JP2643398B2 - Positive resistance temperature coefficient heating element and method of manufacturing the same - Google Patents

Positive resistance temperature coefficient heating element and method of manufacturing the same

Info

Publication number
JP2643398B2
JP2643398B2 JP63321013A JP32101388A JP2643398B2 JP 2643398 B2 JP2643398 B2 JP 2643398B2 JP 63321013 A JP63321013 A JP 63321013A JP 32101388 A JP32101388 A JP 32101388A JP 2643398 B2 JP2643398 B2 JP 2643398B2
Authority
JP
Japan
Prior art keywords
resistor
temperature coefficient
heating element
positive
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63321013A
Other languages
Japanese (ja)
Other versions
JPH02165588A (en
Inventor
和典 石井
誠之 寺門
武史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63321013A priority Critical patent/JP2643398B2/en
Publication of JPH02165588A publication Critical patent/JPH02165588A/en
Application granted granted Critical
Publication of JP2643398B2 publication Critical patent/JP2643398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具及び一般の加熱装置として有用な
正抵抗温度係数発熱体およびその製造方法に関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive resistance temperature coefficient heating element useful as a warming device and a general heating device, and a method for producing the same.

従来の技術 従来の正の抵抗温度係数をもつ発熱体は、例えば特公
昭57−43995号公報や特公昭55−40161号公報に示されて
いるような構成であり一対の電極間の抵抗体の正抵抗温
度特性により適宜な温度に自己制御されているものであ
った。しかし、特に大きな電力密度や高温度が要求され
る場合においては、発熱体自体の温度分布を一様にする
ために一対の電極間方向の温度分布を常に良好にするこ
とが不可欠であり、その解決策として特公昭62−59515
号公報や第12図に示すように一対の電極間距離を互いに
接近させて構成する方法が講じられた。第12図におい
て、1,2は互いに接近して設けられた一対の平行平板電
極であり、この間に結晶性重合体に導電性微粉末を混合
分散して形成した抵抗体3を配することにより高出力の
正抵抗温度係数発熱体を現出する可能性が見出された。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance has a configuration as disclosed in Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-40161, for example. It was self-controlled to an appropriate temperature by the positive resistance temperature characteristic. However, especially when a large power density or high temperature is required, it is essential to always make the temperature distribution between the pair of electrodes good in order to make the temperature distribution of the heating element itself uniform. As a solution, Japanese Patent Publication No. 62-51515
As shown in FIG. 12 and FIG. 12, a method has been taken in which the distance between a pair of electrodes is made closer to each other. In FIG. 12, reference numerals 1 and 2 denote a pair of parallel plate electrodes provided close to each other, between which a resistor 3 formed by mixing and dispersing conductive fine powder in a crystalline polymer is arranged. It has been found that a high power positive temperature coefficient of resistance heating element can be developed.

発明が解決しようとする課題 しかしながら上記のような従来の正抵抗温度係数発熱
体は、高出力を現出するための構造としては非常に優れ
ていたが、カーボンブラック等の比較的低抵抗の導電性
微粉末を混合分散することによって構成される正抵抗温
度係数抵抗体の耐電圧破壊特性や、非常に高抵抗が要求
される体積固有抵抗値の領域等を考慮すると、解決しな
ければならない多くの課題を有していた。電極間隔が非
常に接近した正抵抗温度係数発熱体を構成するために
は、耐電圧破壊特性に優れた導電性微粉末を選定するだ
けでなく、十分に大きい正の抵抗温度特性を得ることに
よって、ピーク抵抗値を越えて暴走することのないよう
に配慮することが不可欠であった。さらに、この正抵抗
温度係数発熱体の端面において、一対の電極が非常に接
近しており、空気のイオン化電圧を考えても非常に問題
であり、特に、湿気、気圧、さらに電極端面のバリ等に
よっては空中放電し発煙、発火に至る可能性もあり、極
めて危険な面を有していた。こうした危険性にたいして
は、特開昭61−284082号公報等に示されるように、正抵
抗温度係数抵抗体自身でこの抵抗体の外表面に沿う沿面
距離を抵抗体の厚さよりも大きくするといった画期的な
改善策も講じられ、安全性を高めることができた。しか
しながら、この抵抗体材料自身により沿面距離を確保し
ている部分は初期的には極めて高抵抗であり電気絶縁体
と同じように発熱にはほとんど寄与しないが、経時変化
において、結晶性重合体の結晶成長、発熱体各部の熱応
力、あるいは導電性微粉末の凝集等によって、抵抗値や
抵抗温度係数の大幅な変化が生じるようになり、特にさ
らに高出力の正抵抗温度係数発熱体の場合、この沿面部
分も発熱量は小さいものの発熱するようになり、この部
分の微小部分に電圧が集中していき、高抵抗化が進行し
非常に短かい発熱寿命であったり、異常過熱、発煙、発
火等の危険性を有したりしており、実用上の許容範囲か
ら大幅に外れるものであった。このように、導電性微粉
末の組成比を調整するだけでは体積固有抵抗値10 3Ωcm
以上の有用な正抵抗温度係数発熱体を創り出すことがで
きなかった。
Problems to be Solved by the Invention However, the conventional positive temperature coefficient heating element as described above is very excellent as a structure for producing high output, but has a relatively low resistance conductive material such as carbon black. Considering the withstand voltage breakdown characteristics of the positive resistance temperature coefficient resistor composed by mixing and dispersing the conductive fine powder, and the region of the volume resistivity where extremely high resistance is required, many problems must be solved. Had the problem of. In order to construct a heating element with a positive resistance temperature coefficient in which the electrode spacing is very close, not only must a conductive fine powder with excellent withstand voltage breakdown characteristics be selected, but also by obtaining a sufficiently large positive resistance temperature characteristic Therefore, it was essential to take care not to runaway beyond the peak resistance value. Further, a pair of electrodes are very close to each other at the end face of the positive resistance temperature coefficient heating element, which is a very problematic problem in view of the ionization voltage of air. Depending on the situation, there is a possibility that air discharge may occur and smoke or fire may occur, which has a very dangerous surface. To deal with such danger, as shown in Japanese Patent Application Laid-Open No. 61-284,082, etc., the positive resistance temperature coefficient resistor itself is required to make the creepage distance along the outer surface of the resistor larger than the thickness of the resistor. Periodic improvement measures were taken and safety was improved. However, the portion where the creepage distance is secured by the resistor material itself has an extremely high resistance at the beginning and hardly contributes to heat generation like an electric insulator. Due to crystal growth, thermal stress of each part of the heating element, or agglomeration of the conductive fine powder, a large change in the resistance value and the temperature coefficient of resistance will occur, especially in the case of a heating element with a higher positive temperature coefficient of resistance. This creepage also generates a small amount of heat, but heat is generated, and voltage concentrates on the minute part of this part, and the resistance increases and the heating life is very short, or abnormal overheating, smoke, or ignition And the like, which greatly deviates from a practically acceptable range. Thus, by simply adjusting the composition ratio of the conductive fine powder, the volume resistivity value is 103Ωcm.
The above-mentioned useful positive temperature coefficient of resistance heating element could not be created.

本発明はかかる問題を解消し、実用に耐え得る優れた
性能、安全性を実現できる高出力正抵抗温度係数発熱体
の構造およびその製造方法を提供するものである。
The present invention has been made to solve the above problems and to provide a structure of a high-output positive temperature coefficient of resistance heating element capable of realizing excellent performance and safety for practical use, and a method of manufacturing the same.

課題を解決するための手段 上記課題を解決するために、本発明の正抵抗温度係数
発熱体は、導電性微粉末と結晶性重合体よりなる薄厚状
の正抵抗温度係数抵抗体と、この厚さ方向に電圧を印加
すべく設けられた一対の電極体を備え、前記一対の電極
体が前記抵抗体の厚さ方向において重合する部分と重合
していない部分との境界部分、あるいは重合する電極体
端部分の近傍の抵抗体をこの厚さ方向に突出させた部分
をもたせたものである。
Means for Solving the Problems In order to solve the above problems, a positive resistance temperature coefficient heating element of the present invention is a thin positive resistance temperature coefficient resistor made of a conductive fine powder and a crystalline polymer; A pair of electrode bodies provided to apply a voltage in a direction perpendicular to the substrate, and a boundary portion between a part where the pair of electrode bodies overlaps in the thickness direction of the resistor and a part where the resistors do not overlap, or an electrode which overlaps The resistance element in the vicinity of the body end has a portion protruding in the thickness direction.

作用 この技術的手段による作用は次のようになる。すなわ
ち、正抵抗温度係数発熱体の一対の電極は非常に接近さ
せることにより高出力が可能となるが、この端部等の電
極接近部分では、特に、湿気、気圧、さらには電極端面
のバリ等によっては空中放電し発煙、発火に至る可能性
もあり、極めて危険な面を有している。また、ここにこ
の抵抗体材料を介在させることによりかなり安全性を高
めることができるが、この部分の抵抗体材料の経時的変
化により微小部分に電圧が集中して高抵抗化が進行した
り、抵抗体材料の劣化により発煙・発火に至ったりする
危険性がある。こうした危険性を有する部分の抵抗体、
すなわち、一対の電極体が抵抗体の厚さ方向において重
合する部分と重合していない部分との境界部分、あるい
は重合する電極体端部分の近傍の抵抗体をこの厚さ方向
に突出させることにより、この部分の電圧印加される電
極間距離を長くすることができ、経時的な変化があって
も、高い性能・安全性を保持できるようになる。こうし
て、体積固有抵抗が10 3Ωcm以上に及ぶ高抵抗の抵抗体
で、高出力の正抵抗温度係数発熱体を実現できるように
なる。
Operation The operation of this technical means is as follows. That is, a pair of electrodes of the positive resistance temperature coefficient heating element can be brought close to each other so that a high output can be obtained. Depending on the situation, there is a possibility that air discharge occurs and smoke or fire may occur, which is extremely dangerous. In addition, by interposing this resistor material here, the safety can be considerably improved, but due to the temporal change of the resistor material in this portion, the voltage is concentrated on a minute portion and the resistance increases, There is a danger of smoke or ignition due to deterioration of the resistor material. The resistor of the part with such danger,
In other words, by protruding the resistor in the thickness direction of the resistor in the vicinity of the boundary between the portion where the pair of electrode bodies overlap in the thickness direction of the resistor and the portion where the pair does not overlap, or the end portion of the electrode body where the overlap occurs. The distance between the electrodes to which a voltage is applied in this portion can be lengthened, and high performance and safety can be maintained even if there is a change over time. In this manner, a high-output positive temperature coefficient of resistance heating element can be realized with a high-resistance resistor having a volume resistivity of 10 3 Ωcm or more.

実施例 以下、本発明の実施例を添付図面に基づいて説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本実施例の正抵抗温度係数発熱体は、例えば、第1図
に示すように、長尺の正抵抗温度係数抵抗体4の上下面
に電極5,6が接着され、さらに両者の上に外装材7,8が外
装されている。この発熱体の電極5,6及び抵抗体4の構
成断面図を第2図に示すが、抵抗体4は、幅方向の中央
部分は厚さ0.4mm薄肉状であるが、両端部分は突出部4
−a,4−bが存しており、この部分にも電極5がこの形
状に追従して密着している。このため、この両端部分で
の電極5,6間の距離L1は電極間距離、即ち0.4mmに抵抗体
の突出部分の、この厚さ方向の突出距離L2を加えた距離
となるため、突出距離L2を適宜設定することにより、発
熱体端部での電極5,6間の距離L1を充分に確保できるた
め、電極端面のバリ等によって生じる空中放電を防止で
き、発煙、発火等の危険性もなく極めて安全である。ま
た、この発熱体端部の抵抗体材料の経時的変化により抵
抗値が低抵抗化したり、結晶成長や熱収縮等により形状
変化が生じても、こうした危険性を有する部分の抵抗体
をこの厚さ方向に突出させることにより、この部分の電
圧印加される電極間距離を長くすることができ、経時的
な変化があっても、高い安全性を保持できるという効果
も有するものである。ここで、この抵抗体の突出部分
の、この厚さ方向の突出距離はこうした安全性を確保す
る適宜な距離でよいが、好ましくは、一対の電極間距離
の10%以上の長さであると効果的である。
As shown in FIG. 1, for example, as shown in FIG. 1, electrodes 5 and 6 are adhered to the upper and lower surfaces of a long positive resistance temperature coefficient resistor 4, Materials 7 and 8 are exterior. FIG. 2 shows a sectional view of the structure of the electrodes 5 and 6 and the resistor 4 of the heating element. The resistor 4 has a thickness of 0.4 mm at the center in the width direction, and both ends have protrusions. 4
−a and 4-b are present, and the electrode 5 follows this shape and closely adheres to this portion. Therefore, the distance L1 between the electrodes 5 and 6 at both ends is the distance between the electrodes, that is, the distance obtained by adding the protruding distance L2 in the thickness direction of the protruding portion of the resistor to 0.4 mm. By appropriately setting L2, the distance L1 between the electrodes 5 and 6 at the end of the heating element can be sufficiently ensured, so that air discharge caused by burrs on the electrode end faces can be prevented, and there is also a danger of smoking and ignition. It is extremely secure. Even if the resistance value of the resistor material at the end of the heating element decreases with time, or the shape changes due to crystal growth, thermal shrinkage, etc., the resistor in such a risky part is formed with this thickness. By protruding in the vertical direction, the distance between electrodes to which a voltage is applied in this portion can be lengthened, and there is also an effect that high security can be maintained even if there is a change over time. Here, the protruding distance in the thickness direction of the protruding portion of the resistor may be an appropriate distance for ensuring such safety, but is preferably 10% or more of the distance between the pair of electrodes. It is effective.

ところで、一対の電極体端部における沿面距離だけを
確保するのであれば、第11図に示すような構造も考えら
れる。均一厚み0.4mmの正抵抗温度係数抵抗体3aの両面
に互いに大きさの異なる電極1a,2aが接着されており、
充分な沿面距離Xが確保されている。抵抗体材料の体積
固有抵抗値は大きく、抵抗体3aのA1,A2部はほとんど発
熱しない状態にあるとは言え、電圧は印加されている。
経時変化において、結晶性重合体の結晶成長、発熱体各
部の熱応力、あるいは導電性微粉末の凝集等によって、
抵抗値や抵抗温度係数の大幅な変化が生じるようにな
り、特にさらに高出力の正抵抗温度係数発熱体の場合、
この沿面部分A1,A2部も発熱量は小さいものの発熱する
ようになり、この部分の微小部分に電圧が集中してい
き、高抵抗化が進行し非常に短かい発熱寿命であった
り、異常過熱、発煙、発火等の危険性を有したりしてい
るという欠点を有していた。
By the way, if only the creepage distance at the ends of the pair of electrode bodies is to be ensured, a structure as shown in FIG. 11 can be considered. Electrodes 1a and 2a having different sizes are bonded to both surfaces of a positive resistance temperature coefficient resistor 3a having a uniform thickness of 0.4 mm,
A sufficient creepage distance X is secured. Although the volume resistivity of the resistor material is large and the A1 and A2 portions of the resistor 3a hardly generate heat, a voltage is applied.
Due to the aging, the crystal growth of the crystalline polymer, the thermal stress of each part of the heating element, or the aggregation of the conductive fine powder, etc.
Significant changes in resistance value and temperature coefficient of resistance will occur, especially in the case of higher output positive temperature coefficient heaters.
The surface portions A1 and A2 also generate a small amount of heat, but generate heat.Voltage concentrates on minute portions of this portion, and the resistance increases, resulting in a very short heating life or abnormal overheating. , Smoke and ignition.

実際、第2図、及び第11図の構造の正抵抗温度係数発
熱体を同じ抵抗温度特性になるように試作し、比較実験
を行った。加速評価のため通常電圧AC100Vの2倍のAC20
0Vで連続通電を行った。第3図に示すように、比較例の
第11図の構造の発熱体は1100hより温度下降が始まり、1
500hにはほとんど発熱しなくなってしまったが、本発明
の第2図の構造の発熱体では、2000h現在においても初
期の温度を維持しており、非常に効果のあることがわか
った。このメカニズムは上記に記した電圧集中現象を本
発明構造で防止したことによると考えられる。また、本
発明の構造では、対抗体の厚さ方向に突出部分を有し、
この突出部分ではほとんど発熱機能がないため、抵抗体
の厚み方向からの機械的な応力に対して、この突出部分
で発熱部分を防止するという効果も有するものである。
Actually, a positive resistance temperature coefficient heating element having the structure shown in FIGS. 2 and 11 was prototyped so as to have the same resistance temperature characteristic, and a comparative experiment was performed. AC20 twice the normal voltage of AC100V for acceleration evaluation
Continuous energization was performed at 0V. As shown in FIG. 3, the temperature of the heating element having the structure of FIG.
Although heat generation hardly occurred at 500 hours, the heating element having the structure shown in FIG. 2 of the present invention maintained the initial temperature even after 2000 hours, and was found to be very effective. This mechanism is considered to be due to the above-mentioned voltage concentration phenomenon being prevented by the structure of the present invention. The structure of the present invention has a protruding portion in the thickness direction of the antibody,
Since the projecting portion has almost no heat generation function, the projecting portion also has the effect of preventing the heating portion from being exposed to mechanical stress in the thickness direction of the resistor.

次に第4図は、銅電極9が抵抗体10の厚さ方向の突出
部分を完全に覆った実施例であるが、銅電極9の均熱効
果により、電極端部での電圧集中現象の防止効果を第2
図の構造の発熱体より高めたものである。ここで、電極
11側に鉄板等の熱負荷体を貼り付けると、電極端部での
電圧集中現象は、さらに高出力にしても発生しない安全
で高寿命の発熱体となるばかりでなく、酸素、湿度等も
抵抗体に透過しない、耐熱・耐湿特性の優れた発熱体を
提供するものである。また、第5図は亜鈴形状の正抵抗
温度係数抵抗体12の両面に一対の電極13,14を配したも
のであり、加工、熱等に対する応力の緩和に効果的であ
る。
Next, FIG. 4 shows an embodiment in which the copper electrode 9 completely covers the protruding portion in the thickness direction of the resistor 10, but the heat concentration effect of the copper electrode 9 causes the voltage concentration phenomenon at the electrode end. Second prevention effect
It is higher than the heating element having the structure shown in the figure. Where the electrodes
If a heat load such as an iron plate is attached to the 11 side, the voltage concentration phenomenon at the electrode end will not only be a safe and long-life heating element that will not occur even if the output is further increased, but also the oxygen, humidity, etc. An object of the present invention is to provide a heating element which does not transmit through a resistor and has excellent heat and moisture resistance. In FIG. 5, a pair of electrodes 13 and 14 are arranged on both surfaces of a dumbbell-shaped positive temperature coefficient resistor 12, which is effective in reducing stresses caused by processing, heat and the like.

この他、第6図のように中央部分を突出させた抵抗体
15の両面に電極16,17を構成するものであってもよく、
この場合、発熱量や分布の調整にも有効である。また、
第7図のように片側のみ突出させた抵抗体18の両面に電
極19,20を構成するものであってもよく、第8図のよう
に、抵抗体21中に電極22を構成し、下方に電極23を構成
するものであってもよい。
In addition, a resistor having a central portion protruded as shown in FIG.
The electrodes 16 and 17 may be formed on both sides of the 15,
In this case, it is also effective in adjusting the calorific value and distribution. Also,
As shown in FIG. 7, electrodes 19 and 20 may be formed on both sides of a resistor 18 protruding only on one side, and as shown in FIG. Alternatively, the electrode 23 may be formed.

このように、本発明の発熱体の構造は、厚さ方向に突
出した部分を有する薄厚状正抵抗温度係数抵抗体の両面
に一対の電極体を構成したものであればどのようなもの
であってもよいが、さらに好ましくは、一対の電極間距
離が適宜設定された距離より離れていない有効発熱部分
と非有効発熱部分との境界の近傍部分の抵抗体をこの厚
さ方向に突出させるのが前記電圧集中現象の防止には効
果的である。また、こうした構造においては、電極のエ
ッジ、バリ等の尖った部分での電界の集中を抑制できる
というメリットも有するものであり、さらに高い安全性
を提供するものである。第9図は、抵抗体24の両面に電
極25,26が構成されているが、抵抗体24の突出部分には
電極25は存在しないが、この上に絶縁材料27,28を外挿
した後に、アルミニウム箔29をさらに貼り付けることに
よっても前記電圧集中現象の防止に同様の効果を奏する
ものである。
As described above, the structure of the heating element of the present invention is not limited as long as a pair of electrode bodies is formed on both surfaces of a thin positive temperature coefficient resistor having a portion protruding in the thickness direction. More preferably, the resistor in the vicinity of the boundary between the effective heat generating portion and the non-effective heat generating portion in which the distance between the pair of electrodes is not more than a predetermined distance is protruded in the thickness direction. However, it is effective in preventing the voltage concentration phenomenon. In addition, such a structure also has the advantage that the concentration of an electric field at a sharp portion such as an edge of an electrode or a burr can be suppressed, and further provides higher safety. FIG. 9 shows that the electrodes 25 and 26 are formed on both surfaces of the resistor 24, but the electrode 25 does not exist on the protruding portion of the resistor 24, but after extrapolating the insulating materials 27 and 28 thereon, The same effect can be obtained by further attaching aluminum foil 29 to prevent the voltage concentration phenomenon.

ところで、正抵抗温度係数抵抗体を構成する材料とし
ては、低密度ポリエチレン、中密度ポリエチレン、高密
度ポリエチレン、リニアポリエチレン、エチレン酢酸ビ
ニル共重合体、エチレンアクリル酸共重合体、アイオノ
マー、ポリプロピレン、ポリアミド、ポリ弗化ビニリデ
ン、ポリエステルさらにはアクリル酸やマレイン酸等の
有機酸変性ポリエチレン等の結晶性重合体とサーマルブ
ラック、ファーネスブラック、チャンネルブラック、ア
セチレンブラック等のカーボンブラックの中で顕著な正
抵抗温度特性を示す導電材料との適宜な組合せであって
よく、さらに他の材料を加えたものであってもよい。し
かしながら、経時的に不安定な抵抗体材料では、本発明
構造の突出部分の体積固有抵抗の低抵抗化により前記効
果も減少することもありうるが、導電性微粉末を結晶性
重合体中に混合分散した後に架橋し、さらに細分化した
導電性微粒子を他の樹脂材料に混合分散することによ
り、導電性微粉末を動きにくくし、抵抗安定性を高める
ことにより、さらに上記安全性、並びに性能を高めるこ
とができる。また、結晶性重合体に有機酸変性の官能基
をもたせることにより、銅、銅合金等の金属電極との接
着性を高めることができ、これにより電極と抵抗体との
密着性が向上するために、均熱効果も増すため、さらに
上記に記した電圧集中等に対する安全性を高められる。
By the way, as a material constituting the positive resistance temperature coefficient resistor, low density polyethylene, medium density polyethylene, high density polyethylene, linear polyethylene, ethylene vinyl acetate copolymer, ethylene acrylic acid copolymer, ionomer, polypropylene, polyamide, Remarkable positive resistance temperature characteristics among crystalline polymers such as polyvinylidene fluoride, polyester, and organic acid-modified polyethylene such as acrylic acid and maleic acid, and carbon blacks such as thermal black, furnace black, channel black, and acetylene black. And any other material may be added. However, in the case of a resistor material which is unstable with time, the above-mentioned effect may be reduced by lowering the volume resistivity of the protruding portion of the structure of the present invention, but the conductive fine powder is contained in the crystalline polymer. Cross-linking after mixing and dispersing, and further dispersing the finely divided conductive fine particles into other resin materials, thereby making the conductive fine powder difficult to move and increasing the resistance stability, thereby further improving the safety and performance. Can be increased. In addition, by providing the crystalline polymer with a functional group modified with an organic acid, it is possible to increase the adhesiveness to a metal electrode such as copper or a copper alloy, thereby improving the adhesiveness between the electrode and the resistor. In addition, since the soaking effect is also increased, the safety against the voltage concentration described above can be further improved.

次に、第10図は本発明の発熱体の製造方法に関する実
施例を示す図である。正抵抗温度係数抵抗体30は一定間
隔で厚さ方向の突出部分を有するように、大面積に、あ
るいは長尺に加工され、これと同時に、あるいはこの後
に電極31,32がこの抵抗体30の形状に追従させて接着加
工される。この後、矢印V1,V2で示される突出部をこの
矢印方向に垂直に切断することにより、第1図、第2図
に示される発熱体と酷似した発熱体を複数個同時に加工
することが可能であり、この切断端面は充分な電極間距
離が確保できているために、万一バリ等あっても、また
加工歪があってもスパーク等起こることなく極めて安全
であり、かつ、高生産性が可能である。この切断方向に
関しては、抵抗体30の厚さ方向に限られることなく、矢
印H方向に水平に切断した後、V1,V2方向に垂直に切断
してもよく、この場合は、切断バリ方向も一対の電極間
方向にならないため、さらに安全になる。また、H方向
と垂直に、かつ水平面方向に切断すると、上方の電極が
複数個になるが、この複数個の電極相互の電極間距離は
充分な距離を確保することが可能であり、また切断バリ
方向も一対の電極間方向にならないため、抵抗体の少な
くとも一方の面上に複数個の電極を構成する新たな高機
能の安全な発熱体の製造方法をも提供するものである。
Next, FIG. 10 is a view showing an embodiment relating to a method for manufacturing a heating element of the present invention. The positive resistance temperature coefficient resistor 30 is processed to have a large area or a long shape so as to have projections in the thickness direction at regular intervals, and at the same time or after this, electrodes 31 and 32 are formed on the resistor 30. Adhesive processing follows the shape. Thereafter, by cutting the protrusions indicated by arrows V1 and V2 perpendicularly to the directions of the arrows, it is possible to simultaneously process a plurality of heating elements very similar to the heating elements illustrated in FIGS. 1 and 2. Since the cut end face has a sufficient distance between the electrodes, it is extremely safe without sparks even if there is a burr, etc. Is possible. The cutting direction is not limited to the thickness direction of the resistor 30, but may be cut horizontally in the direction of arrow H, and then cut vertically in the directions of V1 and V2. Since the direction is not between the pair of electrodes, the safety is further improved. Further, when the electrode is cut in a direction perpendicular to the H direction and in a horizontal plane direction, a plurality of upper electrodes are formed. However, a sufficient distance can be secured between the plurality of electrodes. The present invention also provides a new method of manufacturing a high-performance and safe heating element in which a plurality of electrodes are formed on at least one surface of a resistor because the burr does not coincide with the direction between a pair of electrodes.

発明の効果 以上に述べてきたように、高出力・高温度の正抵抗温
度係数発熱体を実現する場合等に、この一対の電極は互
いに非常に接近させることが必要となるが、この端部等
の電極接近部分では、特に、湿気、気圧、さらには電極
端面のバリ・歪等によっては空中放電し発煙・発火に至
る危険性を有していた。本発明では、こうした危険性を
有する部分の抵抗体をこの厚さ方向に突出させることに
より、この危険性を防止し、またこの部分で生ずる電圧
集中による抵抗体劣化、電極端部より生ずる電界集中等
を抑制するばかりでなく、機械的な応力緩和にも効果を
奏するものである。さらにはこうした多くの効果を高生
産可能な簡易な構造で実現させたものである。こうし
て、長期にわたる優れた性能、及び安全性を実現し、高
出力で長寿命の正抵抗温度係数発熱体を供するものであ
り、実用上極めて有利なものである。
Effect of the Invention As described above, when realizing a high-output, high-temperature, positive-resistance temperature coefficient heating element or the like, this pair of electrodes needs to be very close to each other. In particular, in the vicinity of the electrode, there is a danger that the air is discharged in the air and smoke or fire is caused depending on humidity, air pressure, burrs or distortion of the electrode end face, and the like. In the present invention, the danger is prevented by protruding the resistor in the portion having such danger in the thickness direction, and the resistor is degraded due to the voltage concentration generated in this portion, and the electric field concentration generated from the electrode end portion. In addition to suppressing mechanical stress, it is also effective in mechanical stress relaxation. Further, many of these effects are realized by a simple structure capable of high production. In this way, a long-term excellent performance and safety are realized, and a high-output, long-life positive resistance temperature coefficient heating element is provided, which is extremely advantageous in practical use.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の正抵抗温度係数発熱体の斜
視図、第2図は同発熱体の断面図、第3図は同発熱体の
表面温度の経時的変化を示す特性図、第4図〜第9図は
本発明の他の実施例の正抵抗温度係数発熱体の断面図、
第10図は本発明の正抵抗温度係数発熱体の製造方法の一
実施例を示す断面図、第11図は従来の正抵抗温度係数発
熱体の断面図、第12図は従来の正抵抗温度係数発熱体の
斜視図である。 4,10,12,15,18,21,24,30,……正抵抗温度係数抵抗体、
5,6,9,11,13,14,16,17,19,20,22,23,25,26,31,32……電
極、7,8,27,28……絶縁材、29……アルミニウム板。
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of the heating element, and FIG. 3 is a characteristic diagram showing a change over time of the surface temperature of the heating element. 4 to 9 are cross-sectional views of a positive resistance temperature coefficient heating element according to another embodiment of the present invention;
FIG. 10 is a cross-sectional view showing one embodiment of a method for manufacturing a positive resistance temperature coefficient heating element of the present invention, FIG. 11 is a cross-sectional view of a conventional positive resistance temperature coefficient heating element, and FIG. It is a perspective view of a coefficient heating element. 4,10,12,15,18,21,24,30, ... temperature coefficient positive resistance resistor,
5,6,9,11,13,14,16,17,19,20,22,23,25,26,31,32 …… Electrode, 7,8,27,28 …… Insulation material, 29 …… Aluminum plate.

フロントページの続き (56)参考文献 特開 昭63−307683(JP,A) 特開 昭63−146379(JP,A) 特開 昭63−102193(JP,A) 実開 昭62−49892(JP,U)Continuation of the front page (56) References JP-A-63-307683 (JP, A) JP-A-63-146379 (JP, A) JP-A-63-102193 (JP, A) Jpn. , U)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性微粉末と結晶性重合体よりなる薄厚
状の正抵抗温度係数抵抗体と、この厚さ方向に電圧を印
加すべく設けられた一対の電極体を備え、前記一対の電
極体が前記抵抗体の厚さ方向において重合する部分と重
合していない部分との境界部分、あるいは重合する電極
体端部分の近傍の抵抗体をこの厚さ方向に突出させた正
抵抗温度係数発熱体。
1. A thin positive temperature coefficient resistor made of a conductive fine powder and a crystalline polymer, and a pair of electrode bodies provided to apply a voltage in the thickness direction. A positive resistance temperature coefficient in which the resistor protrudes in the thickness direction of the resistor in the boundary portion between the portion where the electrode body overlaps in the thickness direction of the resistor and the portion where the electrode body does not overlap or in the vicinity of the end portion of the electrode body where the electrode body overlaps. Heating element.
【請求項2】抵抗体は長尺であり、この幅方向の少なく
とも一方の端部において抵抗体材料がこの厚さ方向に突
出した部分を有し、この突出した部分の少なくとも一部
を電極体で覆った特許請求の範囲第1項記載の正抵抗温
度係数発熱体。
2. A resistor is elongated, and at least at one end in the width direction, a resistor material has a portion protruding in the thickness direction, and at least a part of the protruding portion is connected to an electrode body. 2. The heating element according to claim 1, wherein the heating element is covered with a temperature coefficient of positive resistance.
【請求項3】抵抗体の突出部分の、この厚さ方向の突出
距離は一対の電極間距離の10%以上の長さである特許請
求の範囲第1項あるいは第2項記載の正抵抗温度係数発
熱体。
3. The positive resistance temperature according to claim 1, wherein the projecting distance in the thickness direction of the projecting portion of the resistor is at least 10% of the distance between the pair of electrodes. Coefficient heating element.
【請求項4】抵抗体とこの厚さ方向に電圧を印加すべく
設けられた一対の電極体との構成体を電気絶縁材料で外
層し、さらにこの抵抗体の突出部分の少なくとも一部を
金属板で覆った特許請求の範囲第1項〜第3項のいずれ
か一つに記載の正抵抗温度係数発熱体。
4. A structure comprising a resistor and a pair of electrode members provided for applying a voltage in the thickness direction is formed of an outer layer of an electrically insulating material, and at least a part of a protruding portion of the resistor is formed of a metal. The positive temperature coefficient heating element according to any one of claims 1 to 3, which is covered with a plate.
【請求項5】抵抗体の断面形状は亜鈴形状に近い形状で
ある特許請求の範囲第1項〜第3項のいずれか一つに記
載の正抵抗温度係数発熱体。
5. A positive resistance temperature coefficient heating element according to claim 1, wherein a cross-sectional shape of the resistor is close to a dumbbell shape.
【請求項6】導電性微粉末は結晶性重合体中に混合分散
された後架橋され、さらに細分化されてなる特許請求の
範囲第1項〜第3項のいずれか一つに記載の正抵抗温度
係数発熱体。
6. The positive conductive powder according to any one of claims 1 to 3, wherein the conductive fine powder is mixed and dispersed in a crystalline polymer, then crosslinked, and further subdivided. Resistance temperature coefficient heating element.
【請求項7】結晶性重合体の少なくとも一部が有機酸変
性の官能基を有する重合体である特許請求の範囲第1項
〜第3項のいずれか一つに記載の正抵抗温度係数発熱
体。
7. The positive resistance temperature coefficient heat generation according to any one of claims 1 to 3, wherein at least a part of the crystalline polymer is a polymer having a functional group modified with an organic acid. body.
【請求項8】正対抗温度係数抵抗体の体積固有抵抗値が
103Ωcmよりも高抵抗値である特許請求の範囲第1項〜
第3項のいずれか一つに記載の正抵抗温度係数発熱体。
8. The volume resistivity of the directly opposed resistance temperature coefficient resistor is
Claims 1 to 5 having a resistance value higher than 10 3 Ωcm.
4. A heating element having a temperature coefficient of positive resistance according to claim 1.
【請求項9】正抵抗温度係数抵抗体の厚さが1mm以下で
ある特許請求の範囲第1項〜第3のいずれか一つに記載
の正抵抗温度係数発熱体。
9. The positive resistance temperature coefficient heating element according to claim 1, wherein the thickness of the positive resistance temperature coefficient resistance element is 1 mm or less.
【請求項10】導電性微粉末と結晶性重合体よりなる薄
厚状の正抵抗温度係数抵抗体と、この厚さ方向に電圧を
印加すべく設けられた一対の電極体を備え、前記一対の
電極体が前記抵抗体の厚さ方向において重合する部分と
重合していない部分との境界部分、あるいは重合する電
極体端部分の近傍の抵抗体をこの厚さ方向に突出させた
部分を有しており、前記抵抗体とこの厚さ方向に電圧を
印加すべく設けられた一対の電極体との構成体を長尺あ
るいは大面積に加工した後この抵抗体の突出部分で適宜
な大きさに切断されてなる正抵抗温度係数発熱体の製造
方法。
10. A thin-film positive temperature coefficient resistor comprising a conductive fine powder and a crystalline polymer, and a pair of electrodes provided to apply a voltage in the thickness direction. The electrode body has a boundary portion between a portion where the resistor overlaps in the thickness direction of the resistor and a portion where the resistor does not overlap, or a portion where the resistor near the end portion of the electrode body where the resistor overlaps protrudes in the thickness direction. After processing a structure of the resistor and a pair of electrode bodies provided to apply a voltage in the thickness direction to a long or large area, the protrusion of the resistor has an appropriate size. A method for manufacturing a cut positive resistance temperature coefficient heating element.
【請求項11】抵抗体の突出部分を電極体の面方向に切
断されてなる特許請求の範囲第10項に記載の正抵抗温度
係数発熱体の製造方法。
11. The method according to claim 10, wherein the protruding portion of the resistor is cut in a plane direction of the electrode body.
JP63321013A 1988-12-19 1988-12-19 Positive resistance temperature coefficient heating element and method of manufacturing the same Expired - Lifetime JP2643398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321013A JP2643398B2 (en) 1988-12-19 1988-12-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321013A JP2643398B2 (en) 1988-12-19 1988-12-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02165588A JPH02165588A (en) 1990-06-26
JP2643398B2 true JP2643398B2 (en) 1997-08-20

Family

ID=18127817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321013A Expired - Lifetime JP2643398B2 (en) 1988-12-19 1988-12-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2643398B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249892U (en) * 1985-09-17 1987-03-27
JPH07109787B2 (en) * 1986-10-20 1995-11-22 松下電器産業株式会社 Positive resistance temperature coefficient heating element
JPH07107870B2 (en) * 1986-12-09 1995-11-15 松下電器産業株式会社 Positive resistance temperature coefficient heating element
JP2636243B2 (en) * 1987-06-05 1997-07-30 松下電器産業株式会社 Positive resistance temperature coefficient heating element

Also Published As

Publication number Publication date
JPH02165588A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
EP0815568B1 (en) Electrical device
JPH049361B2 (en)
JPH0690962B2 (en) Method for manufacturing PTC element
JP2000188206A (en) Polymer ptc composition and ptc device
JP2643398B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPS63146380A (en) Positive resistane-temperature coefficient heater
JP3092210B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP3018580B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2773244B2 (en) Manufacturing method of positive resistance temperature coefficient heating element
JPH0217609A (en) Positive resistance temperature coefficient heating element
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JP2988011B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2743388B2 (en) Positive resistance temperature coefficient heating element
JPS6242460Y2 (en)
JP3018586B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH0785436B2 (en) Positive resistance temperature coefficient heating element
JP3125330B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPS61143989A (en) Heat generating body
JPH07109787B2 (en) Positive resistance temperature coefficient heating element
JPS6132377A (en) Heater
JPS63146379A (en) Positive resistane-temperature coefficient heater
JPH0834139B2 (en) Lightning arrester
JPH05135856A (en) Heating unit with positive resistance temperature coefficient