JPS61284082A - Positive resistance temperature coefficient heat generating body - Google Patents

Positive resistance temperature coefficient heat generating body

Info

Publication number
JPS61284082A
JPS61284082A JP12651585A JP12651585A JPS61284082A JP S61284082 A JPS61284082 A JP S61284082A JP 12651585 A JP12651585 A JP 12651585A JP 12651585 A JP12651585 A JP 12651585A JP S61284082 A JPS61284082 A JP S61284082A
Authority
JP
Japan
Prior art keywords
resistor
temperature coefficient
pair
heating element
ptc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12651585A
Other languages
Japanese (ja)
Inventor
政光 宮崎
康友 船越
誠之 寺門
和典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12651585A priority Critical patent/JPS61284082A/en
Publication of JPS61284082A publication Critical patent/JPS61284082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は採暖器具および一般の加熱装置等として有用な
正抵抗温度係数発熱体(以下PTC発熱体と称す。)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a positive resistance temperature coefficient heating element (hereinafter referred to as a PTC heating element) useful as a heating appliance, a general heating device, and the like.

従来の技術 従来から結晶性高分子中に導電性微粉末を分散した抵抗
体組成物が顕著なPTC特性を示すことが知られていて
、この組成物を用いて自己温度制御性を有する発熱体を
構成する試みがなされていた。この方式の利点は抵抗体
の形状加工性が優れていて任意の形状が容易忙得られる
こと、可撓性に優れていること、抵抗値の調整範囲が広
いことにあシ、これまでに比較的低電力密度の面状発熱
体および長尺可撓性発熱体として用いられてきた。
BACKGROUND OF THE INVENTION It has been known that a resistor composition in which conductive fine powder is dispersed in a crystalline polymer exhibits remarkable PTC characteristics, and a heating element with self-temperature control using this composition has been known. Attempts have been made to construct a The advantages of this method are that the shape of the resistor is excellent and any shape can be easily obtained, it has excellent flexibility, and the resistance value can be adjusted over a wide range. It has been used as a planar heating element and a long flexible heating element with low power density.

しかし、大きな電力密度が要求される場合においては発
熱体自体の温度分布を一様にするための均熱板が不可欠
となシ、従来のPTC発熱体においては第3図に示すよ
うに、熱電導性の良好なアルミナ焼結体から成る電気絶
縁基板1の上に、導電性微粉末を結晶性高分子中に分散
した材料を主成分とするPTC抵抗体2を密着して構成
し、その両端に1対の電極3a、3bを設ける等の対策
が講じられていた(特公昭65−40161号公報)。
However, when a large power density is required, a heat equalizing plate is essential to make the temperature distribution of the heating element itself uniform. A PTC resistor 2 whose main component is a material in which conductive fine powder is dispersed in a crystalline polymer is closely adhered to an electrically insulating substrate 1 made of an alumina sintered body with good conductivity. Measures were taken such as providing a pair of electrodes 3a and 3b at both ends (Japanese Patent Publication No. 40161/1983).

発明が解決しようとする問題点 このような従来の高電力密度PTC発熱体では均熱板が
不可決であって、均熱板がなければ電圧集中による局部
異常発熱現象を生じ、正常な発熱特性が得られなくなる
。また、均熱板があっても、アルミナ焼結体のような、
電気絶縁材料の熱伝導率には限界があシ、電圧集中発生
限界までの余裕が十分になかった。さらにアルミナ焼結
体のようなセラミック材料は可撓性がなく、被加熱物と
の密着性が不十分であったシ、大きなものをつくりにく
いことから、一体で構成される発熱体の寸法形状にも限
界があった。一方セラミック系の均熱板に代わる材料と
して、アルミニウム等の高熱伝導率金属板とポリエステ
ルフィルム等の電気絶縁板との貼り合わせ均熱板が考案
されているが、耐電圧特性を十分に満足するだけの電気
絶縁板の厚みを設けると、アルミナ焼結体を上まわる均
熱効果を得ることが困難であり、大きな電力密度を得る
ことが出来なかった。このように、従来の高電力密度P
TC発熱体は均熱板に起因する諸問題が山積していて、
これ以上の発展の余地がなかった・この問題点を一挙に
解決するためには均熱板に依存する必要のないPTC発
熱体を導入することが重要であった。この点に着目して
検討を進めた結果、電圧集中現象が発生している部分の
幅が数ミリメートル以下であることを見い出し、その範
囲内に一対の電極を設置すれば、電極間の電圧勾配およ
び発熱分布がほぼ一様になるものと推定された。さらに
検討を進めた結果、PTC抵抗体の表面に微細くし形電
極を設けると、電極の占める面積が相当大きくなり、有
効発熱部がほとんどなくなって、それ程大きな電力密度
が得られないことがわかった。その解決策として、PT
C抵抗体の厚さ方向への電圧印加方式を導入し、実験を
積み重ねた結果、抵抗体の厚さが5m++以下であれば
極端な電圧集中現象は観測されなかった。また、厚さ1
細以下では大きな放熱負荷のもとに2痴1(e o a
eq昇温)の発熱時にも異常はみられなかった。この結
果から厚さ5w以下の薄肉状PTC抵抗体の両面に電極
を設けた発熱体電極間の熱拡散能力が高く、本質的に電
圧集中現象が発生し得ないこの結論に達した。しかしな
がら電圧集中による抵抗体の破壊現象は生じないものの
、大きな劣化が発生したシ、熱の伝達損失が生じるので
、抵抗体の厚さ少なくとも3萌以下、好ましくは1頗以
下であることが判明した。この構造の発熱体は非常にシ
ンプルな構成であシ、均熱板に起因する様々な制約から
解放されるので、性能面、構造面、工法面で大きな飛躍
が得られるものと期待された。この結論をもとに具体的
な検討に着手すると、PTC抵抗体組成物の耐電圧特性
、絶縁距離の確保、端子処理方法、取付は構造、加工方
法等に関する諸問題が多く、実用に程遠い状態にあった
O 以下本発明が解決しようとする具体的な課題について説
明する。3鵡以下、好ましくは1−以下の厚さの薄肉状
PTC抵抗体の厚み方向に1oOvないし20OVを印
加する方式はこれまで異極間の距離が接近しているため
に極〈微細な欠陥があっても、容易に耐電圧破壊を生じ
最悪の場合、焼損に至ることが予想された。その欠陥を
作9得る重要な要因の1つとして、極く接近した位置に
構成される一対の異極電極端面の構造ならびに処理方法
が挙げられる。この一対の異極電極端面は3+a+以下
ないし1M以下の距離しか離れていないので化等で耐電
圧特性が不足する場合が容易に想定される。また薄肉P
TC抵抗体自体に端子が取付けられると、端子からの放
熱が犬きぐ他の部分との温度ムラを生じさせるだけでは
なく、熱効率も悪くなる。さらに一対の電極の表裏に端
子が必要で、後加工で絶縁処理を行なった後の端子処理
が容易でなく、組立コストが高くつき、かつ生産性が向
上しないという問題を有していた。
Problems to be Solved by the Invention In such conventional high power density PTC heating elements, the heat equalizing plate is not fixed, and without the heat equalizing plate, local abnormal heat generation phenomenon due to voltage concentration will occur, and normal heat generation characteristics will not be maintained. will not be obtained. In addition, even if there is a heat soaking plate, the
There was a limit to the thermal conductivity of electrical insulating materials, and there was not enough margin to reach the voltage concentration limit. Furthermore, ceramic materials such as alumina sintered bodies are not flexible, have insufficient adhesion to objects to be heated, and are difficult to make large ones, so the size and shape of a heating element constructed in one piece is difficult to make. There were also limits. On the other hand, as an alternative material to ceramic-based heat equalizer plates, a heat equalizer plate made by laminating a high thermal conductivity metal plate such as aluminum and an electrically insulating plate such as polyester film has been devised, but it does not fully satisfy the dielectric strength characteristics. When the thickness of the electrical insulating plate is set to 1, it is difficult to obtain a heat equalization effect superior to that of the alumina sintered body, and a large power density cannot be obtained. In this way, the conventional high power density P
TC heating elements have a lot of problems caused by the soaking plate.
There was no room for further development.In order to solve this problem all at once, it was important to introduce a PTC heating element that did not need to rely on a heat equalizing plate. As a result of our studies focusing on this point, we found that the width of the area where the voltage concentration phenomenon occurs is several millimeters or less, and if we install a pair of electrodes within that area, we can reduce the voltage gradient between the electrodes. It was estimated that the heat distribution would be almost uniform. As a result of further investigation, it was found that if fine comb-shaped electrodes were provided on the surface of the PTC resistor, the area occupied by the electrodes would become considerably large, and there would be almost no effective heat generation area, making it impossible to obtain as high a power density. . As a solution, PT
As a result of introducing a voltage application method in the thickness direction of the C resistor and conducting repeated experiments, no extreme voltage concentration phenomenon was observed if the thickness of the resistor was 5 m++ or less. Also, the thickness is 1
In the case of small or smaller parts, 2.1 (e o a)
No abnormalities were observed during heat generation (eq temperature rise). From this result, it was concluded that the heat diffusion ability between the electrodes of a heating element in which electrodes were provided on both sides of a thin-walled PTC resistor having a thickness of 5 W or less was high, and that essentially no voltage concentration phenomenon could occur. However, although the phenomenon of destruction of the resistor due to voltage concentration did not occur, large deterioration occurred and heat transfer loss occurred, so it was found that the thickness of the resistor should be at least 3 mm or less, preferably 1 mm or less. . The heating element with this structure has a very simple structure and is free from the various constraints imposed by heat soaking plates, so it was expected to make a big leap forward in terms of performance, structure, and construction method. When we started concrete studies based on this conclusion, we found that there were many problems related to the withstand voltage characteristics of the PTC resistor composition, securing of insulation distance, terminal processing method, structure, processing method, etc., and the state was far from practical. The specific problems to be solved by the present invention will be explained below. Until now, the method of applying 1oOv to 20OV in the thickness direction of a thin-walled PTC resistor with a thickness of 3 mm or less, preferably 1 mm or less has been used because the distance between different electrodes is close, resulting in extremely small defects. Even if it were, it was predicted that withstand voltage breakdown would easily occur, and in the worst case, it would lead to burnout. One of the important factors contributing to the formation of such defects is the structure and processing method of the pair of oppositely polarized electrode end surfaces that are arranged in extremely close positions. Since the end faces of this pair of different polarity electrodes are separated by a distance of 3+a+ or less or 1M or less, it is easily assumed that the withstand voltage characteristics will be insufficient due to oxidation or the like. Also thin P
When a terminal is attached to the TC resistor itself, heat radiation from the terminal not only causes temperature unevenness with other parts of the resistor but also deteriorates thermal efficiency. Furthermore, since terminals are required on the front and back sides of the pair of electrodes, it is difficult to process the terminals after insulation treatment in post-processing, resulting in high assembly costs and problems in that productivity is not improved.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、結晶性高分子中に
導電性微粉末を分散させた組成物を生成分とする薄肉正
温度係数抵抗体とその厚さ方向に電圧を印加すべく設け
られた一対の電極体により成り、前記一対の電極体の端
面間に構成される前記抵抗体の外表面に沿う沿面距離を
前記抵抗体の厚さ寸法より大きくなるように、前記抵抗
体と前記一対の電極体の幅寸法ないし位置関係を設定し
つつ貼シ合わされ、かつ前記抵抗体よりはみ出した前記
電極体に端子部を設け、さらに電気絶縁材料にて被覆し
、該電気絶縁材料の一部に前記端子部に一致するように
切欠き部を形成した構成よりなる正抵抗温度係数発熱体
を適用するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a thin positive temperature coefficient resistor having a composition in which conductive fine powder is dispersed in a crystalline polymer, and its thickness. The resistor comprises a pair of electrode bodies provided to apply a voltage in the direction, and the creepage distance along the outer surface of the resistor constructed between the end faces of the pair of electrode bodies is larger than the thickness dimension of the resistor. The resistor and the pair of electrode bodies are pasted together while setting the width dimension or positional relationship, and the electrode body protruding from the resistor is provided with a terminal portion, and is further covered with an electrically insulating material. A positive resistance temperature coefficient heating element is applied, which is constructed by forming a notch part in a part of the electrically insulating material so as to correspond to the terminal part.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、薄肉PTC抵抗体そのものを異極電極端面間
に十分な沿面距離をとれるだけの位置関係に介在させて
、一体成形加工を行なえば、他の電気絶縁材料を端面部
分に構成せずに安全が確保出来る。また、電極をPTC
抵抗体の幅より、はみ出し、その部分の任意の位置に端
子部を設ければ、PTC抵抗体に半田付けなどによる圧
力および熱的な悪影響をおよぼさない。
In other words, if the thin-walled PTC resistor itself is interposed in a positional relationship that allows for sufficient creepage distance between the end faces of different polarity electrodes, and is integrally molded, safety can be achieved without using other electrically insulating materials on the end faces. can be secured. In addition, the electrode can be
By protruding beyond the width of the resistor and providing the terminal portion at an arbitrary position in that portion, the PTC resistor will not be adversely affected by pressure and heat due to soldering or the like.

実施例 以下実施例を第1〜2図に基づいて説明する。Example Examples will be described below based on FIGS. 1 and 2.

第1図において、4は厚さ1N以下のPTC抵抗体で、
電極5aは、PTC抵抗体4の幅より左側に端子6aの
取付は面積(特に幅)以上の寸法分はみ出している。−
刃対向する電極5bはPTC抵抗体4の幅より右側方向
に端子6bの取付は面積(特に幅)以上の寸法分はみ出
させ、端子6a 。
In Fig. 1, 4 is a PTC resistor with a thickness of 1N or less,
The electrode 5a protrudes to the left of the width of the PTC resistor 4 by an amount larger than the area (particularly the width) where the terminal 6a is attached. −
The electrode 5b facing the blade protrudes to the right side from the width of the PTC resistor 4 by an amount equal to or larger than the area (particularly the width) when attaching the terminal 6b.

6bが同一方向に取り出せるような位置関係のもとで貼
り合わされている。これにより、沿面距離をPTC抵抗
体4の厚みの2倍以上が確保される。
6b are bonded together in a positional relationship that allows them to be taken out in the same direction. This ensures that the creepage distance is at least twice the thickness of the PTC resistor 4.

さらに電気絶縁層7a、7bは、熱融着性電気絶縁テー
プにて、PTC抵抗体4および電極5a。
Further, the electrical insulating layers 7a and 7b are made of heat-fusible electrical insulating tape, and are connected to the PTC resistor 4 and the electrode 5a.

5bにより構成されたPTC発熱体を被覆し、かつ電気
絶縁層7aにあらかじめ端子ea、ebに対応する位置
に切欠き加工を施しておく。
5b is covered, and the electric insulating layer 7a is previously cut out at positions corresponding to the terminals ea and eb.

次に第2図は、熱融着性電気絶縁テープにて連続的に被
覆した本発明のPTC発熱体の斜視図である。切欠き部
8a、8bが端子6a、6bに対応する位置に熱ロール
にて加工を行なったものである。
Next, FIG. 2 is a perspective view of a PTC heating element of the present invention continuously covered with heat-fusible electrical insulation tape. The notches 8a and 8b are processed using a hot roll at positions corresponding to the terminals 6a and 6b.

第1図に示した構造はPTC抵抗体4の沿面距離構成部
分が電極5aおよび5bによって補強される点と電極5
aおよび5bの幅が同一で良い点、さらに電気絶縁テー
プに端子5a、6bが容易に取り出せる様に切欠き部8
a 、sbを設けているため、端子処理が簡単である点
に特徴がある・発明の効果 以上述べてきたように、本発明は異極電極端面間の沿面
距離を確保しつつ加工する方法を示すもので、薄肉PT
C抵抗体の厚さ方向に電圧を印加する方式の発熱体の抵
抗体と電極部分の断面構造は、この観点から決定される
ため、以下の効果を発揮する。
The structure shown in FIG.
The good thing is that the widths of terminals a and 5b are the same, and there is also a notch 8 in the electrical insulating tape so that terminals 5a and 6b can be easily taken out.
Since terminals a and sb are provided, terminal processing is easy. Effects of the invention As described above, the present invention provides a method for processing while ensuring creepage distance between the end faces of different electrodes. As shown, thin PT
Since the cross-sectional structure of the resistor and electrode portion of the heating element of the type in which voltage is applied in the thickness direction of the C resistor is determined from this viewpoint, the following effects are exhibited.

0)異極電極端面間の耐電圧性能に関しては何ら不安要
素はなく、高出力のPTC発熱体を得ることが出来る。
0) There are no concerns regarding the withstand voltage performance between the end faces of different electrodes, and a high-output PTC heating element can be obtained.

@)端子部がPTC抵抗体に接していないため、端子か
らの放熱が少なく、温度ムラが生じにぐい。さらに半田
付けによる熱劣化も生じにくい。
@) Since the terminal part is not in contact with the PTC resistor, there is little heat dissipation from the terminal, and temperature unevenness is less likely to occur. Furthermore, thermal deterioration due to soldering is less likely to occur.

(3)電気絶縁体に端子処理が容易に出来るように切欠
き加工が施こしであるため、生産性が高い。
(3) Productivity is high because the electrical insulator is notched to facilitate terminal processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のPTC発熱体の断面図、第2
図は本発明の実施例のPTC発熱体の斜視図、第3図は
従来のPTC発熱体の斜視図である0 1・・・・・・均熱板、2,4・・・・・・PTC抵抗
体、3a。 3b、5a、5b・・・・・・電極、ea、eb・・・
・・・端子、7a 、 7b・・・・・・電気絶縁層、
Ba、ab・・・・・・切欠き部。
Fig. 1 is a sectional view of a PTC heating element according to an embodiment of the present invention;
The figure is a perspective view of a PTC heating element according to an embodiment of the present invention, and FIG. 3 is a perspective view of a conventional PTC heating element. PTC resistor, 3a. 3b, 5a, 5b... Electrode, ea, eb...
...terminal, 7a, 7b...electrical insulating layer,
Ba, ab...notch part.

Claims (1)

【特許請求の範囲】[Claims] 結晶性高分子中に導電性微粉末を分散させた組成物を主
成分とする薄肉正温度係数抵抗体と、その厚さ方向に電
圧を印加すべく設けられた一対の電極体より成り、前記
一対の電極体の端面間に構成される前記抵抗体の外表面
に沿う沿面距離を前記抵抗体の厚さ寸法より大きくなる
ように、前記抵抗体と前記一対の電極体の幅寸法ないし
位置関係を設定しつつ貼り合わされ、かつ前記抵抗体よ
りはみ出した前記電極体に端子部を設け、さらに電気絶
縁材料にて被覆し、該電気絶縁材料の一部に前記端子部
に一致するように切欠き部を形成した構成よりなる正抵
抗温度係数発熱体。
It consists of a thin positive temperature coefficient resistor whose main component is a composition in which conductive fine powder is dispersed in a crystalline polymer, and a pair of electrode bodies provided to apply a voltage in the thickness direction of the resistor. The width dimension or positional relationship between the resistor and the pair of electrode bodies is such that the creepage distance along the outer surface of the resistor configured between the end faces of the pair of electrode bodies is larger than the thickness of the resistor. A terminal portion is provided on the electrode body protruding from the resistor, and is further covered with an electrically insulating material, and a notch is formed in a part of the electrically insulating material so as to correspond to the terminal portion. A positive resistance temperature coefficient heating element having a configuration in which a portion is formed.
JP12651585A 1985-06-11 1985-06-11 Positive resistance temperature coefficient heat generating body Pending JPS61284082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12651585A JPS61284082A (en) 1985-06-11 1985-06-11 Positive resistance temperature coefficient heat generating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12651585A JPS61284082A (en) 1985-06-11 1985-06-11 Positive resistance temperature coefficient heat generating body

Publications (1)

Publication Number Publication Date
JPS61284082A true JPS61284082A (en) 1986-12-15

Family

ID=14937117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12651585A Pending JPS61284082A (en) 1985-06-11 1985-06-11 Positive resistance temperature coefficient heat generating body

Country Status (1)

Country Link
JP (1) JPS61284082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421095U (en) * 1990-06-13 1992-02-21

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150039A (en) * 1974-05-22 1975-12-01
JPS5730284A (en) * 1980-07-28 1982-02-18 Nitto Electric Ind Co Self-temperature control type heating element
JPS5953672A (en) * 1982-09-21 1984-03-28 Canon Inc Plasma cvd apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150039A (en) * 1974-05-22 1975-12-01
JPS5730284A (en) * 1980-07-28 1982-02-18 Nitto Electric Ind Co Self-temperature control type heating element
JPS5953672A (en) * 1982-09-21 1984-03-28 Canon Inc Plasma cvd apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421095U (en) * 1990-06-13 1992-02-21

Similar Documents

Publication Publication Date Title
JPH0855673A (en) Positive temperature coefficient thermister heat generating device
US20110220638A1 (en) Finned ceramic heater
KR100349780B1 (en) Chip Thermistor
JPH07153555A (en) Positive characteristic thermistor heater and positive characteristic thermistor heater device using it
JPS61284082A (en) Positive resistance temperature coefficient heat generating body
JPH04365303A (en) Heating element of positive resistance-temperature coefficient and manufacture thereof
JPH0679499B2 (en) Positive resistance temperature coefficient heating element
JPH0512961Y2 (en)
JP3104311B2 (en) Manufacturing method of laminated piezoelectric actuator
JP2613408B2 (en) Multilayer piezoelectric actuator
JPH062234Y2 (en) Sheet heating element
JPS62143383A (en) Heating unit with positive temperature-resistance coefficient and manufacture of the same
JPH0465507B2 (en)
JPS6242459Y2 (en)
JPH02135681A (en) Positive temperature coefficient resistor heating element
JPH0612689B2 (en) Positive resistance temperature coefficient heating element
JPS586617Y2 (en) soldering iron
JPS61284083A (en) Positive resistance temperature coefficient heat generating body
JPH0613164A (en) Heater structure
JPH07142205A (en) Positive temperature coefficient thermistor
JPH0121510Y2 (en)
JPH0448573A (en) Manufacture of positive-characteristic thermistor heating element
JPH10241837A (en) Planar heating element
JPH0533509B2 (en)
JPH05114464A (en) Heating body having positive resistance temperature coefficient and manufacture thereof