JPH046787A - Planar heater - Google Patents
Planar heaterInfo
- Publication number
- JPH046787A JPH046787A JP10830390A JP10830390A JPH046787A JP H046787 A JPH046787 A JP H046787A JP 10830390 A JP10830390 A JP 10830390A JP 10830390 A JP10830390 A JP 10830390A JP H046787 A JPH046787 A JP H046787A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- planar
- electrode
- metal layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 117
- 239000002184 metal Substances 0.000 claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 229920000642 polymer Polymers 0.000 abstract description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011889 copper foil Substances 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000013021 overheating Methods 0.000 description 9
- 239000011810 insulating material Substances 0.000 description 7
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 238000005304 joining Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、自己温度調節機能を有する面状ヒータに関
する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a planar heater having a self-temperature regulating function.
「従来の技術」
従来の面状ヒータとしては、ガラス布やポリエステルフ
ィルムなどの絶縁基材上にカーボンブラック/ポリマー
系の導電性ペーストを塗布した面状発熱体に、銅テープ
や銀の導電塗料などからなる金属電極を互いに対峙する
ように設けたものが知られている。しかし、このような
面状ヒータは、常温と加熱された高温度での電気抵抗に
変化がない。即ちZ T C(Z ero T emp
erature Coefficient)である。従
って面状ヒータの上に断熱性の高い物質が乗ると、蓄熱
によって断熱部分が異常昇温しでしまうおそれがあった
。そのため、このような面状ヒータでは、発熱温度の制
御のために、温度コントローラ、過昇温防止器、温度ヒ
ユーズなどが別途必要であり、取扱いが面倒で高価とな
る等の不都合があった。``Conventional technology'' Conventional planar heaters use copper tape or silver conductive paint on a planar heating element made by applying carbon black/polymer-based conductive paste on an insulating base material such as glass cloth or polyester film. It is known that metal electrodes made of such as metal electrodes are provided so as to face each other. However, in such a planar heater, there is no change in electrical resistance between room temperature and high temperature. That is, Z T C (Z ero T emp
Erature Coefficient). Therefore, if a highly insulating material is placed on top of the planar heater, there is a risk that the temperature of the insulated portion may rise abnormally due to heat accumulation. Therefore, such a planar heater requires a separate temperature controller, overtemperature preventer, temperature fuse, etc. to control the temperature of the heat generated, which has the disadvantage of being cumbersome and expensive to handle.
そこで、近時、面状発熱体と電極の間に正抵抗温度係数
特性(PTC)を示すポリマー組成物層(以下、単にP
TCポリマー層という。)を介在させた面状ヒータが考
えられている。ここで、正抵抗温度係数特性とは、温度
の上昇とともにその抵抗値が増加する性質を称し、PT
C特性とも言う。Therefore, recently, a polymer composition layer (hereinafter simply P
This is called the TC polymer layer. ) is being considered. Here, the positive resistance temperature coefficient characteristic refers to the property that the resistance value increases as the temperature rises, and the PT
Also called C characteristic.
この面状ヒータでは、PTCポリマー層の存在によって
、PTCポリマー層及び面状発熱体の温度が、断熱材に
よる蓄熱等によって上昇した時、面状発熱体の温度が所
定温度以上になるとPTCポリマー層の電気抵抗の増大
により、面状発熱体に流れる電流を制御して発熱量を減
少せしめ、自己温度制御機能を有する面状ヒータとなる
。In this planar heater, due to the presence of the PTC polymer layer, when the temperature of the PTC polymer layer and the planar heating element increases due to heat storage by the heat insulating material, etc., when the temperature of the planar heating element exceeds a predetermined temperature, the PTC polymer layer By increasing the electrical resistance, the current flowing through the sheet heating element is controlled to reduce the amount of heat generated, resulting in a sheet heater having a self-temperature control function.
また、PTCポリマー層を有する電極体を面状発熱体に
導電性よく、かつ簡略化した結合をさせるために、PT
Cポリマー層の両面に金属層を一体に形成し、そのうち
の一方の金属層を面状発熱体に接するように結合させ、
その結合に際しても縫着等種々の結合方法か利用できる
ようにした面状ヒータが提案されている。In addition, in order to bond an electrode body having a PTC polymer layer to a planar heating element with good conductivity and in a simplified manner, a PTC polymer layer was used.
Metal layers are integrally formed on both sides of the C polymer layer, and one of the metal layers is bonded so as to be in contact with the sheet heating element,
Planar heaters have been proposed that can be joined using various joining methods such as sewing.
第18図は、このような面状ヒータの一例を示すもので
あって、図中符号lは面状発熱体、2はPTCポリマー
層、3は金属層である。FIG. 18 shows an example of such a planar heater, in which reference numeral 1 is a planar heating element, 2 is a PTC polymer layer, and 3 is a metal layer.
更に、面状ヒータの少なくとも一面に熱伝導性のよい層
(均熱層)を被覆した構成とすることによって、発熱体
本体の各部の温度のバラツキを小さくし、PTCポリマ
ー層による温度センシングをより確実にすることができ
る。Furthermore, by configuring at least one surface of the sheet heater to be coated with a layer with good thermal conductivity (heat equalizing layer), variations in the temperature of each part of the heating element body are reduced, and temperature sensing by the PTC polymer layer is further improved. You can be sure.
「発明が解決しようとする課題」
しかしながら、上述のように構成された面状ヒータにあ
っては、第19図および第20図に示すように面状ヒー
タ上に断熱性物質4等が置かれることによって覆われた
電極部分(第19図中、aで示す部分)と断熱性物質等
によって覆われない電極部分(第19図中、bで示す部
分)が生じた場合、以下のような問題が生じる。"Problems to be Solved by the Invention" However, in the planar heater configured as described above, a heat insulating material 4 etc. is placed on the planar heater as shown in FIGS. 19 and 20. If there is an electrode part covered by a heat insulating material (the part indicated by a in Fig. 19) and an electrode part not covered by a heat insulating material (the part indicated by b in Fig. 19), the following problems may occur. occurs.
すなわち、
■断熱されたa部分は局部過熱により温度か高くなって
くる。そのためPTCポリマー層の抵抗も大きくなり、
C部分へ流れる電流が制御されるようになる。しかし、
PTCポリマー層と面状発熱体間に連続な金属層がある
と、電極の非局部過熱部分すから電極の局部過熱部分a
へ電流がその金属層を通って流入することになり、局部
過熱された面状発熱体のC部分の電流制御が出来なくな
る。That is, (1) The temperature of the insulated part a becomes high due to local overheating. Therefore, the resistance of the PTC polymer layer also increases,
The current flowing to portion C is now controlled. but,
When there is a continuous metal layer between the PTC polymer layer and the planar heating element, the non-locally overheated portion of the electrode changes to the local overheated portion of the electrode a.
Current will flow into the metal layer through the metal layer, making it impossible to control the current in the C portion of the sheet heating element, which is locally overheated.
■またPTCポリマー層と面状発熱体間の金属層に、1
以上のスリットを形成し、電極の非局部過熱部分すから
電極の局部過熱部分aへ電流が流入するのを防止した場
合でも、断熱性物質4で覆われて温度が高くなると同時
に抵抗が高くなったa部分には電流が流れ難くなってい
るので、局部過熱された面状発熱体の C部分から電極
のbs分に面状発熱体を電流が斜めに流れる場合がある
。従って前記■と同様に、C部分の一部は電流制御(温
度制御)が出来なくなる。■In addition, 1 is added to the metal layer between the PTC polymer layer and the planar heating element.
Even if the above slits are formed to prevent current from flowing from the non-locally overheated part of the electrode to the locally overheated part a of the electrode, the resistance will increase at the same time as the temperature rises because the slit is covered with the insulating material 4. Since it is difficult for current to flow through the a portion of the electrode, current may flow diagonally through the sheet heating element from the locally overheated portion C of the sheet heating element to the bs portion of the electrode. Therefore, as in the case (2) above, current control (temperature control) cannot be performed in part of the C portion.
■またPTCポリマー層と面状発熱体間の金属層に1以
上のスリットを形成するとともに、面状発熱体に1以上
のスリット(非導通部)を形成し、C部分からb部分に
面状発熱体を電流が斜めに流れるのを防止した場合でも
、金属層のスリットと面状発熱体の非導通部の位置がず
れていると、前記■および■の複合作用によって断熱性
物質4下の昇温部分の電流か制御され難(なり、目標と
する制御温度以上に昇温する部分が発生する可能性があ
る。■In addition, one or more slits are formed in the metal layer between the PTC polymer layer and the planar heating element, and one or more slits (non-conducting part) are formed in the planar heating element, and the planar Even if current is prevented from flowing diagonally through the heating element, if the slits in the metal layer and the non-conducting part of the planar heating element are misaligned, the combined effects of (1) and (2) above will cause damage to the area under the heat insulating material 4. It is difficult to control the current in the heated portion, and there is a possibility that the temperature may rise above the target control temperature.
■面状発熱体の非導通部と、金属層のスリットを一致さ
せるのは、面状ヒータの製造上難しいものと考えられる
。そこで、面状発熱体の非導通部と、金属層のスリット
が必ず一致し、面状発熱体の断熱による過昇温が起きた
箇所だけを制御するようにする必要かある。(2) It is considered difficult to match the non-conducting portion of the sheet heating element with the slit in the metal layer in terms of manufacturing the sheet heater. Therefore, it is necessary to ensure that the non-conducting portion of the sheet heating element and the slit in the metal layer coincide with each other, and to control only the portion where excessive temperature rise has occurred due to insulation of the sheet heating element.
「課題を解決するための手段」
本発明は、面状発熱体と、この面状発熱体に互いに対峙
するように設けられた少なくとも一対の電極を有し、か
つその内の少なくとも1個の電極が正抵抗温度係数特性
層(以下、正温度係数特性層という)の両面に金属層を
一体に形成した電極からなる面状ヒータにおいて、正温
度係数特性層と面状発熱体との間に介在される金属層に
、1以上のスリットを形成して面状ヒータを構成し、こ
れを前記課題を解決するための手段とした。"Means for Solving the Problems" The present invention has a planar heating element and at least one pair of electrodes provided on the planar heating element so as to face each other, and at least one of the electrodes is interposed between the positive temperature coefficient layer and the sheet heating element in a planar heater consisting of an electrode in which metal layers are integrally formed on both sides of a positive temperature coefficient layer (hereinafter referred to as the positive temperature coefficient layer). One or more slits were formed in the metal layer to form a planar heater, and this was used as a means for solving the above problem.
また前記面状発熱体に、この面状発熱体に流れる電流の
方向に1以上の非導通部を形成することが望ましい。Further, it is desirable that the sheet heating element is provided with one or more non-conducting portions in the direction of current flowing through the sheet heating element.
さらに、前記面状発熱体の非導通部と前記金属層のスリ
ットの位置を一致させて構成するのが望ましい。Further, it is preferable that the non-conducting portion of the planar heating element and the slit of the metal layer be aligned with each other.
さらにまた、前記非導通部の幅に対し、前記スリットの
、始端から次のスリットの始端までの間隔を小さく設定
して構成するのが望ましい。Furthermore, it is desirable that the distance from the starting end of the slit to the starting end of the next slit be set small relative to the width of the non-conducting portion.
「作用 」
前記正温度係数特性層と面状発熱体間の金属層にスリッ
トを形成したことにより、面状ヒータの一部が断熱され
、断熱部分の温度が上昇した際に、電極の非局部過熱部
分から電極の局部過熱部分へ電流が流れるのを防止する
ことができる。"Function" By forming slits in the metal layer between the positive temperature coefficient characteristic layer and the planar heating element, a part of the planar heater is insulated, and when the temperature of the insulated part rises, the non-local part of the electrode Current can be prevented from flowing from the overheated portion to the locally overheated portion of the electrode.
また正温度係数特性層と面状発熱体間の金属層にスリッ
トを形成するとともに、面状発熱体に、流れる電流の方
向に非導通部を形成したことにより、面状ヒータの一部
が1鴫され、断熱部分の温度が上昇した際に、面状発熱
体の局部過熱部分から電極の非局部過熱部分へ電流が流
れるのを防止することができる。In addition, by forming a slit in the metal layer between the positive temperature coefficient characteristic layer and the planar heating element, and forming a non-conducting part in the direction of the current flowing in the planar heating element, a part of the planar heater becomes When the temperature of the heat-insulating portion increases due to heating, current can be prevented from flowing from the locally overheated portion of the planar heating element to the non-locally overheated portion of the electrode.
さらに、面状発熱体の非導通部と、金属層のスリットの
位置を一致させたことにより、面状ヒータの一部が断熱
され、断熱部分の温度が上昇した際に、電極の非局部過
熱部分から電極の局部過熱部分への電流の流れ及び面状
発熱体の局部過熱部分から電極の非局部過熱部分への電
流の流れを完全に防止することができ、電極の局部過熱
部分だけがPTC特性による電流制御状態となって、そ
れに導通している面状発熱体の部分の電流制御がなされ
るとともに、他の局部過熱されていない電極に導通して
いる面状発熱体の部分は通常の発熱状態が維持される。Furthermore, by aligning the non-conducting part of the sheet heating element with the slit in the metal layer, a part of the sheet heater is insulated, and when the temperature of the insulated part rises, non-local overheating of the electrode occurs. It is possible to completely prevent the flow of current from the part to the locally overheated part of the electrode and the flow of current from the locally overheated part of the planar heating element to the non-locally overheated part of the electrode, and only the locally overheated part of the electrode is exposed to PTC. The current is controlled according to the characteristics, and the current is controlled in the part of the sheet heating element that conducts to it, and the part of the sheet heating element that conducts to other electrodes that are not locally overheated becomes normal. The fever state is maintained.
さらにまた、面状発熱体の非導通部の幅に対し、金属層
のスリットの、始端から次のスリットの始端までの間隔
を小さく設定したことにより、面状発熱体に電極を接合
する際、面状発熱体の隙間の位置と電極のスリットの位
置とを必ず一致させることができる。Furthermore, by setting the distance from the starting end of the slit in the metal layer to the starting end of the next slit to be smaller than the width of the non-conducting part of the planar heating element, when joining the electrode to the planar heating element, The position of the gap in the planar heating element and the position of the slit in the electrode can always be made to coincide.
「実施例」
第1図は、この発明の面状ヒータの第1の例を示すもの
で、図中符号11は面状発熱体である。Embodiment FIG. 1 shows a first example of a planar heater of the present invention, and reference numeral 11 in the figure is a planar heating element.
この面状発熱体は、ポリエステルフィルムなどの樹脂フ
ィルムやガラス布などの絶縁性基材の表面にカーボンブ
ラック/ポリマー系の導電性ペーストを塗布あるいは含
浸したものや絶縁性基材の表面にニクロム線などの金属
抵抗線を均等に這わせて設け、この上に絶縁性被覆を設
けたものなどが用いられる。This sheet heating element is made by coating or impregnating carbon black/polymer-based conductive paste on the surface of an insulating base material such as a resin film such as polyester film or glass cloth, or by coating or impregnating the surface of an insulating base material with nichrome wire. A wire with a metal resistance wire, such as a metal resistance wire, running evenly across the wire and an insulating coating on top of the wire is used.
この面状発熱体11の両側縁部には、帯状の電極12.
12が固着されている。この電極12は、PTCポリマ
ー組成物からなる帯状のPTCポリマー層(正抵抗温度
係数特性層)13の上下両面に、銅箔などの金属薄片か
らなる金属層14.15を設けた構成になっている。こ
れら金属層14.15の内、PTCポリマー層13と面
状発熱体11との間に介在される金属層(以下、下側の
金属層という)15には、電極14の短手方向に沿って
複数のスリット16 ・が形成されている。Band-shaped electrodes 12.
12 is fixed. This electrode 12 has a configuration in which metal layers 14 and 15 made of metal flakes such as copper foil are provided on both upper and lower surfaces of a band-shaped PTC polymer layer (positive resistance temperature coefficient characteristic layer) 13 made of a PTC polymer composition. There is. Among these metal layers 14 and 15, a metal layer 15 (hereinafter referred to as a lower metal layer) interposed between the PTC polymer layer 13 and the planar heating element 11 has a layer along the width direction of the electrode 14. A plurality of slits 16 are formed.
これらのスリット16・・は、下側の金属層15におけ
る非導通部分として機能し、下側の金属層15を複数の
導通部分に区画するためのものである。These slits 16 function as non-conducting portions in the lower metal layer 15 and are for dividing the lower metal layer 15 into a plurality of conductive portions.
これらのスリット16は、隣接する導通部分か接触して
電気的に導通しない程度の間隔があれば良く、通常は1
mm以上であれば十分である。またスリット16の形成
個数やそれらの間隔は特に限定されることなく、面状発
熱体11の寸法により適宜に調整される。These slits 16 only need to be spaced apart enough that adjacent conductive parts do not come in contact with each other and are electrically conductive, and usually 1
It is sufficient if it is at least mm. Further, the number of slits 16 formed and the interval between them are not particularly limited, and can be adjusted as appropriate depending on the dimensions of the planar heating element 11.
また前記PTCポリマー層13としては、PTC特性(
正抵抗温度係数特性)を有するポリマー組成物材料、例
えばポリオレフィン系ポリマーに適量のカーボンブラッ
クを添加し、成形したものなどが使用される。Furthermore, the PTC polymer layer 13 has PTC properties (
For example, a polymer composition material having a positive resistance temperature coefficient characteristic, such as a polyolefin polymer to which an appropriate amount of carbon black is added and molded, is used.
この面状ヒータにあっては、PTCポリマー層13と面
状発熱体11間の金115にスリット16・・・を形成
したので、面状ヒータの一部が断熱され、断熱部分の温
度が上昇し、局部過熱された電極部分がPTC特性によ
る電流制御状態となった際に、電極の非局部過熱部分(
第6図中符号■)から電極の局部過熱部分(同図中符号
■)へ電流が流れるのを防止することができ、面状発熱
体の局部過熱部分(同図中符号■)の電流制御(温度制
御)が可能となる。In this planar heater, slits 16 are formed in the gold 115 between the PTC polymer layer 13 and the planar heating element 11, so that a part of the planar heater is insulated and the temperature of the insulated part increases. However, when the locally overheated electrode part enters the current control state due to the PTC characteristic, the non-locally overheated part of the electrode (
It is possible to prevent current from flowing from the locally overheated portion of the electrode (symbol ■ in the same figure) to the locally overheated portion (symbol ■ in the same figure) of the planar heating element, and to control the current in the locally overheated portion (symbol ■ in the same figure) of the planar heating element. (temperature control) becomes possible.
第2図は、この発明の面状ヒータの第2の例を示すもの
で、前述の第1の例と異なるところは、2枚以上の複数
枚の面状発熱体片17を用いて面状発熱体18を構成し
た点である。この例では、2枚の面状発熱体片17.1
7を、隙間19を介して並列に配置して面状発熱体18
を構成している。FIG. 2 shows a second example of the planar heater of the present invention, which differs from the first example described above by using a plurality of planar heating element pieces 17 of two or more sheets. This is the configuration of the heating element 18. In this example, two planar heating element pieces 17.1
7 are arranged in parallel through a gap 19 to form a sheet heating element 18.
It consists of
この隙間19は、面状発熱体18における非導通部をな
すもので、これを形成することにより、面状発熱体片1
7.17が断続的に配設されることになり、これにより
面状発熱体18が区画されることになる。This gap 19 forms a non-conducting part in the sheet heating element 18, and by forming this gap 19, the sheet heating element piece 1
7.17 are disposed intermittently, thereby dividing the planar heating element 18.
この面状発熱体18の両側端部には、前述した帯状の電
極12.12が設けられている。また、この例では、電
極12.12の下側の金属層15に形成されたスリット
16・と、面状発熱体18に形成された隙間19との位
置をずらせた構成になっている。The above-mentioned band-shaped electrodes 12.12 are provided at both end portions of this planar heating element 18. Further, in this example, the slit 16 formed in the metal layer 15 below the electrode 12.12 and the gap 19 formed in the planar heating element 18 are shifted in position.
この面状ヒータにあっては、金属層15にスリブ)16
・・・を形成するとともに、面状発熱体I8に隙間19
を形成し、面状発熱体を複数の面状発熱体片17に区画
したので、面状ヒータの一部が断熱され、断熱部分の温
度が上昇し、局部過熱された電極部分がPTC特性によ
る電流制御状態となった際に、面状発熱体の局部過熱部
分(第9図中符号■)から電極の非局部過熱部分(同図
中符号■)へ電流が斜めに流れるのを防止することがで
き、面状発熱体の局部過熱部分の電流制御(温度制御)
を、前述の第1の例による面状ヒータよりも確実に行う
ことができる。In this planar heater, the metal layer 15 has a sleeve) 16
... and a gap 19 in the planar heating element I8.
Since the planar heating element is divided into a plurality of planar heating element pieces 17, a part of the planar heater is insulated, the temperature of the insulated part increases, and the locally overheated electrode part is heated due to the PTC characteristic. To prevent current from flowing diagonally from the locally overheated portion of the planar heating element (symbol ■ in Figure 9) to the non-locally overheated portion of the electrode (symbol ■ in the same figure) when the current is in the current control state. Current control (temperature control) of locally overheated parts of sheet heating elements is possible.
This can be performed more reliably than with the planar heater according to the first example described above.
第3図は、この発明の面状ヒータの第3の例を示すもの
で、前述の第2の例と異なるところは、面状発熱体18
の隙間19の位置を、金属層15に形成されたスリット
16・・・の1つに一致させて構成した点である。FIG. 3 shows a third example of the planar heater of the present invention, and the difference from the above-mentioned second example is that the planar heating element 18
The position of the gap 19 is made to coincide with one of the slits 16 formed in the metal layer 15.
この例では面状発熱体18の隙間19の幅と、金属層1
5のスリット16の幅を同一としたが、これらの幅は同
一でなくとも良い。また隙間19とスリット16の形成
個数は特に限定されず、面状発熱体に複数の隙間19を
形成し、少なくとも1つの隙間19と金属層15のスリ
ット16を一致させて構成することも可能である。In this example, the width of the gap 19 of the planar heating element 18 and the metal layer 1
Although the widths of the slits 16 of No. 5 are the same, these widths may not be the same. Further, the number of gaps 19 and slits 16 to be formed is not particularly limited, and it is also possible to form a plurality of gaps 19 in the planar heating element and make at least one gap 19 coincide with the slit 16 of the metal layer 15. be.
この面状ヒータにあっては、面状発熱体18の隙間19
の位置を、金属層15のスリット16・・・に一致させ
たので、面状ヒータの一部が断熱され、断熱部分の温度
が上昇し、局部過熱された電極部分がPTC特性による
電流制御状態となった時に、電極の非局部過熱部分(第
12図中符号■)から電極の局部過熱部分(同図中符号
■)への電流の流れ及び面状発熱体の局部過熱部分(同
図中符号■)から電極の非局部加熱部分(同図中符号■
)への電流の流れを完全に防止することができるので、
電極の局部過熱部分だけがPTC特性による電流制御状
態を起し、それに導通している面状発熱体の部分のみが
温度降下し、他の局部過熱されていない電極に導通され
ている面状発熱体の部分は通常の発熱状態が維持される
。In this planar heater, the gap 19 of the planar heating element 18 is
Since the position of is made to coincide with the slit 16 of the metal layer 15, a part of the sheet heater is insulated, the temperature of the insulated part rises, and the locally overheated electrode part is brought into a current control state due to the PTC characteristic. When , current flows from the non-locally overheated part of the electrode (symbol ■ in Figure 12) to the locally overheated part of the electrode (symbol ■ in the same figure), and the local overheated part of the sheet heating element (symbol ■ in the same figure). From the non-local heating part of the electrode (symbol ■) to the non-local heating part of the electrode (symbol ■)
) can completely prevent the flow of current to
Only the locally overheated part of the electrode causes a current control state due to the PTC characteristic, and only the part of the sheet heating element that is electrically connected to it experiences a temperature drop, resulting in sheet heating that is electrically connected to other electrodes that are not locally overheated. The body parts remain in their normal state of fever.
第4図および第5図は、この発明の第4の例を示すもの
で、前述の第3の例と異なるところは、面状発熱体18
に形成した隙間19の幅(第5図中、Xで示す)に対し
、電極12の下側の金属層I5に形成したスリット16
・・・の、スリット始端から次のスリット始端までの間
隔(第5図中、Yで示す)が小さくなるように設定して
構成した点である。FIGS. 4 and 5 show a fourth example of the present invention, and the difference from the third example described above is that the sheet heating element 18
The width of the slit 16 formed in the lower metal layer I5 of the electrode 12 is relative to the width of the gap 19 formed in
. . . is configured so that the distance from one slit starting end to the next slit starting end (indicated by Y in FIG. 5) is set to be small.
隙間19の幅Xと、スリット16の始端から次のスリッ
ト16の始端までの間隔Yとの双方の関係を X>Y
と設定することにより、面状発熱体18の両側縁部に電
極12.12を接合する際に、隙間19の位置に電極1
2のスリット16を必ず一致さけることができる。した
がって、面状ヒータの作製の際に、面状発熱体18の隙
間19と電極12のスリット16の位置合わ仕操作を簡
略化することができ、面状ヒータの製造を容易化するこ
とができる。The relationship between the width X of the gap 19 and the distance Y from the starting end of one slit 16 to the starting end of the next slit 16 is expressed as X>Y
By setting the electrodes 12 and 12 at the gap 19 when joining the electrodes 12 and 12 to both side edges of the planar heating element 18,
It is possible to ensure that the two slits 16 coincide. Therefore, when manufacturing a sheet heater, the alignment operation between the gap 19 of the sheet heating element 18 and the slit 16 of the electrode 12 can be simplified, and the sheet heater can be manufactured easily. .
なお、この発明での非導通部は、全く電気導電性を有し
ない部分のみを言うのではなく、若干の導電性を有して
いる高抵抗部であってもよく、面状発熱体自体の電気抵
抗の少なくとも10倍以上、好ましくは100倍以上の
電気抵抗を有するものであれば、前述した各側での隙間
19と同様の効果を得ることができる。Note that the non-conducting part in this invention does not refer only to a part that has no electrical conductivity at all, but may also be a high-resistance part that has some electrical conductivity, and may also be a high-resistance part that has some electrical conductivity. If it has an electrical resistance at least 10 times or more, preferably 100 times or more, the same effect as the gap 19 on each side described above can be obtained.
以下、具体例を示す。A specific example will be shown below.
(実験例1)
第6図および第7図に示した構造の面状ヒータを作製し
た。面状発熱体11としては、ポリエステルフィルムの
絶縁基村上に高導電性カーボン微粒子をポリエステル系
フェスに均一に分散した導電性ペーストを全面に塗布、
焼付してなるものを用いた。PTCポリマー層としては
、アイオノマー樹脂にアセチレンブラックを25重量%
と少量の老化防止剤を添加してなる樹脂組成物を押出成
形して厚さ0.3+nmのソートとしたものを用いた。(Experimental Example 1) A planar heater having the structure shown in FIGS. 6 and 7 was manufactured. As the planar heating element 11, a conductive paste in which highly conductive carbon fine particles are uniformly dispersed on a polyester face is applied to the entire surface of the insulating base layer of the polyester film.
I used one made by baking. For the PTC polymer layer, 25% by weight of acetylene black is added to the ionomer resin.
A resin composition prepared by adding a small amount of anti-aging agent was extrusion-molded to form a sort with a thickness of 0.3+ nm.
金属層14.15としては厚さ50μ−のスズメツキ銅
箔を用いた。面状発熱体11の寸法は100I×253
IIII11PTCポリマー層13および金属層14.
15の幅はいずれも12.5■Iとし、下側の金属層1
5のほぼ中央に輻1OIIII11のスリット16を1
つ形成した。As the metal layers 14 and 15, tin plated copper foil with a thickness of 50 μm was used. The dimensions of the sheet heating element 11 are 100I x 253
III11 PTC polymer layer 13 and metal layer 14.
The width of 15 is 12.5μI, and the lower metal layer 1
A slit 16 with a radius of 1OIII11 is placed approximately in the center of 5.
One was formed.
この面状ヒータを第6図に示すように厚さ50■のウレ
タンフオーム20上に乗せ、その画電極に交流50Hz
、100Vの電圧を印加し、面状発熱体を発熱させた。This planar heater is placed on a urethane foam 20 with a thickness of 50 cm as shown in FIG.
, a voltage of 100V was applied to cause the planar heating element to generate heat.
またこのときの室温は20℃であった。通電後15分経
過して面状発熱体の温度が定常状態になった後、第7図
に示すように面状ヒータの上面の一部に厚さ50+nm
のウレタンフオーム21を置き、この部分のみを局部断
熱して局部過熱の状態とした。Moreover, the room temperature at this time was 20°C. After the temperature of the planar heating element reaches a steady state after 15 minutes have elapsed after electricity is applied, a portion of the top surface of the planar heater is coated with a thickness of 50+ nm as shown in Fig. 7.
urethane foam 21 was placed, and only this portion was locally insulated to create a state of local overheating.
第6図に示す面状発熱体および電極の各位置■〜■での
温度変化を通電開始時点から測定した結果を第8図に示
した。FIG. 8 shows the results of measurements of temperature changes at each position ① to ① of the planar heating element and electrodes shown in FIG. 6 from the start of current application.
(実験例2)
第9図および第1θ図に示した構造の面状ヒータを作製
した。実験例!で用いたものと同一の材料で、寸法が4
5mmX 253mmの面状発熱体片を2枚並列に配置
し、それらの間に10mmの隙間19を形成して面状発
熱体18を作製した。PTCポリマー層13および金属
層14.15は実験例1と同一のものを用いた。また金
属層15には輻10III++の2つのスリットを、面
状発熱体18の隙間19と一致しないように隙間19の
両側部に配置した。(Experimental Example 2) A planar heater having the structure shown in FIG. 9 and FIG. 1θ was manufactured. Experimental example! The same material used in , with dimensions 4
A sheet heating element 18 was prepared by arranging two sheet heating element pieces measuring 5 mm x 253 mm in parallel and forming a gap 19 of 10 mm between them. The same PTC polymer layer 13 and metal layers 14 and 15 as in Experimental Example 1 were used. Further, two slits with a diameter of 10III++ are arranged in the metal layer 15 on both sides of the gap 19 so as not to coincide with the gap 19 of the planar heating element 18.
この面状ヒータを用いて、前述の実験例1と同様に、通
電後15分経過して面状発熱体の温度が定常状態になっ
た後、第10図に示すように面状ヒータの上面の一部に
厚さ50mmのウレタンフオーム21を置き、この部分
のみを局部断熱して局部過熱の状態とした。Using this sheet heater, in the same manner as in Experimental Example 1, after the temperature of the sheet heating element reached a steady state 15 minutes after energization, the upper surface of the sheet heater was heated as shown in FIG. A urethane foam 21 with a thickness of 50 mm was placed on a portion of the tube, and only this portion was locally insulated to create a state of local overheating.
第9図に示す面状発熱体および電極の各位置■〜■での
温度変化を通電開始時点から測定した結果を第11図に
示した。FIG. 11 shows the results of measurement of temperature changes at each position ① to ① of the planar heating element and electrodes shown in FIG. 9 from the start of current application.
(実験例3)
第12図および第13図に示した構造の面状ヒータを作
製した。実験例2で用いたものと同一の面状発熱体片を
2枚並列に配置し、それらの間に10μmの隙間19を
形成して面状発熱体18を作製した。PTCポリマー層
13および金属層14゜15は実験例1と同一のものを
用いた。また金属層15の中央に幅1OfflI11の
スリット16を形成し、このスリット16と面状発熱体
18の隙間19とを一致させた。(Experimental Example 3) A planar heater having the structure shown in FIGS. 12 and 13 was manufactured. Two sheet heating element pieces identical to those used in Experimental Example 2 were arranged in parallel, and a gap 19 of 10 μm was formed between them to produce a sheet heating element 18. The PTC polymer layer 13 and metal layers 14 and 15 were the same as in Experimental Example 1. Further, a slit 16 having a width of 1OfflI11 was formed in the center of the metal layer 15, and the slit 16 and the gap 19 of the planar heating element 18 were made to coincide with each other.
この面状ヒータを用いて、前述の実験例1と同様に、通
電後15分経過して面状発熱体の温度が定常状態になっ
た後、第12図および第13図に示すように、一方の発
熱体片17(1)の一部とその片方の電極部分の上面を
覆うように、厚さ50III11のウレタンフオーム2
1を置き、この部分のみを局部断熱して局部過熱の状態
とした。Using this sheet heater, in the same manner as in Experimental Example 1 described above, after the temperature of the sheet heating element reached a steady state 15 minutes after energization, as shown in FIGS. 12 and 13, A urethane foam 2 with a thickness of 50III11 is placed so as to cover a part of one heating element piece 17(1) and the upper surface of one electrode part.
1 was placed, and only this part was locally insulated to create a state of local overheating.
第12図に示す面状発熱体および電極の各位置■〜■で
の温度変化を通電開始時点から測定した結果を第14図
に示した。FIG. 14 shows the results of measurements of temperature changes at each position ① to ① of the planar heating element and electrodes shown in FIG. 12 from the start of energization.
第14図から明らかなように、局部過熱された位置■の
電極部分がPTC特性による電流制御状態となり、第1
2図における過熱された側の発熱体片57(I)側の温
度が下降し、一方、局部過熱されない側の発熱体片17
(U)の温度はほぼ一定となっている。したがって、局
部過熱されない側の発熱体片17(II)は局部過熱さ
れた側の発熱体片17(1)側の局部過熱の影響を全く
受けずに正常に動作していることがわかる。As is clear from FIG. 14, the electrode part at the locally overheated position (■) enters the current control state due to the PTC characteristic, and the first
The temperature of the heating element piece 57(I) on the overheated side in FIG. 2 decreases, while the heating element piece 17 on the side that is not locally overheated
The temperature of (U) is almost constant. Therefore, it can be seen that the heating element piece 17 (II) on the side that is not locally overheated operates normally without being affected by the local overheating of the heating element piece 17 (1) on the side that is locally overheated.
(比較例)
第15図および第16図に示すように、実験例1で用い
たものと同一の面状発熱体1を用い、また電極の金属層
3にもスリットを形成せずに面状ヒータを作製した。(Comparative Example) As shown in FIGS. 15 and 16, the same planar heating element 1 as used in Experimental Example 1 was used, and the metal layer 3 of the electrode was also not formed with slits. A heater was created.
この面状ヒータを用いて、前述の各実験例と同様に通電
後15分経過して面状発熱体の温度が定常状態になった
後、第16図に示すように面状ヒータの上面の一部に厚
さ50Illalのウレタンフオーム21を置き、この
部分のみを局部断熱して局部過熱の状態とし、面状発熱
体片および電極の各位置■〜■での温度変化を通電開始
時点から測定した。この結果を第17図に示した。Using this sheet heater, after the temperature of the sheet heating element reached a steady state 15 minutes after energization, as in each of the above-mentioned experimental examples, the upper surface of the sheet heater was heated as shown in Fig. 16. A urethane foam 21 with a thickness of 50Illal is placed in a part, and only this part is locally insulated to create a state of local overheating, and the temperature change at each position of the sheet heating element piece and the electrode is measured from the time when the current is started. did. The results are shown in FIG.
「発明の効果」
以上説明したように、この発明の面状ヒータは、PTC
ポリマー層(正抵抗温度係数特性層)と面状発熱体間の
金属層にスリットを形成したので、面状ヒータの一部が
断熱され、断熱部分の温度が上昇した際に、電極の非局
部過熱部分から電極の局部過熱部分へ電流が流れるのを
防止することができ、面状発熱体の局部過熱部分の電流
制御(温度制御)が可能となる。"Effects of the Invention" As explained above, the planar heater of the present invention has PTC
Since a slit is formed in the metal layer between the polymer layer (positive resistance temperature coefficient characteristic layer) and the planar heating element, a part of the planar heater is insulated, and when the temperature of the insulated part rises, the non-local part of the electrode It is possible to prevent current from flowing from the overheated part to the locally overheated part of the electrode, and it becomes possible to control the current (temperature control) in the locally overheated part of the planar heating element.
またPTCポリマー層と面状発熱体間の金属層にスリッ
トを形成するとともに、面状発熱体に、流れる電流の方
向に非導通部を形成したので、面状ヒータの一部が断熱
され、断熱部分の温度が上昇した際に、面状発熱体の局
部過熱部分から電極の非局部過熱部分へ電流が流れるの
を防止することができ、面状発熱体の局部過熱部分の電
流制御(温度制御)をより確実に行うことができる。In addition, a slit is formed in the metal layer between the PTC polymer layer and the sheet heating element, and a non-conducting part is formed in the sheet heating element in the direction of the current flowing, so a part of the sheet heater is insulated. When the temperature of the area rises, it is possible to prevent current from flowing from the locally overheated area of the planar heating element to the non-locally overheated area of the electrode, and to control the current (temperature control) of the locally overheated area of the planar heating element. ) can be performed more reliably.
さらに、面状発熱体の非導通部と、金属層のスリットの
位置を一致させたので、面状ヒータの一部が断熱され、
断熱部分の温度が上昇した際に、電極の非局部過熱部分
から電極の局部過熱部分への電流の流れ及び面状発熱体
の局部過熱部分から電極の非局部過熱部分への電流の流
れを完全に防止することができるので、電極の局部過熱
部分だけがPTC特性による電流制御状態となって、そ
れに導通している面状発熱体の部分の電流制御が確実に
なされるとともに、他の局部過熱されていない電極に導
通している面状発熱体の部分は通常の発熱状態が維持さ
れる。Furthermore, since the non-conducting part of the sheet heating element and the slit in the metal layer are aligned, a part of the sheet heater is insulated.
When the temperature of the insulation part increases, the flow of current from the non-locally overheated part of the electrode to the locally overheated part of the electrode and from the locally overheated part of the sheet heating element to the non-locally overheated part of the electrode is completely stopped. Therefore, only the local overheating part of the electrode is in a current control state due to the PTC characteristics, and the current control of the part of the planar heating element that is electrically connected to it is ensured, and other local overheating can be prevented. The portion of the planar heating element that is electrically connected to the electrodes that are not connected to the other electrodes maintains its normal heating state.
さらにまた、面状発熱体の非導通部の幅に対し、金属層
のスリットの、始端から次のスリットの始端までの間隔
を小さく設定したので、面状発熱体に電極を接合する際
、隙間の位置と電極のスリットの位置とを一致させるこ
とができる。したがって、面状ヒータの作製の際に、面
状発熱体の非導通部と電極のスリットの位置合わせ操作
を簡略化することができ、面状ヒータの製造を容易化す
ることができる効果がある。Furthermore, the distance from the starting end of the slit in the metal layer to the starting end of the next slit is set small relative to the width of the non-conducting part of the planar heating element, so when joining the electrode to the planar heating element, there is no gap. The position of the electrode can be matched with the position of the slit of the electrode. Therefore, when manufacturing a sheet heater, it is possible to simplify the alignment operation between the non-conducting part of the sheet heating element and the slit of the electrode, which has the effect of facilitating the manufacture of the sheet heater. .
第1図はこの発明の面状ヒータの第1の例を示す斜視図
、第2図はこの発明の面状ヒータの第2の例を示す斜視
図、第3図はこの発明の面状ヒータの第3の例を示す斜
視図、第4図はこの発明の第4の例を示す斜視図、第5
図は第4図に示す面状ヒータの要部拡大断面図、第6図
ないし第8図は実験例1を説明するための図であって、
第6図は面状ヒータの平面図、第7図は同側面図、第8
図は実験例1の面状ヒータにおける各部の温度変化を示
すグラフ、第9図ないし第11図は実験例2を説明する
ための図であって、第9図は面状ヒータの平面図、第1
O図は同側面図、第11図は実験例2の面状ヒータにお
ける各部の温度変化を示すグラフ、第12図ないし第1
4図は実験例3を説明するための図であって、第12図
は面状ヒータの平面図、第13図は同側面図、第14図
は実験例3の面状ヒータにおける各部の温度変化を示す
グラフ、第15図ないし第17図は比較例を説明するた
めの図であって、第15図は面状ヒータの平面図、第1
6図は同側面図、第17図は比較例の面状ヒータにおけ
る各部の温度変化を示すグラフ、第18図は従来の面状
ヒータを示す図、第19図および第20図は第18図に
示す面状ヒータにおける局部過熱状態を説明するための
図であって、第19図は面状ヒータの平面図、第20図
は同側面図である。
11.18・・・・・・面状発熱体
12・・・・・・電極
13・・・・・・PTCポリマー層
14.15・・・・・・金属層
16・・・・・・スリット
17・・・・面状発熱体片
19・・・・・・隙間(非導通部)FIG. 1 is a perspective view showing a first example of a sheet heater of the present invention, FIG. 2 is a perspective view of a second example of a sheet heater of this invention, and FIG. 3 is a perspective view of a sheet heater of this invention. FIG. 4 is a perspective view showing a fourth example of the present invention, and FIG.
The figure is an enlarged sectional view of the main part of the planar heater shown in FIG. 4, and FIGS. 6 to 8 are diagrams for explaining Experimental Example 1,
Fig. 6 is a plan view of the sheet heater, Fig. 7 is a side view of the same, and Fig. 8 is a plan view of the sheet heater.
The figure is a graph showing the temperature change of each part in the planar heater of Experimental Example 1, FIGS. 9 to 11 are diagrams for explaining Experimental Example 2, and FIG. 9 is a plan view of the planar heater, 1st
Figure O is a side view of the same side, Figure 11 is a graph showing temperature changes at various parts in the sheet heater of Experimental Example 2, Figures 12 to 1 are
Figure 4 is a diagram for explaining Experimental Example 3, in which Figure 12 is a plan view of the sheet heater, Figure 13 is a side view of the same, and Figure 14 is the temperature of each part of the sheet heater of Experimental Example 3. Graphs showing changes, FIGS. 15 to 17 are diagrams for explaining comparative examples, and FIG. 15 is a plan view of the sheet heater, and FIG.
6 is a side view of the same side, FIG. 17 is a graph showing the temperature change of each part in the planar heater of the comparative example, FIG. 18 is a diagram showing the conventional planar heater, and FIGS. 19 and 20 are the graphs shown in FIG. FIG. 19 is a plan view of the sheet heater, and FIG. 20 is a side view thereof. 11.18... Planar heating element 12... Electrode 13... PTC polymer layer 14.15... Metal layer 16... Slit 17... Planar heating element piece 19... Gap (non-conducting part)
Claims (4)
ように設けられた少なくとも一対の電極を有し、かつそ
の内の少なくとも1個の電極が正抵抗温度係数特性層の
両面に金属層を一体に形成した電極からなる面状ヒータ
において、 正抵抗温度係数特性層と面状発熱体との間に介在される
金属層に、1辺上のスリットを形成したことを特徴とす
る面状ヒータ。(1) It has a planar heating element and at least one pair of electrodes provided on the planar heating element so as to face each other, and at least one of the electrodes is provided on both sides of the positive resistance temperature coefficient characteristic layer. A planar heater consisting of an electrode integrally formed with a metal layer, characterized in that a slit on one side is formed in the metal layer interposed between the positive resistance temperature coefficient characteristic layer and the planar heating element. Planar heater.
の方向に1以上の非導通部を形成したことを特徴とする
請求項1記載の面状ヒータ。(2) The planar heater according to claim 1, wherein the planar heating element has one or more non-conducting portions formed in the direction of current flowing through the planar heating element.
ことを特徴とする請求項2に記載の面状ヒータ。(3) The planar heater according to claim 2, wherein the non-conducting portion and the slit are aligned in position.
から次のスリットの始端までの間隔を小さく設定したこ
とを特徴とする請求項3に記載の面状ヒータ。(4) The planar heater according to claim 3, wherein the distance from the starting end of the slit to the starting end of the next slit is set to be smaller than the width of the non-conducting portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10830390A JPH046787A (en) | 1990-04-24 | 1990-04-24 | Planar heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10830390A JPH046787A (en) | 1990-04-24 | 1990-04-24 | Planar heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH046787A true JPH046787A (en) | 1992-01-10 |
Family
ID=14481278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10830390A Pending JPH046787A (en) | 1990-04-24 | 1990-04-24 | Planar heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH046787A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08302451A (en) * | 1995-02-01 | 1996-11-19 | Brush Wellman Inc | Method of metamorphosing alloy and alloy article made thereby |
JP2021014698A (en) * | 2019-07-11 | 2021-02-12 | 株式会社Jr西日本テクシア | Turnout snow-melting device |
-
1990
- 1990-04-24 JP JP10830390A patent/JPH046787A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08302451A (en) * | 1995-02-01 | 1996-11-19 | Brush Wellman Inc | Method of metamorphosing alloy and alloy article made thereby |
JP2021014698A (en) * | 2019-07-11 | 2021-02-12 | 株式会社Jr西日本テクシア | Turnout snow-melting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4246468A (en) | Electrical devices containing PTC elements | |
EP0417097B1 (en) | Heating element and method for making such a heating element | |
US4845343A (en) | Electrical devices comprising fabrics | |
US3143640A (en) | Sheet-type heater and overheat protection device | |
GB2500733A (en) | A low voltage heater for a hair styling appliance | |
EP0187320B1 (en) | Self-regulating heating article having electrodes directly connected to a ptc layer | |
GB1562085A (en) | Electrical heater and proxesses using it | |
IL48180A (en) | Layered self-regulating heating article | |
JPH0241161B2 (en) | ||
JP2008300050A (en) | Polymer heating element | |
JP3284580B2 (en) | heater | |
JPH046787A (en) | Planar heater | |
JPH06508960A (en) | circuit protection device | |
US3944787A (en) | Heater on metal composites | |
JPS6245673B2 (en) | ||
JPH02267881A (en) | Flat heater | |
JPS6230793Y2 (en) | ||
JPS60184836A (en) | Laminated conductive polymer device | |
KR200372489Y1 (en) | Plane heater | |
JPH10106725A (en) | Sheet-like heater element and electric carpet | |
JP3817488B2 (en) | Composite heating element and design method thereof | |
JPH03127480A (en) | Flat type heater | |
JP3006272B2 (en) | Planar heating element | |
KR200390221Y1 (en) | A plane heater | |
JPH02148681A (en) | Positive resistance-temperature coefficient heater |