小さい範囲
の位置制御は実現できなかった。
Problems to be Solved by the Invention However, when applied to a heating appliance or a general heating device, particularly when control of heat generation amount or heat generation control to each position is required, a plurality of PTC heat generations are required. In addition to complicating the power feeding structure, the body must be individually arranged and power must be fed to each of the bodies, and the portion where the power feeding line is arranged is also large, which has a surface that impairs heat generation performance. Further, in the case of using a plurality of PTC heating elements in this way, it becomes necessary to provide each overheat prevention device individually, which further complicates, and position control in a range smaller than the overheat prevention device cannot be realized. It was

そこで、本発明は以上のような従来の問題点を解消する
もので、きわめて簡易でしかも発熱コントロール可能な
正抵抗温度係数発熱体を提供するものである。
Therefore, the present invention solves the above conventional problems, and provides a positive resistance temperature coefficient heating element that is extremely simple and can control heat generation.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、結晶性高
分子中に導電性微粉末を分散させた組成物を主成分とす
る薄肉状の正抵抗温度係数抵抗体と、この厚さ方向に電
圧を印加すべく設けられた一対の電極体よりなり、前記
一対の電極体はそれぞれ適宜な間隔をあけて形成された
複数個の帯状電極体であり、前記抵抗体の厚さ方向の投
影面で互いに非平行である構成とするものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is a thin-walled positive temperature coefficient of resistance mainly composed of a composition in which a conductive fine powder is dispersed in a crystalline polymer. A resistor and a pair of electrode bodies provided to apply a voltage in the thickness direction, wherein the pair of electrode bodies are a plurality of strip-shaped electrode bodies formed at appropriate intervals, The projection surfaces in the thickness direction of the resistor are not parallel to each other.

作用 この技術的手段による作用は次のようになる。すなわ
ち、薄肉状のPTC抵抗体の両面に構成される一対の電極
体はそれぞれ適宜な間隔をあけて形成された複数個の帯
状電極体であり、前記抵抗体の厚さ方向の投影面で互い
に非平行である構成にすることによりこの複数個の電極
体に給電する数を変えたり、発熱させたい位置の電極体
に給電するなどの調節をすることができるので各種機器
に応用した場合微妙な発熱コントロール、各位置への発
熱コントロールを可能にすることができる。
Action The action of this technical means is as follows. That is, the pair of electrode bodies formed on both surfaces of the thin-walled PTC resistor are a plurality of strip-shaped electrode bodies that are formed at appropriate intervals, and are formed on the projection plane in the thickness direction of the resistor. By making it non-parallel, it is possible to change the number of electric power supplied to these multiple electrode bodies and adjust the power supply to the electrode body at the position where you want to generate heat. It is possible to control heat generation and heat generation to each position.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。なお最初に、一対の電極体の片側のみが複数の場合
について説明する。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings. First, a case where only one side of the pair of electrode bodies is plural will be described.

第1図において、3はカーボンブラックとポリエチレン
を主成分とし、厚みを0.5mmとしたPTC抵抗体で、このPT
C抵抗体3の上面には3個の帯状の金属板電極4a,4b,4c
を接合させ、下面には金属板電極5を接合している。
In Fig. 1, 3 is a PTC resistor having carbon black and polyethylene as main components and a thickness of 0.5 mm.
On the upper surface of the C resistor 3 are three strip-shaped metal plate electrodes 4a, 4b, 4c.
And the metal plate electrode 5 is joined to the lower surface.

この構成にすることにより電圧を電極5とそれぞれ電極
4a,4b,あるいは4cに印加させることができるので有効発
熱面積あるいは、発熱位置を自由にコントロールするこ
とが可能となる。
With this configuration, the voltage is applied to the electrodes 5 and the electrodes, respectively.
Since it can be applied to 4a, 4b, or 4c, it is possible to freely control the effective heating area or the heating position.

実際に、第1図に示す構成のPTC発熱体に絶縁フィルム
を覆った後に、第2図に示すように、パネルヒータ本体
6の採暖面の裏面にこのPTC発熱体7を4本接着させ
た。これを室温20℃で通電してみた。最初に、電極5と
電極4a,4b,4c3個全てにAC100V印加させると、 1500Wの突入電力が入り、非常に急速に、パネルヒータ
本体6の採暖面の温度が上昇し、これとともに消費電力
は低下していき、約20分後には520Wとなり、ほぼ安定し
た。この時の温度分布は第2図のパネルヒータのX−
X′断面の採暖面で第3図のIに示すような温度分布と
なり、立上り性能に優れた画期的なパネルヒータを実現
できた。
Actually, after covering the insulating film on the PTC heating element having the structure shown in FIG. 1, four PTC heating elements 7 were adhered to the back surface of the heating surface of the panel heater body 6 as shown in FIG. . It was energized at room temperature of 20 ° C. First, when AC100V is applied to all of the electrodes 5 and the electrodes 4a, 4b, 4c, inrush power of 1500W is input, and the temperature of the heating surface of the panel heater main body 6 rises very rapidly, and the power consumption also increases. It decreased and became 520W after about 20 minutes, which was almost stable. The temperature distribution at this time is X- of the panel heater in FIG.
A temperature distribution as shown by I in Fig. 3 was obtained on the heating surface of the X'section, and an epoch-making panel heater excellent in rising performance was realized.

次に電極5と電極4a,4cにAC100Vを印加させると電力は3
90Wで安定し、パネルヒータの温度分布は第3図のIIの
ようになった。また、電極5と電極4bにAC100Vを印加さ
せると270Wでほぼ安定し、同様に、第3図のIIIに示す
温度分布となった。
Next, when AC100V is applied to the electrode 5 and the electrodes 4a and 4c, the power is 3
It became stable at 90 W, and the temperature distribution of the panel heater became like II in Fig. 3. Further, when AC100V was applied to the electrode 5 and the electrode 4b, it became almost stable at 270 W, and similarly, the temperature distribution shown in III of FIG. 3 was obtained.

このように電極4a,4b,4cへの通電の有無を調整するだけ
で簡単に発熱量のコントロールが実現できるものであ
る。
Thus, the amount of heat generation can be easily controlled only by adjusting the presence or absence of energization to the electrodes 4a, 4b, 4c.

このような発熱コントロールをオンオフ制御等により実
現しようと思うと、高電流容量の接点開閉機能体を必要
とするばかりでなく、雑音等の障害を有するものであ
り、本発明は一対の電極体の少なくとも一方は複数個で
あり、この複数個の電極への給電の有無の調整だけとい
うきわめてシンプルな構成で発熱コントロールを実現さ
せるものである。また、複数個の電極体のそれぞれのス
ペースが小さい場合、このスペース面での発熱も生ずる
が、これを考慮に入れて発熱分布を向上させることもで
きる。
In order to realize such heat generation control by on / off control and the like, not only a contact opening / closing function body having a high current capacity is required, but also an obstacle such as noise is generated. At least one is a plurality, and heat generation control is realized with an extremely simple configuration in which only the presence or absence of power supply to the plurality of electrodes is adjusted. Further, when the space of each of the plurality of electrode bodies is small, heat is also generated in the space surface, and this can be taken into consideration to improve the heat generation distribution.

次に、本発明の抵抗体の厚さ方向の投影面で互いに非平
行に構成した実施例を第4図に基づいて説明する。第4
図において、8は厚み0.5mmのPTC抵抗体であり、この上
面に帯状金属板電極9a,9b,9c,9d,9eを一定間隔をあけて
接合し、PTC抵抗体8の下面には電極9a〜9eとは直角と
なるように同様の帯状金属板電極10a,10b,10c,10d,10e,
10f,10gを一定間隔をあけて接合した。このように構成
することにより電極数は全てで12個となるが、各々の電
極が直交する35のゾーンを自由に発熱コントロールが可
能となる。例えば第4図のA部を発熱させようと思え
ば、電極9bと10dに電圧を印加すればよい。また、PTC抵
抗体のPTC特性により各部に温度過昇防止装置を置く必
要もない。このように、各位置への微妙な発熱コントロ
ールが非常に簡易に実現できるものである。
Next, an embodiment in which the resistors of the present invention are configured to be non-parallel to each other on the projection plane in the thickness direction will be described with reference to FIG. Fourth
In the figure, 8 is a PTC resistor having a thickness of 0.5 mm, and strip-shaped metal plate electrodes 9a, 9b, 9c, 9d and 9e are joined to the upper surface of the PTC resistor at regular intervals, and the lower surface of the PTC resistor 8 has an electrode 9a. ~ 9e and the same strip metal plate electrodes 10a, 10b, 10c, 10d, 10e,
10f and 10g were joined at regular intervals. With this configuration, the total number of electrodes is 12, but it is possible to freely control the heat generation in the 35 zones in which the electrodes are orthogonal to each other. For example, if it is desired to heat the portion A of FIG. 4, a voltage may be applied to the electrodes 9b and 10d. Moreover, it is not necessary to install an overheat prevention device in each part due to the PTC characteristics of the PTC resistor. In this way, delicate heat generation control at each position can be realized very easily.

これを加工する場合例えば一対の電極体の一方とPTC抵
抗体とを連続して接着していき長尺になったものを適宜
な長さで切断し、次に方向を変えて他の電極体を連続し
て接着していくと、生産性も非常に高いものとなる。ま
たこの場合、端部の電極をPTC抵抗体の面より内側に好
ましくは1mm以上あけておけば、切断による電極切断面
のバリ、さらには抵抗体自身の変形等の異極間接近によ
る危険性に対しても安全性を飛躍的に高めることができ
る。
When processing this, for example, one of the pair of electrode bodies and the PTC resistor are continuously bonded and cut into a long piece, and then cut to an appropriate length, and then the direction is changed to the other electrode body. The productivity will be very high if the are continuously bonded. Also, in this case, if the electrode at the end is opened more than 1 mm inside the surface of the PTC resistor, the burr of the electrode cut surface due to cutting, and the risk of contact between different poles due to deformation of the resistor itself, etc. Also, the safety can be dramatically improved.

発明の効果 以上述べてきたように、本発明によれば、以下の効果を
奏するものである。
EFFECTS OF THE INVENTION As described above, the present invention has the following effects.

(1)一対の複数個の帯状電極体を互いに非平行に構成
することにより、各位置への微妙な発熱コントロールを
実現できる。
(1) By configuring a pair of a plurality of strip-shaped electrode bodies to be non-parallel to each other, delicate heat generation control at each position can be realized.

(2)発熱する部位の個数を調整することにより、発熱
コントロールを実現できる。
(2) Heat generation can be controlled by adjusting the number of heat-generating parts.

(3)簡易な構成で容易に加工することができ、各種機
器への適用性に優れ、実用上きわめて有利なものであ
る。
(3) It can be easily processed with a simple structure, has excellent applicability to various devices, and is extremely advantageous in practical use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のPTC発熱体の斜視図、第2
図は同PTC発熱体を適用したパネルヒータの正面図、第
3図は同パネルヒータの発熱温度分布図、第4図は本発
明の実施例のPTC発熱体の斜視図、第5図は従来のPTC発
熱体の斜視図である。 3,8……PTC抵抗体、4a,4b,4c,5,9a,9b,9c,9d,9e,10a,10
b,10c,10d,10e,10f,10g……電極、7……PTC発熱体。
FIG. 1 is a perspective view of a PTC heating element according to an embodiment of the present invention, and FIG.
FIG. 4 is a front view of a panel heater to which the PTC heating element is applied, FIG. 3 is a heat generation temperature distribution diagram of the panel heater, FIG. 4 is a perspective view of the PTC heating element of the embodiment of the present invention, and FIG. FIG. 3 is a perspective view of the PTC heating element of FIG. 3,8 …… PTC resistor, 4a, 4b, 4c, 5,9a, 9b, 9c, 9d, 9e, 10a, 10
b, 10c, 10d, 10e, 10f, 10g …… electrode, 7 …… PTC heating element.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶性高分子中に導電性微粉末を分散させ
た組成物を主成分とする薄肉状の正抵抗温度係数抵抗体
と、この厚さ方向に電圧を印加すべく設けられた一対の
電極体よりなり、前記一対の電極体はそれぞれ適宜な間
隔をあけて形成された複数個の帯状電極体であり、前記
抵抗体の厚さ方向の投影面で互いに非平行である正抵抗
温度係数発熱体。
1. A thin-walled positive resistance temperature coefficient resistor having a composition in which conductive fine powder is dispersed in a crystalline polymer as a main component, and a voltage-applying element provided in the thickness direction. A pair of electrode bodies, wherein the pair of electrode bodies are a plurality of strip-shaped electrode bodies formed at appropriate intervals, and positive resistances that are non-parallel to each other in a projection plane in the thickness direction of the resistor. Temperature coefficient heating element.
【請求項2】正抵抗温度係数抵抗体の厚みが3mm以下で
ある特許請求の範囲第1項記載の正抵抗温度係数発熱
体。
2. The positive resistance temperature coefficient heating element according to claim 1, wherein the positive resistance temperature coefficient resistor has a thickness of 3 mm or less.
JP2810486A 1986-02-12 1986-02-12 Positive resistance temperature coefficient heating element Expired - Lifetime JPH0746628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2810486A JPH0746628B2 (en) 1986-02-12 1986-02-12 Positive resistance temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2810486A JPH0746628B2 (en) 1986-02-12 1986-02-12 Positive resistance temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPS62186487A JPS62186487A (en) 1987-08-14
JPH0746628B2 true JPH0746628B2 (en) 1995-05-17

Family

ID=12239498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2810486A Expired - Lifetime JPH0746628B2 (en) 1986-02-12 1986-02-12 Positive resistance temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JPH0746628B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054131A (en) * 2004-08-13 2006-02-23 Susumu Kiyokawa Electric resistive element
WO2013156162A2 (en) * 2012-04-20 2013-10-24 Universität Bremen (Bccms) Electric heating device, component and method for the production thereof

Also Published As

Publication number Publication date
JPS62186487A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
EP1041859B1 (en) Heater with PTC element
KR970003210B1 (en) Electrical device comprising conductive polymers
CA2392874C (en) Electrical heater with thermistor
US4045763A (en) Sealed thermostatic heater
GB1562085A (en) Electrical heater and proxesses using it
JP2007299546A (en) Planar heating element
US3518407A (en) Heating device
JPH07153555A (en) Positive characteristic thermistor heater and positive characteristic thermistor heater device using it
JPH0746628B2 (en) Positive resistance temperature coefficient heating element
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
JP2503729B2 (en) Planar heating element
JPH10106725A (en) Sheet-like heater element and electric carpet
JP3257746B2 (en) Inrush current suppression type PTC heating device
KR20000047736A (en) An Electric Hob
JP2702612B2 (en) Variable output positive temperature coefficient thermistor heater
JPH0439886A (en) Heating body having positive resistance temperature characteristic
JP3817488B2 (en) Composite heating element and design method thereof
JPH01211885A (en) Planar heater
JP4289085B2 (en) PTC surface heater and floor heating panel provided with the same
JPS61284082A (en) Positive resistance temperature coefficient heat generating body
JPH0439887A (en) Heating body having positive resistance temperature characteristic
JPH04353176A (en) Surface type heating unit
JPH046787A (en) Planar heater
JPH0777882A (en) Heating element
JPH05141675A (en) Floor heating panel