JPH0533509B2 - - Google Patents

Info

Publication number
JPH0533509B2
JPH0533509B2 JP59266647A JP26664784A JPH0533509B2 JP H0533509 B2 JPH0533509 B2 JP H0533509B2 JP 59266647 A JP59266647 A JP 59266647A JP 26664784 A JP26664784 A JP 26664784A JP H0533509 B2 JPH0533509 B2 JP H0533509B2
Authority
JP
Japan
Prior art keywords
heat
heating element
resistor
exterior material
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59266647A
Other languages
Japanese (ja)
Other versions
JPS61143981A (en
Inventor
Masayuki Terakado
Kazunori Ishii
Yasutomo Funakoshi
Tadashi Sakairi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26664784A priority Critical patent/JPS61143981A/en
Priority to EP85116105A priority patent/EP0187320B1/en
Priority to US06/809,966 priority patent/US4783587A/en
Priority to DE8585116105T priority patent/DE3583932D1/en
Priority to CA000497966A priority patent/CA1249323A/en
Publication of JPS61143981A publication Critical patent/JPS61143981A/en
Priority to US07/190,562 priority patent/US4954696A/en
Publication of JPH0533509B2 publication Critical patent/JPH0533509B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本考案は採暖器具および一般の加熱装置等とし
て有用な正抵抗温度係数発熱体(以下PTC発熱
体と称す)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a positive resistance temperature coefficient heating element (hereinafter referred to as a PTC heating element) useful as a warming appliance, a general heating device, etc.

従来の技術 従来から結晶性高分子中に導電性微粉末を分散
した抵抗体組成物が顕著なPTC特性を示すこと
が知られていて、この組成物を用いて自己温度制
御性を有する発熱体を構成する試みがなされてき
た。この方式の利点は抵抗体の形状加工性が優れ
ていて任意の形状が容易に得られること、可撓性
に優れていること、抵抗値の調整範囲が広いこと
にあり、これまでに比較的低電力密度の面状発熱
体および長尺可撓性発熱体として用いられてき
た。
Prior Art It has been known that a resistor composition in which conductive fine powder is dispersed in a crystalline polymer exhibits remarkable PTC characteristics, and a heating element with self-temperature control using this composition has been developed. Attempts have been made to construct a The advantages of this method are that the shape of the resistor is excellent and any shape can be easily obtained, it has excellent flexibility, and the resistance value can be adjusted over a wide range. It has been used as a low power density sheet heating element and a long flexible heating element.

しかし、大きな電力密度が要求される場合にお
いては発熱体自体の温度分布を一様にするための
均熱板が不可欠となり、従来のPTC発熱体にお
いては第6図に示すように、熱伝導性の良好なア
ルミナ焼結体から成る電気絶縁基板1の上に、導
電性微粉末を結晶性高分子中に分散した材料を主
成分とするPTC抵抗体2を密着して構成し、そ
の両端部に1対の電極3,4を設ける等の対策が
講じられていた。(特公昭55−40161号公報) 発明が解決しようとする問題点 このような従来の高電力密度PTC発熱体では
均熱板が不可欠であつて、均熱板がなければ電圧
集中による局部異常発熱現象を生じ、正常な発熱
特性が得られなくなる。また、均熱板があつて
も、アルミナ焼結体のような電気絶縁材料の熱伝
導率には限界があり、電圧集中発生を防止するた
めの十分な余裕がなかつた。さらに、アルミナ焼
結体のようなセラミツク材料は可撓性がなく、被
加熱物との密着性が不十分であつたり、最大加工
寸法の制約から一体で構成される発熱体の寸法形
状にも限界があつた。セラミツク系の均熱板に代
わる材料として、アルミニウム等の高熱伝導率金
属板とポリステルフイルム等の電気絶縁板との貼
り合わせ均熱板が考案されているが、耐電圧特性
を十分に満足するだけの電気絶縁板の厚みを設け
ると、アルミナ焼結体を上まわる均熱効果を得る
ことは困難であり、大きな電力密度を得ることが
できなかつた。このように、従来の高電力密度
PTC発熱体は均熱板に起因する諸問題が山積し
ていて、これ以上の発展の余地がなかつた。
However, when a large power density is required, a heat equalizing plate is essential to make the temperature distribution of the heating element itself uniform, and as shown in Figure 6, the conventional PTC heating element A PTC resistor 2 whose main component is a material in which conductive fine powder is dispersed in a crystalline polymer is closely attached to an electrically insulating substrate 1 made of an alumina sintered body with good quality. Countermeasures such as providing a pair of electrodes 3 and 4 were taken. (Japanese Patent Publication No. 55-40161) Problems to be Solved by the Invention In such conventional high power density PTC heating elements, a heat equalizing plate is indispensable, and without a heat equalizing plate, local abnormal heat generation due to voltage concentration occurs. phenomenon occurs, and normal heat generation characteristics cannot be obtained. Further, even if a heat equalizing plate is provided, there is a limit to the thermal conductivity of an electrically insulating material such as an alumina sintered body, and there is not enough margin to prevent voltage concentration from occurring. Furthermore, ceramic materials such as alumina sintered bodies are not flexible and do not have sufficient adhesion to the heated object, and may not be suitable for the size and shape of an integral heating element due to restrictions on maximum processing dimensions. I've reached my limit. As an alternative material to ceramic-based heat equalizer plates, heat equalizer plates made by laminating high thermal conductivity metal plates such as aluminum and electrically insulating plates such as polyester film have been devised; If the thickness of the electrically insulating plate is set to , it is difficult to obtain a heat equalization effect superior to that of the alumina sintered body, and it is not possible to obtain a large power density. Thus, traditional high power density
PTC heating elements had a lot of problems caused by the heat equalizing plate, and there was no room for further development.

問題点を一挙に解決するためには均熱板に依存
する必要のないPTC発熱体を導入することが重
要であつた。この点に着目して検討を進めた結
果、電圧集中現象が発生している部分の幅が数ミ
リメートル以下であることを見出し、その範囲内
に一対の電極を設置すれば、電極間の電圧勾配お
よび発熱分布がほぼ一様になるものと推定され
た。さらに検討を進めた結果、PTC抵抗体の表
面に微細くし形電極を設けると、電極の占める面
積が相当大きくなり、有効発熱部がほとんどなく
なつて、それ程大きな電力密度が得られないこと
がわかつた。その解決策としてPTC抵抗体の厚
さ方向への電圧印加方式を導入し、実験を積み重
ねた結果抵抗体の厚さが5mm以下であれば極端な
電圧集中現象は観測されなかつた。また、厚さ1
mm以下では、大きな放熱負荷のものに2W/cm2
(60deg昇温)の発熱時にも異常がみられなかつ
た。この結果から、厚さ5mm以下の薄肉状PTC
抵抗体の両面に電極を設けた発熱体は、電極間の
熱拡散能力が高く、本質的に電圧集中現象が発生
し得ないとの結論に達した。しかしながら、電圧
集中による抵抗体の破壊現象は生じないものの、
大きな熱負荷に対しては、発熱体電極間に意外に
大きな電圧勾配分布と温度分布が存在し、局部的
な抵抗体組成物の熱劣化が発生したり、熱の伝達
損失が生じるので、抵抗体の厚さは少なくとも3
mm以下、好ましくは1mm以下であることが判明し
た。この構造の発熱体は非常にシンプルな構成で
あり、均熱板に起因する様々な制約から解放され
るので、性能面、構造面、工法面で大きな飛躍が
得られるものと期待された。
In order to solve the problems all at once, it was important to introduce a PTC heating element that did not need to rely on a heat equalizing plate. As a result of our studies focusing on this point, we found that the width of the area where the voltage concentration phenomenon occurs is several millimeters or less, and if we install a pair of electrodes within that area, we can reduce the voltage gradient between the electrodes. It was estimated that the heat distribution would be almost uniform. As a result of further investigation, it was found that if fine comb-shaped electrodes were provided on the surface of the PTC resistor, the area occupied by the electrodes would become considerably large, and there would be almost no effective heat generating area, making it impossible to obtain as high a power density. Ta. As a solution to this problem, we introduced a method of applying voltage in the thickness direction of the PTC resistor, and as a result of repeated experiments, no extreme voltage concentration phenomenon was observed if the thickness of the resistor was 5 mm or less. Also, the thickness is 1
mm or less, 2W/cm 2 for large heat dissipation loads
No abnormalities were observed even when the temperature increased by 60 degrees. From this result, thin-walled PTC with a thickness of 5 mm or less
It was concluded that a heating element in which electrodes are provided on both sides of the resistor has a high heat diffusion ability between the electrodes, and essentially no voltage concentration phenomenon can occur. However, although the phenomenon of resistor destruction due to voltage concentration does not occur,
For large heat loads, unexpectedly large voltage gradient distribution and temperature distribution exist between the electrodes of the heating element, causing local thermal deterioration of the resistor composition and heat transfer loss. Body thickness is at least 3
It has been found that it is less than mm, preferably less than 1 mm. The heating element with this structure has a very simple configuration and is free from the various constraints imposed by heat soaking plates, so it was expected to make a big leap forward in terms of performance, structure, and construction method.

この結論のもとに具体的な検討に着手すると、
PTC抵抗体組成物の耐電圧特性、絶縁距離の確
保、端子処理方法、取付け構造、熱の取出し方法
等に関する諸問題が山積し、実用に程遠い状態に
あつた。代替手段としてチタン酸バリウム焼結体
のようなセラミツク系のPTC抵抗体を検討した
結果では、電力密度、耐熱性、耐電圧特性、熱伝
導率に優れ、小型の加熱ユニツトを構成するうえ
において基本的な問題点はないと判断された。し
かしながら、焼結体であるために可撓性が全くな
く、大面積あるいは長尺の加工が著しく困難とい
う課題があり、従来の面状発熱体や長尺可撓性発
熱体のような薄肉、大面積、均一発熱、可撓性、
連続長尺加工といつた機能を満すことは困難であ
つた。これらの点から判断して、セラミツク系
PTC抵抗体は断念し、有機系PTC抵抗体を用い
た場合の諸問題を解決するのが唯一の道であるこ
とを確認した。以下、本発明が解決しようとして
いる具体的問題点について説明する。
Based on this conclusion, we begin a concrete study.
PTC resistor compositions were far from being practical due to numerous problems related to their withstand voltage characteristics, ensuring insulation distance, terminal processing methods, mounting structure, heat extraction methods, etc. As an alternative, ceramic-based PTC resistors such as barium titanate sintered bodies were investigated, and the results showed that they have excellent power density, heat resistance, withstand voltage characteristics, and thermal conductivity, and are ideal for constructing small heating units. It was determined that there were no major problems. However, since it is a sintered body, it has no flexibility, making it extremely difficult to process large areas or long lengths. Large area, uniform heat generation, flexibility,
It was difficult to satisfy the functions required for continuous long length processing. Judging from these points, ceramic-based
We abandoned the PTC resistor and confirmed that the only way was to solve the problems that would arise when using an organic PTC resistor. Hereinafter, specific problems to be solved by the present invention will be explained.

有機材料を主成分とし、厚さが3mm以下、好ま
しくは1mm以下の薄肉PTC抵抗体の厚さ方向に
電圧を印加する方式の発熱体は、電圧集中現象が
容易に発生しないために、単位面積当りの出力を
大きく設定できる特長がある。しかし、その反
面、被加熱物との熱の伝達状態が不完全ないし不
安定であると、十分な出力が得られなかつたり、
出力が不安定になる等の問題点があつた。その原
因は、高出力に設定されたPTC発熱体特有の現
象として、発熱体から奪う熱量が少なければ出力
が極端に制限され、その熱量が多ければ出力が大
幅に増大するという自己温度制御機能が生じる
が、その可変帯域が非常に大きいことのデメリツ
トによるものである。これらの欠点を克服して、
安定な高出力を得るためには、PTC発熱体の熱
を少しでも多く奪い取り、PTC抵抗体の温度を
少しでも低下させ、より多くの発熱量を得る必要
があり、また、熱の伝達経路をしつかりと構成
し、発熱体温度がゆらぐことを防止する必要があ
つた。しかしながら、高出力になればなる程発熱
体形状寸法が小型で済むことから、被加熱物の表
面のわずかの凹凸になじませて密着させようとし
ても、その変形スパンが小さいがための不完全に
密着状態しか得られなかつた。そして、さらに、
発熱体の発熱と冷却による熱歪や、長期使用によ
る経年的な形状変形が加わるために、その密着状
態は一層不完全なものになつて、所定の出力が得
られないばかりか、出力が不安定で変動幅が大き
かつた。この対策として、被加熱物の周囲に発熱
体を巻き付け、さらに、その外側からバンドで締
めつけるといつた方法も考えられるが、被加熱物
が柔軟物である場合や、凹部であつたり平面部で
あつたりする場合にはこの方法は使えず、有効な
対策はなかつた。
A heating element that applies a voltage in the thickness direction of a thin PTC resistor that is mainly composed of organic material and has a thickness of 3 mm or less, preferably 1 mm or less, has a unit area of It has the advantage of being able to set a large amount of output per hit. However, on the other hand, if the state of heat transfer to the heated object is incomplete or unstable, sufficient output may not be obtained, or
There were problems such as unstable output. The reason for this is the self-temperature control function, which is a phenomenon unique to PTC heating elements set to high output; if the amount of heat taken from the heating element is small, the output is extremely limited, and if the amount of heat taken from the heating element is large, the output increases significantly. However, this is due to the disadvantage that the variable band is very large. Overcoming these shortcomings,
In order to obtain stable high output, it is necessary to remove as much heat from the PTC heating element as possible, lower the temperature of the PTC resistor as much as possible, and obtain more heat generation. It was necessary to have a sturdy structure and prevent the temperature of the heating element from fluctuating. However, the higher the output, the smaller the heating element, so even if you try to make it fit into the slight unevenness of the surface of the object to be heated, it will not be completed due to the small deformation span. Only close contact was possible. And furthermore,
Due to thermal distortion due to heat generation and cooling of the heating element and deformation of shape over time due to long-term use, the adhesion becomes even more imperfect, and not only will the desired output not be obtained, but the output will be insufficient. It was stable and had a large fluctuation range. As a countermeasure for this, a method such as wrapping a heating element around the object to be heated and tightening it with a band from the outside may be considered, but if the object to be heated is flexible, or has a recessed or flat surface, This method cannot be used in cases of heat, and there is no effective countermeasure.

問題点を解決するための手段 本発明は上記問題点を解決するため、結晶性高
分子中に導電性微粉末を分散させた組成物を主成
分とする厚さが1mm以下の薄肉帯状の正抵抗温度
係数抵抗体と、前記抵抗体の厚さ方向に電圧を印
加すべく設けられた一対の電極体からなる発熱素
子と、前記発熱素子の周囲を熱融着層を介して密
封被覆するとともに被覆部から幅方向に大きく広
がる接着助走部を有する薄肉の外装材よりなり、
前記外装材の伝熱面側を平面に沿う形状、他方を
発熱素子外表面に沿う形状になるように成形する
とともに、前記外装材の接着助走部が前記発熱素
子中央部に比較して可撓性をはるかに大にしてな
るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a thin strip-shaped positive electrode with a thickness of 1 mm or less, the main component of which is a composition in which conductive fine powder is dispersed in a crystalline polymer. A heating element consisting of a resistance temperature coefficient resistor, a pair of electrode bodies provided to apply a voltage in the thickness direction of the resistor, and the heating element is hermetically covered with a heat-adhesive layer. Consists of a thin exterior material with an adhesive run-up part that widens from the covering part in the width direction,
The heat transfer surface side of the exterior material is formed into a shape that follows a plane, and the other side is molded into a shape that follows the outer surface of the heat generating element, and the adhesion run-up part of the exterior material is more flexible than the central part of the heat generating element. It is much more sexual.

作 用 この技術的手段による作用は次のようになる。
すなわち、薄肉PTC抵抗体の厚さ方向に電圧を
印加する方式のPTC発熱体は単位面積当りの出
力が大きく、発熱素子そのものは小型化できる
が、取扱う熱量は非常に大きく、その熱量が見合
う安定した熱の伝達経路を形成する必要がある。
その伝達通路の形成のために、発熱素子の周囲を
熱融着層を介して密封被覆するとともに被覆部か
ら幅方向に大きく広がる密着助走部を有する薄肉
の外装材を設ける。その作用は、発熱素子の周囲
を熱融着層を介して密封被覆されてなる部分は小
型化されたことによつてスパンが小さくなり、単
独で被加熱面に密着させるには相当の押圧が必要
であるが、接着助走部を含む、全体では、可撓性
部分が案内板となつて、比較的弱い力で密着させ
ることができる。また、付加メリツトとして、こ
の接着助走部は熱拡散に大きく寄与し、被加熱物
との密着部分の熱抵抗を低下させることができる
し、接着剤等で固定する場合の密着度と強度を大
幅に向上することもできる。これらの相乗作用に
よつて、熱抵抗が低く、しかも安定した熱の伝達
経路が形成され、その結果、高出力を安定に得る
ことができる。
Effect The effect of this technical means is as follows.
In other words, a PTC heating element that applies voltage in the thickness direction of a thin PTC resistor has a large output per unit area, and the heating element itself can be made smaller, but the amount of heat it handles is extremely large, and it is not stable enough to compensate for that amount of heat. It is necessary to form a transmission path for the heat generated.
In order to form the transmission passage, the periphery of the heating element is hermetically covered with a heat-sealing layer, and a thin exterior material having a close contact run-up portion that widely extends in the width direction from the covering portion is provided. The effect is that the part that is hermetically sealed around the heating element via a heat-adhesive layer has been miniaturized, so the span has become smaller, and it takes a considerable amount of pressure to bring it into close contact with the heated surface by itself. Although necessary, the flexible portion as a whole, including the adhesion run-up portion, serves as a guide plate and can be brought into close contact with a relatively weak force. In addition, as an additional benefit, this adhesion run-up part greatly contributes to heat diffusion and can reduce the thermal resistance of the part that is in close contact with the heated object, and it can greatly improve the adhesion and strength when fixing with adhesive etc. It can also be improved. These synergistic effects form a stable heat transfer path with low thermal resistance, and as a result, high output can be stably obtained.

実施例 以下実施例を添付図面にもとづいて説明する。Example Embodiments will be described below based on the accompanying drawings.

(実施例1) 第1図は本発明を捕捉的に説明するものであ
り、第1図において、5は厚さ0.3mmで幅5mmの
PTC抵抗体、6および7はPTC抵抗体5の両面
に密着するように構成された一対の銅板の電極で
ある。8はPTC抵抗体5と電極6および7から
成るPTC発熱素子の周囲を外装する軟質塩化ビ
ニル外装材であり、9は外装材8に一体に接着さ
れた軟質塩化ビニルシートから成る幅15mmの平面
部材である。9の平面部材は外装材8に対し、曲
げ剛性を大きく設定しているので、平面部材9の
変形形状を外装材8に反映することができる。一
方、平面部材9の幅寸法は15mmに設定しているの
で、一定のたわみを与えるのに必要な荷重は小さ
くて済み、平面部材9自体の歪を矯正しつつ、わ
ずかな曲率を伴う略平面状被加熱物の面に容易に
沿わせることができる。その結果、外装材8の部
分も外装材9に追従して変形するので、被加熱物
の面に密着することになる。また、平面部材9は
熱拡散板としても機能し、熱の伝達が不安定にな
りがちな被加熱物との接触面の熱抵抗を低減す
る。さらに、接着剤等で固定する場合に、接着強
度だけでなく、外装材8のスプリングバツクによ
る応力に対して粘着力が勝り、空気層の発生や浮
きを防止する機能もある。これらの機能の相乗作
用によつて、PTC抵抗体5から被加熱物へ至る
熱伝達経路の熱抵抗を大幅に低減できるし、取付
状態等による変動要素を排除して、安定な熱的結
合状態を得ることができる。
(Example 1) Fig. 1 is a comprehensive explanation of the present invention. In Fig. 1, 5 has a thickness of 0.3 mm and a width of 5 mm.
The PTC resistors 6 and 7 are a pair of copper plate electrodes configured to be in close contact with both surfaces of the PTC resistor 5. Reference numeral 8 denotes a soft vinyl chloride sheathing material surrounding the PTC heating element consisting of the PTC resistor 5 and electrodes 6 and 7, and numeral 9 denotes a 15 mm wide flat surface made of a soft vinyl chloride sheet integrally bonded to the sheathing material 8. It is a member. Since the planar member 9 has a larger bending rigidity than the exterior material 8, the deformed shape of the planar member 9 can be reflected on the exterior material 8. On the other hand, since the width dimension of the planar member 9 is set to 15 mm, the load required to give a certain amount of deflection is small, and while the distortion of the planar member 9 itself is corrected, the flat member 9 is substantially flat with a slight curvature. It can be easily placed along the surface of the object to be heated. As a result, the portion of the sheathing material 8 also deforms following the sheathing material 9, so that it comes into close contact with the surface of the object to be heated. The flat member 9 also functions as a heat diffusion plate, reducing the thermal resistance of the contact surface with the object to be heated, which tends to cause unstable heat transfer. Furthermore, when fixing with an adhesive or the like, not only the adhesive strength but also the adhesive strength overcomes the stress caused by the spring back of the exterior material 8, and has the function of preventing air spaces from forming and floating. Due to the synergistic effect of these functions, the thermal resistance of the heat transfer path from the PTC resistor 5 to the heated object can be significantly reduced, and fluctuations due to installation conditions etc. are eliminated, resulting in a stable thermal connection state. can be obtained.

第2図も本発明を補足的に説明するものであ
り、第2図において、PTC抵抗体5および電極
6,7から成る発熱素子部分は第1図と同一であ
り、10は第1図における外装材8と平面部材9
の機能を兼ね備える構成の平面部材で、半硬質塩
化ビニルを押出成型加工したものである。平面部
材10は、可撓性を確保しつつ、その端面での変
形状態を発熱素子部分を伝えるためにテーパ断面
形状としている。この構成は構造がシンプルで加
工性が優れている点に特長がある。
FIG. 2 also provides supplementary explanation of the present invention. In FIG. 2, the heating element portion consisting of the PTC resistor 5 and electrodes 6 and 7 is the same as in FIG. 1, and 10 is the same as in FIG. Exterior material 8 and planar member 9
It is a planar member that has the following functions and is made by extrusion molding of semi-rigid vinyl chloride. The planar member 10 has a tapered cross-sectional shape in order to ensure flexibility and to transmit the deformation state at the end face to the heating element portion. This configuration is characterized by its simple structure and excellent workability.

第3図も本発明を補足的に説明するものであ
り、第3図において、PTC抵抗体5、電極6お
よび7部分は第1図と同一であり、11は樹脂フ
イルムから成る外装材で、PTC抵抗体5の側面
と上面を覆うように加工されている。12は樹脂
フイルムから成る平面部材であり、樹脂フイルム
11と12はその接合部分において熱融着シール
を処すことにより、一体に構成されている。ま
た、樹脂フイルム12の厚さは樹脂フイルム11
に対して1.5とし、曲げ剛性比3以上で平面度を
維持している。この構成は樹脂フイルムを用いる
ことにより、押出加工では容易でない薄肉加工を
可能とするものである。なお、平面部材12は樹
脂フイルムだけでなく、マイカ等の高剛性無機材
料を用いることもできる。
FIG. 3 also provides a supplementary explanation of the present invention. In FIG. 3, the PTC resistor 5, electrodes 6 and 7 are the same as in FIG. 1, and 11 is an exterior material made of resin film. It is processed to cover the side and top surfaces of the PTC resistor 5. Reference numeral 12 denotes a flat member made of a resin film, and the resin films 11 and 12 are integrally formed by heat-sealing the joining portion thereof. Further, the thickness of the resin film 12 is the same as that of the resin film 11.
The bending stiffness ratio is set to 1.5, and flatness is maintained with a bending stiffness ratio of 3 or more. By using a resin film, this structure enables thin wall processing, which is not easy with extrusion processing. Note that the planar member 12 can be made of not only a resin film but also a highly rigid inorganic material such as mica.

第4図も本発明を実施例を説明するものであ
り、第4図において、5のPTC抵抗体、6およ
び7の電極部分は第1図と同一であり、10は電
極6ないし7を介して密封被覆するとともに、被
覆部から幅方向に大きく広がる接着助走部を有す
る薄肉の外装材であり、下面は平面部材をなして
おり、第2図と同様の構成である。13は溶融温
度の低い樹脂から成る熱融着層で、電極6ないし
7と平面部材10との間を充填している。熱融着
層13の効果は、加工時のクツシヨン材であり、
平面部材10を平面に仕上げることを優先して
も、他の部分に加工歪が残らないようできる。ま
た、PTC抵抗体5と平面部材10との間の空気
層をなくし、熱抵抗を低減する効果がある。さら
に、充填するだけでなく、接着性を付与すること
により、発熱体を完全に一体化することもでき
る。
FIG. 4 also explains an embodiment of the present invention. In FIG. 4, the PTC resistor 5 and the electrode portions 6 and 7 are the same as those in FIG. It is a thin-walled exterior material that is sealed and covered and has an adhesion run-up part that widens widely from the covering part in the width direction, and the lower surface is a flat member, and has the same structure as shown in FIG. 2. A heat-sealing layer 13 made of a resin with a low melting temperature is filled between the electrodes 6 and 7 and the flat member 10. The effect of the thermal adhesive layer 13 is that it acts as a cushion material during processing;
Even if priority is given to finishing the flat member 10 into a flat surface, processing distortion can be prevented from remaining in other parts. Furthermore, an air layer between the PTC resistor 5 and the planar member 10 is eliminated, which has the effect of reducing thermal resistance. Furthermore, in addition to filling, the heating element can be completely integrated by providing adhesive properties.

実施例 2 第5図において、5のPTC抵抗体と6および
7の電極は第1図と同一である。14は樹脂フイ
ルム外装材15に貼り合わされた熱融着層で、
PTC抵抗体5の側面と上面を覆うように加工さ
れている。16は樹脂フイルム平面部材17に貼
り合わされた熱融着層で、外装材15と平面部材
17とは、熱融着層14および16を介して一体
に構成されている。平面部材17は外装材15に
対して、肉厚で2倍、曲げ剛性で8倍として平面
形状を保つている。この構成の特長は、押出加工
では困難であつた薄肉の外装材15と平面部材1
7の加工を可能とすると共に、その加工と同時
に、熱融着層14および16によつて、抵抗体5
と外装材15と平面部材17とを一体化できる点
にある。
Example 2 In FIG. 5, the PTC resistor 5 and electrodes 6 and 7 are the same as in FIG. 14 is a heat-sealing layer bonded to the resin film exterior material 15;
It is processed to cover the side and top surfaces of the PTC resistor 5. Reference numeral 16 denotes a heat sealing layer bonded to the resin film flat member 17, and the exterior material 15 and the plane member 17 are integrally constructed via the heat sealing layers 14 and 16. The planar member 17 maintains a planar shape with twice the wall thickness and eight times the bending rigidity of the exterior material 15. The features of this configuration are the thin exterior material 15 and the flat member 1, which were difficult to extrude.
7, and at the same time, the heat-sealing layers 14 and 16 allow the resistor 5 to be processed.
The advantage is that the exterior material 15 and the planar member 17 can be integrated.

発明の効果 以上述べてきたように、本発明によれば、
PTC発熱体を被加熱物に装着する場合の熱の伝
達特性を大幅に改善するとともに、その変動要素
を極力低減することを可能とするものである。薄
肉PTC抵抗体の厚さ方向に電圧を印加する方式
のPTC発熱体自体は高出力に耐え得る構成であ
るが、その出力を有効に安定に取り出すために、
本発明は極めて有効であり、欠くことのできない
ものである。
Effects of the Invention As described above, according to the present invention,
This makes it possible to significantly improve the heat transfer characteristics when a PTC heating element is attached to an object to be heated, and to reduce the variable factors as much as possible. The PTC heating element itself, which applies voltage in the thickness direction of the thin PTC resistor, has a structure that can withstand high output, but in order to extract the output effectively and stably,
The present invention is extremely effective and indispensable.

この結果、下記に示す効果を奏するものであ
る。
As a result, the following effects are achieved.

(1) 被加熱物に接着した時の密着性が飛躍的に安
定するために熱の伝達特性が改善され、高出力
を安定に取り出すことができる。
(1) The adhesion when bonded to the object to be heated is dramatically stabilized, which improves heat transfer characteristics and allows stable output of high output.

(2) 被加熱物に接着した時の発熱素子の発熱と放
熱の不平衡箇所が発生しないために抵抗値の不
連続点が存在せず、極めて長寿命、高信頼性の
正抵抗温度係数発熱体を形成できる。
(2) There is no unbalanced point between the heat generation and heat radiation of the heating element when it is attached to the object to be heated, so there are no discontinuous points in the resistance value, resulting in extremely long life and highly reliable positive resistance temperature coefficient heat generation. Can form a body.

(3) 発熱素子の可撓性は小さいが、余白部分は十
分な大きさと可撓性を付与されているために装
着面の多少の凹凸にも柔軟に対応できるので接
着加工性が良好である。実装時においてもはる
かに高出力で、可撓性と加工性に優れたPTC
発熱体を得ることができる。
(3) Although the flexibility of the heat generating element is small, the blank area is sufficiently large and flexible so that it can flexibly respond to slight irregularities on the mounting surface, resulting in good adhesion processability. . PTC has much higher output even when mounted, and has excellent flexibility and workability.
A heating element can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のPTC発熱体
を補足説明する部分斜視図、第2図は本発明の第
1の実施例のPTC発熱体を補足説明する部分斜
視図、第3図は本発明の第1の実施例のPTC発
熱体を補足説明する部分斜視図、第4図は本発明
の第1の実施例のPTC発熱体の部分斜視図、第
5図は本発明の第2の実施例のPTC発熱体の部
分斜視図、第6図は従来のPTC発熱体の部分斜
視図である。 5……PTC抵抗体、6,7……電極、8,1
1,15……外装材、9,10,12,17……
平面部材、3,14,16……熱融着層。
FIG. 1 is a partial perspective view supplementary explanation of the PTC heating element of the first embodiment of the present invention, FIG. 2 is a partial perspective view supplementary explanation of the PTC heating element of the first embodiment of the present invention, and FIG. The figure is a partial perspective view for supplementary explanation of the PTC heating element according to the first embodiment of the present invention, FIG. 4 is a partial perspective view of the PTC heating element according to the first embodiment of the present invention, and FIG. FIG. 6 is a partial perspective view of a PTC heating element of the second embodiment, and FIG. 6 is a partial perspective view of a conventional PTC heating element. 5...PTC resistor, 6,7...electrode, 8,1
1, 15... Exterior material, 9, 10, 12, 17...
Planar member, 3, 14, 16...thermal adhesive layer.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性高分子中に導電性微粉末を分散させた
組成物を主成分とする厚さが1mm以下の薄肉帯状
の正抵抗温度係数抵抗体と、前記抵抗体の厚さ方
向に電圧を印加すべく設けられた一対の電極体か
らなる発熱素子と、前記発熱素子の周囲を熱融着
層を介して密封被覆するとともに被覆部から幅方
向に大きく広がる接着助走部を有する薄肉の外装
材よりなり、前記外装材の伝熱面側を平面に沿う
形状、他方を発熱素子外表面に沿う形状になるよ
うに成形するとともに、前記外装材の接着助走部
が前記発熱素子中央部に比較して可撓性をはるか
に大にしてなる正抵抗温度係数発熱体。
1. A thin band-shaped positive resistance temperature coefficient resistor with a thickness of 1 mm or less whose main component is a composition in which conductive fine powder is dispersed in a crystalline polymer, and a voltage is applied in the thickness direction of the resistor. A thin-walled exterior material having a heat generating element consisting of a pair of electrode bodies provided to protect the heat generating element, and an adhesive run-up part that seals and covers the circumference of the heat generating element through a heat-adhesive layer and widely spreads in the width direction from the covering part. The heat transfer surface side of the exterior material is shaped so that it follows a plane, and the other side is shaped so that it follows the outer surface of the heat generating element, and the adhesion run-up part of the exterior material is formed so that it is smaller than the central part of the heat generating element. A positive resistance temperature coefficient heating element with much greater flexibility.
JP26664784A 1984-12-18 1984-12-18 Positive resistance temperature coefficient heat generating body Granted JPS61143981A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP26664784A JPS61143981A (en) 1984-12-18 1984-12-18 Positive resistance temperature coefficient heat generating body
EP85116105A EP0187320B1 (en) 1984-12-18 1985-12-17 Self-regulating heating article having electrodes directly connected to a ptc layer
US06/809,966 US4783587A (en) 1984-12-18 1985-12-17 Self-regulating heating article having electrodes directly connected to a PTC layer
DE8585116105T DE3583932D1 (en) 1984-12-18 1985-12-17 SELF-REGULATING HEATING ITEM WITH ELECTRODES THAT ARE DIRECTLY CONNECTED TO A PTC LAYER.
CA000497966A CA1249323A (en) 1984-12-18 1985-12-18 Self-regulating heating article having electrodes directly connected to a ptc layer
US07/190,562 US4954696A (en) 1984-12-18 1988-05-05 Self-regulating heating article having electrodes directly connected to a PTC layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26664784A JPS61143981A (en) 1984-12-18 1984-12-18 Positive resistance temperature coefficient heat generating body

Publications (2)

Publication Number Publication Date
JPS61143981A JPS61143981A (en) 1986-07-01
JPH0533509B2 true JPH0533509B2 (en) 1993-05-19

Family

ID=17433732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26664784A Granted JPS61143981A (en) 1984-12-18 1984-12-18 Positive resistance temperature coefficient heat generating body

Country Status (1)

Country Link
JP (1) JPS61143981A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545438B2 (en) * 2014-06-05 2019-07-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Heating device and semiconductor manufacturing apparatus using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518763B2 (en) * 1975-08-16 1980-05-21
JPS56143693A (en) * 1980-04-09 1981-11-09 Daikin Ind Ltd Method of manufacturing heating sheet
JPS59180985A (en) * 1983-03-25 1984-10-15 シ−メンス,アクチエンゲゼルシヤフト Strip flexible heater and method of producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969637U (en) * 1972-09-29 1974-06-18
JPS49126935U (en) * 1973-02-28 1974-10-30
JPS5518763U (en) * 1978-07-25 1980-02-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518763B2 (en) * 1975-08-16 1980-05-21
JPS56143693A (en) * 1980-04-09 1981-11-09 Daikin Ind Ltd Method of manufacturing heating sheet
JPS59180985A (en) * 1983-03-25 1984-10-15 シ−メンス,アクチエンゲゼルシヤフト Strip flexible heater and method of producing same

Also Published As

Publication number Publication date
JPS61143981A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US4783587A (en) Self-regulating heating article having electrodes directly connected to a PTC layer
US20110220638A1 (en) Finned ceramic heater
JP2000082603A (en) Chip-type thermistor and its manufacture
GB2076270A (en) Electrical air-heating device
US4425497A (en) PTC Heater assembly
JP5395845B2 (en) Pouch cell battery device and corresponding manufacturing method and method of use
JPH0533509B2 (en)
US4547659A (en) PTC Heater assembly
JP3018580B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH07153554A (en) Heater unit
JPH0612689B2 (en) Positive resistance temperature coefficient heating element
JP2000040579A (en) Sheet heating element
JPH039282Y2 (en)
JPS61284082A (en) Positive resistance temperature coefficient heat generating body
JP3222324U (en) Insulated heater and heater device
GB2218266A (en) Electrical power resistor
JPH0679499B2 (en) Positive resistance temperature coefficient heating element
TWI411346B (en) Finned ceramic heater
JPH02135681A (en) Positive temperature coefficient resistor heating element
JPS6242459Y2 (en)
JPH0465507B2 (en)
CN207039926U (en) A kind of heater element and electric heater
JPS61284083A (en) Positive resistance temperature coefficient heat generating body
JP3140849B2 (en) Thin fixing heater
JPS6333352Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term