JPH0531277B2 - - Google Patents

Info

Publication number
JPH0531277B2
JPH0531277B2 JP26664984A JP26664984A JPH0531277B2 JP H0531277 B2 JPH0531277 B2 JP H0531277B2 JP 26664984 A JP26664984 A JP 26664984A JP 26664984 A JP26664984 A JP 26664984A JP H0531277 B2 JPH0531277 B2 JP H0531277B2
Authority
JP
Japan
Prior art keywords
resistor
electrodes
ptc
heat
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26664984A
Other languages
Japanese (ja)
Other versions
JPS61143982A (en
Inventor
Kazunori Ishii
Masayuki Terakado
Yasutomo Funakoshi
Tadashi Sakairi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26664984A priority Critical patent/JPS61143982A/en
Priority to DE8585116105T priority patent/DE3583932D1/en
Priority to EP85116105A priority patent/EP0187320B1/en
Priority to US06/809,966 priority patent/US4783587A/en
Priority to CA000497966A priority patent/CA1249323A/en
Publication of JPS61143982A publication Critical patent/JPS61143982A/en
Priority to US07/190,562 priority patent/US4954696A/en
Publication of JPH0531277B2 publication Critical patent/JPH0531277B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具及び、一般の加熱装置等と
して有用な発熱体の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the configuration of a heating element useful as a heating appliance, a general heating device, and the like.

従来の技術 従来の正の抵抗温度係数をもつ(以下PTCと
称す)発熱体は、例えば特公昭57−43995号公報
や特公昭55−40161号公報に示されているように、
第5図のような構成になつていた。
Conventional technology A conventional heating element having a positive temperature coefficient of resistance (hereinafter referred to as PTC) is disclosed in Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-40161, for example.
The structure was as shown in Figure 5.

すなわち絶縁基板1上に相対向する一対の帯状
電極2が設けられ、その上からPTC発熱抵抗体
3が設けられる構成のものであり、このPTC抵
抗体3のPTC特性により適宜な温度に自己制御
されるものであつた。
That is, a pair of band-shaped electrodes 2 facing each other are provided on an insulating substrate 1, and a PTC heating resistor 3 is provided from above, and the temperature is self-controlled to an appropriate level by the PTC characteristics of this PTC resistor 3. It was something that would be done.

発明が解決しようとする問題点 しかし、このような構成のものでは、特に
PTC発熱体3が高発熱量の場合に、温度分布が
異常に不均一になり、異常な高温部とほとんど発
熱しない部分が生じるばかりか、異常高温部は発
煙・発火現象を呈する危険性を有するという問題
があつた。
Problems to be Solved by the Invention However, with this configuration, especially
When the PTC heating element 3 has a high calorific value, the temperature distribution becomes abnormally uneven, and not only do abnormally high temperature parts and parts that hardly generate heat occur, but the abnormally high temperature parts have the risk of smoke and ignition phenomena. There was a problem.

これは以下の現象による。 This is due to the following phenomenon.

いま、この発熱体に電圧を印加し通電させたと
すると、理論的には第6図の実線aで示すよう
に、PTC発熱体3部においてはほぼ均一な発熱
温度であり、例えば第7図のようなPTC特性に
よりある温度に自己制御される。しかし、この
PTC発熱体3の抵抗分布の不均一性、外部より
の断熱状態の部分的差異、あるいは外部よりの局
所加熱等により一対の電極間方向の抵抗分布が若
干不均一になり抵抗値が相対的に大きい部分Aが
生じた場合に、A部にかかる電圧は大きくなり、
A部はその他の部分より発熱量が大きくなり、第
6図の破線bのような温度分布が生じてくる。こ
れに伴ない、A部の抵抗値はPTC特性のために
さらに高抵抗になり、A部にかかる電圧もさらに
大きくなつていき、A部はさらに高温になつてい
く。このようにして、最終的には、第8図で示す
ように高温な発熱箇所Aを呈する。この時の一対
の電極2間方向の発熱量分布を第9図に示す。こ
のように一旦温度分布が若干でも生じるとPTC
特性により温度差が助長され増大される。この現
象を以下の説明では、電圧集中現象と呼ぶことに
する。
Now, if a voltage is applied to this heating element to energize it, theoretically, as shown by the solid line a in Figure 6, the heat generation temperature will be almost uniform in the three parts of the PTC heating element, for example, as shown in Figure 7. It is self-controlled to a certain temperature due to PTC characteristics such as However, this
Due to non-uniformity in the resistance distribution of the PTC heating element 3, partial differences in the insulation state from the outside, local heating from the outside, etc., the resistance distribution in the direction between the pair of electrodes becomes slightly non-uniform, and the resistance value becomes relatively When a large part A occurs, the voltage applied to part A increases,
Part A generates a larger amount of heat than other parts, and a temperature distribution as shown by the broken line b in FIG. 6 occurs. Along with this, the resistance value of section A becomes even higher due to the PTC characteristics, the voltage applied to section A becomes even greater, and the temperature of section A becomes even higher. In this way, a high temperature heat generation point A is finally formed as shown in FIG. The calorific value distribution in the direction between the pair of electrodes 2 at this time is shown in FIG. In this way, once a temperature distribution occurs even slightly, the PTC
The characteristics encourage and increase the temperature difference. In the following explanation, this phenomenon will be referred to as a voltage concentration phenomenon.

この電圧集中現象は、高発熱量のものほど発生
しやすく、従来のPTC発熱体3は、発熱量を制
限したり、あるいは、非常に熱伝導性の良い絶縁
基板1を用いるなどして、この電圧集中現象に対
処せねばならなかつた。
This voltage concentration phenomenon is more likely to occur as the amount of heat generated is higher, and conventional PTC heating elements 3 are designed to prevent this by limiting the amount of heat generated or by using an insulating substrate 1 with very good thermal conductivity. We had to deal with the voltage concentration phenomenon.

ところで、熱伝導性の優れた抵抗体すなわち、
チタン酸バリウム等を用いたセラミツク系抵抗体
素子を用いると、この電圧集中現象を抑える発熱
量の限界をかなり大きくすることができる。しか
し、この抵抗体では、加工性の面で大きさ、形状
をかなり制約せざるを得ず面積の大きい加熱等に
おいては小さな素子を非常に多く配設せざるを得
ず、給電用接続等が複雑になるばかりか、加撓性
がなく割れやすく放熱体等に熱的に結合しにくい
という本発明の産業上の利用分野では実際には実
現性に乏しいという大きな問題点を有していた。
By the way, a resistor with excellent thermal conductivity, that is,
If a ceramic resistor element made of barium titanate or the like is used, the limit on the amount of heat generated to suppress this voltage concentration phenomenon can be considerably increased. However, the size and shape of this resistor must be considerably restricted in terms of processability, and for heating large areas, a large number of small elements must be installed, and power supply connections, etc. Not only is this complicated, but it also lacks flexibility, is easily broken, and is difficult to thermally bond to a heat sink, etc., which is a major problem in that it is practically impractical in the field of industrial application of the present invention.

このような中で、高発熱量でも電圧集中現象を
発生させないで、しかも加工性に優れた発熱体と
しては、結晶性高分子中に導電性微粒子を分散さ
せた組成物を主成分としたPTC抵抗体を用い、
一対の電極間隔を適宜に小さくして温度分布を小
さくすれば可能であると考えられるが、第5図の
如く構成では、電極2の占める面積が大きくな
り、PTC抵抗体部分の占める面積は帯状電極2
の幅を細くしても非常に小さくなり高発熱量を得
にくいばかりか、材料的なロスも大きい。また絶
縁基板1に熱伝導性の非常に優れた高価な材料を
用いてもそれほど効果はない。そこで、適宜な厚
みの薄肉板状の前記PTC抵抗体の両面に一対の
電極を構成すれば、上記全ての問題点は解決され
ると想定されるが、ここで大きな問題となるの
は、この両面に構成された電極への給電方法であ
る。例えば第1の電極側に放熱体の如く熱負荷体
を熱的に結合させたとすると、この電極への給電
部分の放熱体を切り欠いたり、孔開けしたりある
いはずらしたりして削除する方法は容易に考えら
れるが、これでは、各種機器に用いる場合など、
給電構造が複雑になるばかりか、前記給電部の接
続端子部に給電用導体の引張力、押圧等の機械的
な力が加わつた場合に前記接続端子部だけでこの
力を吸収することになり、この接続端子部の導通
不良、電気接触抵抗の増大による異常過熱・発火
等に連がる可能性もあり、非常に危険な面も有し
ている。また、放熱体は、金属等の導電性材料を
用いる場合が多く、この場合、前記放熱体の削除
面積は漏電等の安全性の面からそれほど小さくす
ることもできない。
Under these circumstances, PTC, whose main component is a composition in which conductive particles are dispersed in a crystalline polymer, is a heating element that does not cause voltage concentration phenomenon even with a high calorific value and has excellent workability. Using a resistor,
It may be possible to reduce the temperature distribution by appropriately reducing the distance between the pair of electrodes, but in the configuration shown in Figure 5, the area occupied by electrode 2 becomes large, and the area occupied by the PTC resistor part becomes strip-like. Electrode 2
Even if the width is made narrower, it becomes very small and it is difficult to obtain a high calorific value, and there is also a large amount of material loss. Further, even if an expensive material with very good thermal conductivity is used for the insulating substrate 1, it is not very effective. Therefore, it is assumed that all of the above problems can be solved by configuring a pair of electrodes on both sides of the PTC resistor in the form of a thin plate with an appropriate thickness, but the major problem here is that This is a method of feeding power to electrodes configured on both sides. For example, if a heat load body such as a heat radiator is thermally coupled to the first electrode side, there is no way to remove the heat radiator of the power supply part to the electrode by cutting out, drilling, or shifting it. Although it is easy to think of this, when using it for various devices, etc.
Not only does the power supply structure become complicated, but when mechanical force such as tension or pressure of the power supply conductor is applied to the connection terminal portion of the power supply section, this force is absorbed only by the connection terminal portion. This is extremely dangerous, as it may lead to abnormal overheating, ignition, etc. due to poor conduction of the connecting terminal and increased electrical contact resistance. Further, the heat radiator is often made of a conductive material such as metal, and in this case, the removed area of the heat radiator cannot be made very small from the viewpoint of safety such as electric leakage.

そこで、本発明は以上のような従来の問題点を
解消するもので、きわめて簡易でしかも信頼性の
高い給電構造を提供し前記電圧集中現象の発生し
ない安全で高発熱量可能な発熱体を実現させるも
のである。
Therefore, the present invention solves the above-mentioned conventional problems by providing an extremely simple and highly reliable power supply structure, and realizing a safe heating element that does not cause the voltage concentration phenomenon and can generate a high amount of heat. It is something that makes you

問題点を解決するための手段 結晶性高分子中に導電性微粒子を分散させた組
成物を主成分とする薄肉板状の正の抵抗温度係数
をもつ帯状の抵抗体と、この両面に設けられた第
1、第2の帯状の電極と、給電用接続端子と、該
電極、抵抗体及び接続端子を被覆する絶縁フイル
ムとを備え、前記第1、第2の電極のうち一方の
電極を抵抗体及び他方の電極に対して重合しない
ように突出させるように、第1、第2の電極及び
抵抗体を帯形状の幅方向にずらせつつ長手方向に
構成し、この突出部分に該接続端子を配設してな
る構成にしたものである。
Means for solving the problem A thin plate-shaped strip-shaped resistor with a positive temperature coefficient of resistance, whose main component is a composition in which conductive particles are dispersed in a crystalline polymer, and a strip-shaped resistor provided on both sides of the resistor. comprising first and second strip-shaped electrodes, a power supply connection terminal, and an insulating film that covers the electrodes, a resistor, and the connection terminal, and one of the first and second electrodes is connected to a resistor. The first and second electrodes and the resistor are arranged in the longitudinal direction while being shifted in the width direction of the strip shape so as to protrude without overlapping with respect to the body and the other electrode, and the connecting terminal is attached to the protruding portion. This configuration is made up of:

作 用 少なくとも一方の電極には、他方の電極及び
PTC抵抗体外へ突出した部分があり、この部分
に給電用の接続端子を設ければ、この発熱体に対
して同一方向の給電が可能となり前記の問題点は
全て解消されることになり、高発熱量においても
安全で信頼性の高いかつ加工性の優れた発熱体を
実現できる。
Effect: At least one electrode has a
There is a part that protrudes outside the PTC resistor, and if a connection terminal for power supply is provided in this part, power can be supplied in the same direction to this heating element, and all of the above problems will be solved. It is possible to realize a heating element that is safe, highly reliable, and has excellent workability in terms of calorific value.

実施例 以下、本発明の一実施例について添付図面に基
づいて説明する。なお、本発明の各実施例の同種
の部品については簡単のため、同一番号を付与す
る。また本発明の発熱体の使用例を明確にするた
めこの発熱体の熱負荷体を放熱板4及び絶縁フイ
ルム5とした例明でも説を進める。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings. Incidentally, for the sake of simplicity, the same numbers are given to the same types of parts in each embodiment of the present invention. Further, in order to clarify the usage example of the heat generating element of the present invention, the explanation will be continued with an example in which the heat sink 4 and the insulating film 5 are used as the heat load bodies of the heat generating element.

第1図において6,7は第1・第2の電極であ
り、この電極6,7間に薄肉板状のPTC抵抗体
8を電気的に導通する如く配しており、一方の電
極6には、PTC抗抗体6及び他方の電極7に対
して重合しないように突出した突出部分イを設け
ている。この突出部分イと電極7の任意の位置に
給電用接続を行なうことによりこの発熱体に対し
て同一方向の給電が可能となり、各種熱負荷体へ
の構成を非常に簡易にすることができる。
In FIG. 1, 6 and 7 are first and second electrodes, and a thin plate-shaped PTC resistor 8 is arranged between the electrodes 6 and 7 so as to be electrically conductive. In this example, a protruding portion A is provided that protrudes from the PTC anti-antibody 6 and the other electrode 7 so as not to polymerize. By making a power supply connection between this protruding portion A and an arbitrary position of the electrode 7, it is possible to supply power in the same direction to this heating element, and the construction of various heat load bodies can be extremely simplified.

第2図の実施例では、放熱板4及び絶縁フイル
ム5に本発明の発熱体を熱的に結合させた例であ
るが、上記と同様に電極6部に突出部分イを設け
この部分でリード線9を接続することにより、こ
の発熱体に対して同一方向の給電が可能となる。
これにより放熱板4等を切り欠いたり、孔開けし
たり、ずらしたりすることも不要となる。また、
この接続部分は容易に放熱板4及び絶縁フイルム
5により保持させることができるため、リード線
接続部に引張り、押圧等の機械的な力が加わつて
もこの接続部の断線、接触抵抗による異常過熱発
火、電極断線による異常過熱発火等を防止するこ
とができ、非常に安全であるという優れた特徴を
有するものである。
In the embodiment shown in FIG. 2, the heating element of the present invention is thermally coupled to the heat dissipation plate 4 and the insulating film 5, but similarly to the above, the electrode 6 is provided with a protruding portion A, and this portion serves as a lead. By connecting the wires 9, power can be supplied to the heating element in the same direction.
This eliminates the need to cut out, make holes in, or shift the heat sink 4 and the like. Also,
Since this connection part can be easily held by the heat sink 4 and the insulating film 5, even if mechanical force such as pulling or pressing is applied to the lead wire connection part, the connection part may break or abnormal heat may overheat due to contact resistance. It has the excellent feature of being extremely safe, as it can prevent ignition and abnormal overheating and ignition due to electrode disconnection.

また、第2図の電極7のロ部にもPTC抵抗体
8及び電極6に対して重合しないように突出させ
た部分をもたせて、ここに前記の如くリード線1
0を接続しているが、これにより、半田付接続等
のように高温になつた場合、あるいは、接続箇所
が押圧された場合等に生じるPTC抵抗体8の材
料的及び機械的損傷、さらにはこれによる異常過
熱発火等を防止することができる。
In addition, the lower part of the electrode 7 in FIG.
0 is connected, but this may cause material and mechanical damage to the PTC resistor 8 that occurs when the temperature becomes high as in the case of soldering connections, or when the connection point is pressed, etc. Abnormal overheating and ignition due to this can be prevented.

また、第3図の如く、PTC抗抗体8が電極6
あるいは7より突出していてもよい。また、
PTC抗抗体8及び電極6,7が帯形状をしてお
り、この幅方向に少なくとも一方の電極をずらす
構成にしているので、これらの構成部品の形状加
工が非常に容易であり、またこれらを帯形状の長
手方向に一体化させる加工も簡単にでき、材料的
なロスを発生しない。そればかりでなく、給電用
接続端子も、各種機器の構成に合わせて、長手方
向のどの位置に配することもできるという効果も
有している。
In addition, as shown in FIG. 3, the PTC anti-antibody 8 is
Alternatively, it may be more prominent than 7. Also,
The PTC anti-antibody 8 and the electrodes 6 and 7 are band-shaped, and at least one of the electrodes is shifted in the width direction, so it is very easy to shape these components. Processing to integrate the strip shape in the longitudinal direction can be easily performed, and no material loss occurs. In addition, the power supply connection terminal also has the effect of being able to be placed at any position in the longitudinal direction in accordance with the configuration of various devices.

さらに、実際の使用構成を考えると、第4図の
如く、電極7側にも絶縁フイルム11等を貼付け
る場合が多いが、第4図の電極7の突出部分は放
熱板4に、絶縁フイルム5を介して熱的に結合す
ることになる。本構成においては放熱板4の熱拡
散により電極7側が放熱板4側より相対的に温度
が高くなることが多くPTC抗抗体8のPTC特性
によりこの傾向はさらに助長されるが、この場
合、電極7自身の放熱板4への熱伝導により、電
極6、電極7間方向の温度分布もさらに均一にす
ることができ、また熱効率も向上するという特徴
も有している。
Furthermore, considering the actual usage configuration, an insulating film 11 or the like is often pasted on the electrode 7 side as shown in FIG. They are thermally bonded via 5. In this configuration, the temperature on the electrode 7 side is often higher than that on the heat sink 4 side due to thermal diffusion of the heat sink 4, and this tendency is further exacerbated by the PTC characteristics of the PTC anti-antibody 8. Due to the heat conduction of 7 itself to the heat dissipation plate 4, the temperature distribution in the direction between the electrodes 6 and 7 can be made more uniform, and the thermal efficiency is also improved.

ところで、PTC抗抗体8はカーボンブラツク
を中心とする粒子状導電剤を含有させた高分子組
成物であり、例えばこれに用いる樹脂としてはポ
リエチレン−酢酸ビニル共重合体、ポリエチレン
−エチルアクリレート共重合体、ポリエチレン、
ポリプロピレン等のポリオレフインやポリアミ
ド、ポリハロゲン化ビニリデン、ポリエステル等
の結晶性樹脂があり、各々の結晶変態点付近で急
激な正の温度係数を示す。また一対の電極6,7
の距離は0.3〜3mm程度であり、PTC抗抗体8は
高比抵抗の組成物でよく、自己温度制御性のため
のPTC特性は容易に得られる。
By the way, PTC anti-antibody 8 is a polymer composition containing a particulate conductive agent mainly composed of carbon black, and examples of the resin used for this include polyethylene-vinyl acetate copolymer and polyethylene-ethyl acrylate copolymer. ,polyethylene,
There are crystalline resins such as polyolefins such as polypropylene, polyamides, polyvinylidene halides, and polyesters, and each exhibits a sharp positive temperature coefficient near its crystal transformation point. Also, a pair of electrodes 6, 7
The distance is about 0.3 to 3 mm, and the PTC anti-antibody 8 may be a composition with high specific resistance, and the PTC characteristics for self-temperature control can be easily obtained.

次に、電極6,7としては、本実施例では厚み
が35μmの銅箔を用いたが、導電体であればどの
ようなものであつてもよい。
Next, as the electrodes 6 and 7, copper foil with a thickness of 35 μm was used in this embodiment, but any material may be used as long as it is a conductor.

また、この実施例では、この発熱体の熱負荷体
として放熱体4を用いて説明したが、放熱、受熱
するどのような熱負荷体であつても同様な効果を
奏することができる。
Further, in this embodiment, the heat radiating body 4 is used as the heat load body of the heat generating body, but the same effect can be achieved using any heat load body that radiates or receives heat.

発明の効果 以上述べてきたように、本発明の発熱体によれ
ば、次の効果が得られる。
Effects of the Invention As described above, the heating element of the present invention provides the following effects.

(1) 電極に突出部分を設けているので、各種熱負
荷体に結合させる際、該熱負荷体の削除等の複
雑な加工をすることなく、非常に簡易に給電処
理ができ、しかも信頼性の高い給電構造が可能
である。
(1) Since the electrode has a protruding part, when connecting it to various heat loads, it is possible to supply power very easily without having to perform complicated processing such as removing the heat load, and it is highly reliable. A high power supply structure is possible.

(2) 給電構造を電極・抵抗体の重合しない部位で
確実に処理できるので、給電接続部による凸部
も少なく電極・抵抗体に密封して絶縁フイルム
を被覆できるので、抵抗体を薄肉状で均一にで
き、電圧集中現象の発生しない安全で高発熱量
可能な構成を実現できるだけでなく、電気絶縁
性、電極・抵抗体への酸素等の遮断性も高める
ことができ、さらに信頼性を高めることができ
る。
(2) Since the power supply structure can be reliably processed in areas where the electrodes and resistors do not overlap, there are fewer protrusions caused by the power supply connection, and the electrodes and resistors can be sealed and covered with an insulating film, allowing the resistor to be thin-walled. Not only can we achieve a configuration that is safe and capable of generating a high amount of heat evenly and does not cause voltage concentration phenomena, but it also improves electrical insulation and the ability to block oxygen, etc. from electrodes and resistors, further increasing reliability. be able to.

(3) 電極、抵抗体との位置関係をずらせて構成す
るというきわめて簡易な加工構成で上記の効果
を実現できるものであり、実用上きわめて有利
なものである。
(3) The above effects can be achieved with an extremely simple processing configuration in which the electrodes and the resistor are shifted in position, which is extremely advantageous in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の発熱体の斜視
図、第2図は本発明の第2の実施例の発熱体の斜
視図、第3図は本発明の第3の実施例の発熱体の
断面図、第4図は本発明の第4の実施例の発熱体
の断面図、第5図は従来の発熱体の平面図、第6
図は同発熱体の発熱温度分布図、第7図は同発熱
体のPTC特性図、第8図は同発熱体の電圧集中
現象発生の模式図、第9図は同電圧集中現象発生
時の発熱量分布図である。 4……放熱板、5,11……絶縁フイルム、
6,7……電極、8……PTC抵抗体。
FIG. 1 is a perspective view of a heating element according to a first embodiment of the invention, FIG. 2 is a perspective view of a heating element according to a second embodiment of the invention, and FIG. 3 is a perspective view of a heating element according to a second embodiment of the invention. FIG. 4 is a sectional view of a heating element according to a fourth embodiment of the present invention, FIG. 5 is a plan view of a conventional heating element, and FIG.
The figure is a heat generation temperature distribution diagram of the heating element, Figure 7 is a PTC characteristic diagram of the heating element, Figure 8 is a schematic diagram of the voltage concentration phenomenon occurring in the heating element, and Figure 9 is when the voltage concentration phenomenon occurs. It is a calorific value distribution map. 4... Heat sink, 5, 11... Insulating film,
6, 7...electrode, 8...PTC resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性高分子中に導電性微粒子を分散させた
組成物を主成分とする薄肉板状の正の抵抗温度係
数をもつ帯状の抵抗体と、この抵抗体の両面に設
けられた第1、第2の帯状の電極と、給電用接続
端子と、該電極、抵抗体及び接続端子を被覆する
絶縁フイルムとを備え、前記第1、第2の電極の
うち一方の電極を抵抗体及び他方の電極に対して
重合しないように突出させるように、該第1、第
2の電極及び抵抗体を帯形状の幅方向にずらせつ
つ長手方向に構成し、この突出部分に該接続端子
を配設してなる発熱体。
1. A thin plate-shaped strip-shaped resistor having a positive temperature coefficient of resistance, the main component of which is a composition in which conductive fine particles are dispersed in a crystalline polymer, and a first resistor provided on both sides of the resistor. A second strip-shaped electrode, a power supply connection terminal, and an insulating film that covers the electrode, a resistor, and the connection terminal, and one of the first and second electrodes is connected to the resistor and the other. The first and second electrodes and the resistor are arranged in the longitudinal direction while being shifted in the width direction of the band shape so as to protrude from the electrodes without overlapping, and the connecting terminal is disposed in the protruding portion. A heating element.
JP26664984A 1984-12-18 1984-12-18 Heat generating body Granted JPS61143982A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP26664984A JPS61143982A (en) 1984-12-18 1984-12-18 Heat generating body
DE8585116105T DE3583932D1 (en) 1984-12-18 1985-12-17 SELF-REGULATING HEATING ITEM WITH ELECTRODES THAT ARE DIRECTLY CONNECTED TO A PTC LAYER.
EP85116105A EP0187320B1 (en) 1984-12-18 1985-12-17 Self-regulating heating article having electrodes directly connected to a ptc layer
US06/809,966 US4783587A (en) 1984-12-18 1985-12-17 Self-regulating heating article having electrodes directly connected to a PTC layer
CA000497966A CA1249323A (en) 1984-12-18 1985-12-18 Self-regulating heating article having electrodes directly connected to a ptc layer
US07/190,562 US4954696A (en) 1984-12-18 1988-05-05 Self-regulating heating article having electrodes directly connected to a PTC layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26664984A JPS61143982A (en) 1984-12-18 1984-12-18 Heat generating body

Publications (2)

Publication Number Publication Date
JPS61143982A JPS61143982A (en) 1986-07-01
JPH0531277B2 true JPH0531277B2 (en) 1993-05-12

Family

ID=17433764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26664984A Granted JPS61143982A (en) 1984-12-18 1984-12-18 Heat generating body

Country Status (1)

Country Link
JP (1) JPS61143982A (en)

Also Published As

Publication number Publication date
JPS61143982A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
JP2698318B2 (en) heater
US4072848A (en) Electrical heating cable with temperature self-limiting heating elements
US4919744A (en) Method of making a flexible heater comprising a conductive polymer
KR19990036855A (en) PCB elements, protection devices and circuit boards
JPS6025873B2 (en) self-regulating electrical device
US4977309A (en) Organic PTC thermistor
US4425497A (en) PTC Heater assembly
US4673801A (en) PTC heater assembly
WO2004114331A1 (en) Ptc thermistor and method for protecting circuit
JP4377116B2 (en) Carbon graphite sheet
JP2007299546A (en) Planar heating element
US4644316A (en) Positive temperature coefficient thermistor device
US7532101B2 (en) Temperature protection device
JPH0531277B2 (en)
WO2021168656A1 (en) Pptc heater and material having stable power and self-limiting behavior
JPS63146380A (en) Positive resistane-temperature coefficient heater
JP2021136234A (en) Pptc heater and material, having stable power and self-limiting behavior
JP2846244B2 (en) heater
JP2009181732A (en) Sheet heating element
JPH03134580A (en) Detection of abnormality of electric constitutional element group
JPS6135346Y2 (en)
JPS6135345Y2 (en)
JPS586592B2 (en) How to make a soldering iron
JPS6231995Y2 (en)
CA2291381A1 (en) An electric hob