JP3018586B2 - Positive resistance temperature coefficient heating element and method of manufacturing the same - Google Patents

Positive resistance temperature coefficient heating element and method of manufacturing the same

Info

Publication number
JP3018586B2
JP3018586B2 JP3147407A JP14740791A JP3018586B2 JP 3018586 B2 JP3018586 B2 JP 3018586B2 JP 3147407 A JP3147407 A JP 3147407A JP 14740791 A JP14740791 A JP 14740791A JP 3018586 B2 JP3018586 B2 JP 3018586B2
Authority
JP
Japan
Prior art keywords
electrodes
resistor layer
pair
temperature coefficient
positive resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3147407A
Other languages
Japanese (ja)
Other versions
JPH04370902A (en
Inventor
誠之 寺門
和典 石井
武史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3147407A priority Critical patent/JP3018586B2/en
Publication of JPH04370902A publication Critical patent/JPH04370902A/en
Application granted granted Critical
Publication of JP3018586B2 publication Critical patent/JP3018586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、暖房器具や一般加熱器
具に用いられる正抵抗温度係数発熱体およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element having a positive temperature coefficient of resistance used for heating appliances and general heating appliances, and a method for producing the same.

【0002】[0002]

【従来の技術】従来のこの種の技術としては、特開昭6
3−102193号公報や図3に示すように結晶性重合
体中に導電性微粉末を分散させた正抵抗温度係数抵抗体
1の表裏面に一対の電極2,3を形成し、これら全体を
被覆する電気絶縁層4,5を熱接着性のホットメルト層
6,7を介して形成するものがあった。このような正抵
抗温度係数発熱体は一対の電極間の距離を抵抗体の電圧
破壊限界まで接近させることが可能であり、そのために
電極間の熱伝達性能が大幅に改善され、熱不平衡によっ
て出力が制約を受けることは事実上解消されるものであ
った。
2. Description of the Related Art A conventional technique of this kind is disclosed in
As shown in JP-A-3-102193 and FIG. 3, a pair of electrodes 2 and 3 are formed on the front and back surfaces of a positive resistance temperature coefficient resistor 1 in which conductive fine powder is dispersed in a crystalline polymer. In some cases, the electrically insulating layers 4 and 5 to be coated are formed via hot-melt hot-melt layers 6 and 7. Such a positive resistance temperature coefficient heating element can make the distance between a pair of electrodes close to the voltage breakdown limit of the resistor, so that the heat transfer performance between the electrodes is greatly improved, and due to thermal imbalance, The constraint on output was virtually eliminated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の正抵抗温度係数発熱体は高出力性能が極め
てすぐれたものであるが、電極間隔が非常に接近してい
ることにより、特に電極端部における高電界、空気や湿
度、さらには凹凸等の形状要因などによって局所カーボ
ナイズを生じ、耐電圧破壊から発火発煙に至る危険性が
あった。また、電極端部におけるこのような現象の発生
を防止するために、電極端部において抵抗体の露出部を
形成し、沿面距離を確保することと、電気絶縁層による
密封構成が図られている。しかし、電極から露出した位
置にある抵抗体は電気的にも熱的にも不安定なため電流
経路や電圧勾配が確定せず、導通経路の不連続点が発生
しやすい状態にある。ここに、空気や湿度が介在する
と、露出部に集中する熱応力歪みとの相乗効果によって
マイクロクラックが発生しやすく、これをきっかけとし
て導通経路の不連続点が発生する。不連続点には電圧が
集中するので不連続点は成長し、やがて抵抗体内部に波
及して、発熱体全体を損傷し、正常な発熱機能を損なう
現象を避けることができなかった。特に、上記のような
正抵抗温度係数発熱体は、いかに強固な外装構造を施し
ても、電極端部にはわずかな空隙層が存在し、この空隙
層のトンネルを通じて劣化が徐々に進行することを避け
ることができなかった。
However, although the above-described conventional positive resistance temperature coefficient heating element has a very high output performance, it has a particularly short distance between the electrodes. Local carbonization occurred due to a high electric field in the extreme part, air and humidity, and shape factors such as unevenness, and there was a danger of breakdown from breakdown voltage to ignition and smoke. Further, in order to prevent the occurrence of such a phenomenon at the electrode end, an exposed portion of the resistor is formed at the electrode end to secure a creepage distance, and a sealing configuration using an electric insulating layer is achieved. . However, since the resistor at the position exposed from the electrode is electrically and thermally unstable, the current path and the voltage gradient are not determined, and a discontinuous point in the conduction path is easily generated. Here, if air or humidity is present, microcracks are likely to occur due to a synergistic effect with thermal stress strain concentrated on the exposed portion, and this will trigger discontinuous points in the conduction path. Since the voltage is concentrated at the discontinuous point, the discontinuous point grows, and eventually spreads inside the resistor, damaging the entire heating element and impairing the normal heating function. In particular, the positive resistance temperature coefficient heating element as described above has a slight gap layer at the electrode end, no matter how strong the exterior structure is applied, and the deterioration gradually progresses through the tunnel of this gap layer. Could not be avoided.

【0004】本発明は上記従来の課題を解決し、長期の
使用に耐え、しかも安全性の高い正抵抗温度係数発熱体
の構成およびその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a configuration of a positive resistance temperature coefficient heating element that can withstand long-term use and that is highly safe and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の正抵抗温度係数発熱体は、結晶性重合体中
に導電性微粉末を添加してなる正抵抗温度係数の抵抗体
層と、その抵抗体層の表裏の面に形成された一対の面対
向する電極と、上記抵抗体層と上記電極の全体を表裏の
面から外装する一対のホットメルト層と一対の電気絶縁
層と、上記一対の電極に接続された給電端子とからな
り、上記一対の電極の少なくとも一方からはみ出し、上
記電極間の電流経路に介在するように形成される上記抵
抗体層の側端部の沿面距離が上記抵抗体層の厚みより大
きい正抵抗温度係数発熱体において、上記抵抗体層の側
端部が外縁方向に薄肉化された勾配を有し、その勾配に
沿って上記ホットメルト層と上記電気絶縁層で密封され
た構成とする。
Means for Solving the Problems In order to achieve the above object, a positive resistance temperature coefficient heating element according to the present invention is a resistor having a positive resistance temperature coefficient obtained by adding a conductive fine powder to a crystalline polymer. Layers, a pair of opposed electrodes formed on the front and back surfaces of the resistor layer, a pair of hot-melt layers and a pair of electrical insulating layers that cover the entire resistor layer and the electrodes from the front and back surfaces And a power supply terminal connected to the pair of electrodes , and protrudes from at least one of the pair of electrodes.
The resistor formed so as to intervene in the current path between the electrodes
In the positive resistance temperature coefficient heating element in which the creepage distance of the side end of the antibody layer is larger than the thickness of the resistor layer, the side end of the resistor layer has a slope that is thinned in the outer edge direction. Along with the hot melt layer and the electrical insulating layer.

【0006】[0006]

【作用】この技術的手段による作用は次のようになる。
すなわち、抵抗体層内部に比べ耐電圧破壊特性が低下し
がちな抵抗体層の側端部の表面抵抗を沿面距離によって
増大させ、耐電圧特性を改善する。また、抵抗体層の側
端部の薄肉化する勾配は、一対のホットメルト層と一対
の電気絶縁層が積層される時の段差を解消するので電極
端部への空気あるいは湿度の流入経路が遮断され、電極
端部の抵抗体の露出部分が劣化する主要要因を断つこと
となる。
The operation of this technical means is as follows.
That is, the surface resistance at the side end of the resistor layer, which tends to have lower withstand voltage characteristics than inside the resistor layer, is increased by the creepage distance, thereby improving the withstand voltage characteristics. In addition, the slope at which the side end of the resistor layer is thinned eliminates the step when the pair of hot melt layers and the pair of electric insulating layers are stacked, so that the flow path of air or humidity to the end of the electrode is reduced. It is cut off and the main cause of deterioration of the exposed portion of the resistor at the electrode end is cut off.

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0008】(実施例1)本実施例の正抵抗温度係数発
熱体は、図1に示すように、幅10mmの電極8と幅20
mmの電極9の間に、正抵抗温度係数抵抗体材料を押し出
しつつ、熱ロールで電極を溶着することにより、厚み
0.5mm、幅15mm、抵抗体側端部2.5mmの抵抗体層
10を形成した。次に、これを200mmの長さに切断し
た後、切断部においても幅2.5mmの側端部を形成する
ために電極の一部を削除した。さらに、直径2.0mmの
ニッケルメッキ銅線からなる給電端子11、12を電極
8、9の端末に溶接し、抵抗体層10の側端部を結晶性
重合体の融点の±30℃で加熱してその厚みを外縁方向
に薄肉化された勾配に加工した。次に、ホットメルト層
13とポリエステルフィルムからなる電気絶縁層14を
用いて抵抗体層10を挟み込むようにして、180℃の
ゴムロールにて加圧熱接着した。この結果、図1に示す
ように抵抗体層10がホットメルト層13と電気絶縁層
14によって空気層が介在する余地のない状態で密封さ
れる正抵抗温度係数発熱体を完成した。なお、図1では
上側のホットメルト層13および電気絶縁層14は省略
して示している。
(Embodiment 1) As shown in FIG. 1, a heating element having a temperature coefficient of positive resistance according to this embodiment has an electrode 8 having a width of 10 mm and a width of 20 mm.
While extruding a positive resistance temperature coefficient resistor material between the electrodes 9 of mm, the electrodes are welded by a hot roll to form a resistor layer 10 having a thickness of 0.5 mm, a width of 15 mm, and a resistor side end of 2.5 mm. Formed. Next, this was cut into a length of 200 mm, and a part of the electrode was also removed in order to form a side end having a width of 2.5 mm in the cut portion. Further, the power supply terminals 11 and 12 made of nickel-plated copper wires having a diameter of 2.0 mm were welded to the terminals of the electrodes 8 and 9 and the side ends of the resistor layer 10 were heated at ± 30 ° C. of the melting point of the crystalline polymer. Then, the thickness thereof was processed into a gradient thinned in the outer edge direction. Next, the hot melt layer 13 and the electrical insulating layer 14 made of a polyester film were used to sandwich the resistor layer 10, and pressure-bonded with a 180 ° C. rubber roll. As a result, as shown in FIG. 1, a positive resistance temperature coefficient heating element was completed in which the resistor layer 10 was hermetically sealed by the hot melt layer 13 and the electric insulating layer 14 with no room for an air layer to intervene. In FIG. 1, the upper hot melt layer 13 and the electric insulating layer 14 are omitted.

【0009】なお、電極8,9は厚さ35μmの銅箔を
使用し、正抵抗温度係数の抵抗体層10は結晶性重合体
である高密度ポリエチレン樹脂にファーネス系導電性カ
ーボンブラックを28%添加したものを用い、ホットメ
ルト層13には融点が140℃のポリエステル樹脂を用
いたが、電極、結晶性重合体、カーボンブラック、ホッ
トメルト層、電気絶縁層、給電端子に関しては、ここに
示したものに限定されるものではなく、同等の効果を奏
する材料すべてが利用できるものである。
The electrodes 8 and 9 are made of copper foil having a thickness of 35 μm, and the resistor layer 10 having a positive resistance temperature coefficient is made of a high-density polyethylene resin which is a crystalline polymer and 28% of a furnace-based conductive carbon black. A polyester resin having a melting point of 140 ° C. was used for the hot melt layer 13. The electrodes, crystalline polymer, carbon black, hot melt layer, electric insulating layer, and power supply terminal are shown here. The materials are not limited to those described above, and all materials having the same effect can be used.

【0010】本実施例の発熱体にAC100Vを印加し
て通電試験を実施した結果、1万4千時間経過時点にお
いて、50台のサンプル全数が正常な発熱機能を維持し
ている。
[0010] As a result of conducting an energization test by applying AC 100 V to the heating element of this embodiment, after 14,000 hours, all 50 samples maintain a normal heating function.

【0011】(実施例2)本実施例の正抵抗温度係数発
熱体は、図2に示すように、幅10mmの電極8と幅20
mmの電極9の間に、正抵抗温度係数抵抗体材料を押し出
しつつ、熱ロールで電極を溶着することにより、厚み
0.5mm、幅15mm、抵抗体側端部2.5mmの抵抗体層
10を形成した。次に、これを200mmの長さに切断し
た後、切断部においても幅2.5mmの側端部を形成する
ために電極の一部を削除した。さらに、側端部を薄肉化
した厚み0.3mm、幅2.5mmのニッケルメッキ銅板か
らなる給電端子15、16を電極8、9の端末に溶接
し、抵抗層10の側端部を結晶性重合体の融点の±30
℃で加熱してその厚みを外縁方向に薄肉化された勾配に
加工した。次に、120℃の予熱装置に通した後に、ホ
ットメルト層13とポリエステルフィルムの電気絶縁層
14を用いて、抵抗体層10を挟み込むようにして16
0℃のゴムロールにて加圧熱接着した。この結果、図2
に示すように、抵抗体層と給電端子の側端部がホットメ
ルト層13と、電気絶縁層14によって空気層が介在す
る余地のない状態で密封封止された正抵抗温度係数発熱
体を得た。なお、図2では上側のホットメルト層13お
よび電気絶縁層14は省略して示している。
(Embodiment 2) As shown in FIG. 2, a heating element having a temperature coefficient of positive resistance according to this embodiment has an electrode 8 having a width of 10 mm and a width of 20 mm.
While extruding a positive resistance temperature coefficient resistor material between the electrodes 9 of mm, the electrodes are welded by a hot roll to form a resistor layer 10 having a thickness of 0.5 mm, a width of 15 mm, and a resistor side end of 2.5 mm. Formed. Next, this was cut into a length of 200 mm, and a part of the electrode was also removed in order to form a side end having a width of 2.5 mm in the cut portion. Further, the power supply terminals 15 and 16 made of nickel-plated copper plates having a thickness of 0.3 mm and a width of 2.5 mm whose side ends are thinned are welded to the terminals of the electrodes 8 and 9, and the side ends of the resistance layer 10 are made of crystalline. ± 30 of the melting point of the polymer
It heated at ℃, and processed the thickness into the gradient thinned in the outer edge direction. Next, after passing through a preheating device at 120 ° C., the hot melt layer 13 and the electric insulating layer 14 of a polyester film are used to sandwich
Pressure bonding was performed with a rubber roll at 0 ° C. As a result, FIG.
As shown in (1), a positive-resistance temperature coefficient heating element whose side ends of the resistor layer and the power supply terminal are hermetically sealed by the hot melt layer 13 and the electric insulating layer 14 in a state where there is no room for an air layer to intervene is obtained. Was. In FIG. 2, the upper hot melt layer 13 and the electrical insulating layer 14 are omitted.

【0012】この場合、加圧熱接着温度は非常に重要で
あり、抵抗体を構成する結晶性重合体の融点近傍までの
予熱と、融点を越える瞬時のロールによる加圧と、瞬時
のロールによる加圧によって熱接着できるホットメルト
接着層が不可欠である。ホットメルト層の融点は結晶性
重合体の融点よりやや低い材料が加工性において良好な
結果が得られる。本実施例では、電極15、16には厚
さ35μmの銅箔を使用し、抵抗体層10は結晶性重合
体である高密度ポリエチレン樹脂にファーネス系導電性
カーボンブラックを28%添加したものを用い、ホット
メルト層13には融点が110℃の低密度ポリエチレン
を用いた。なお、電極、結晶性重合体、カーボンブラッ
ク、ホットメルト層、電気絶縁層、給電端子に関して
は、ここに示したものに限定されるものではなく、同等
の効果を奏する材料すべてが利用できることは当然であ
る。
In this case, the pressure and heat bonding temperature is very important, and the preheating of the crystalline polymer constituting the resistor to near the melting point, the instantaneous pressurization by the roll exceeding the melting point, and the instantaneous roll A hot-melt adhesive layer that can be thermally bonded by pressure is indispensable. A material having a melting point of the hot melt layer slightly lower than the melting point of the crystalline polymer gives good results in workability. In the present embodiment, a copper foil having a thickness of 35 μm is used for the electrodes 15 and 16, and the resistor layer 10 is made of a high-density polyethylene resin which is a crystalline polymer to which 28% of furnace conductive carbon black is added. A low-density polyethylene having a melting point of 110 ° C. was used for the hot melt layer 13. The electrodes, the crystalline polymer, the carbon black, the hot melt layer, the electrical insulating layer, and the power supply terminal are not limited to those shown here, and all materials having the same effect can be used. It is.

【0013】本実施例の正抵抗温度係数発熱体を実施例
1と同条件で通電試験を実施したところ、1万2千時間
経過時点において、86台のサンプル全数が正常な発熱
機能を維持していることが確認されている。比較例とし
て給電端子の側端部を薄肉化せず、角状の給電端子を有
するサンプル120台について同条件で通電試験を実施
したところ4千から1万4千時間までの間で、65台が
発熱温度が低下する現象がみられた。
When a heating test was performed on the positive resistance temperature coefficient heating element of the present embodiment under the same conditions as in the first embodiment, after 12,000 hours, all 86 samples maintained a normal heating function. Has been confirmed. As a comparative example, an energization test was performed under the same conditions on 120 samples having a square power supply terminal without thinning the side end of the power supply terminal. As a result, 65 samples were obtained from 4,000 to 14,000 hours. However, the phenomenon that the exothermic temperature was lowered was observed.

【0014】[0014]

【発明の効果】以上に述べてきたように本発明の正抵抗
温度係数発熱体およびその製造方法によれば、次の効果
が得られる。
As described above, according to the positive temperature coefficient heating element of the present invention and the method of manufacturing the same, the following effects can be obtained.

【0015】(1)抵抗体層の側端部の厚みを外縁方向
に薄肉化することにより密封性が向上し、高湿度環境に
おいても長期の使用に耐える正抵抗温度係数発熱体が得
られる。
(1) By reducing the thickness of the side end portion of the resistor layer in the outer edge direction, the sealing performance is improved, and a positive resistance temperature coefficient heating element that can be used for a long time even in a high humidity environment can be obtained.

【0016】(2)抵抗体層の側端部を結晶性重合体の
融点の±30℃で加熱することにより厚みが外縁方向に
薄肉化された勾配に加工できる。
(2) By heating the side end portions of the resistor layer at ± 30 ° C. of the melting point of the crystalline polymer, the thickness can be processed into a gradient whose thickness is reduced in the outer edge direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の正抵抗温度係数発熱体の一
部断面斜視図
FIG. 1 is a partial cross-sectional perspective view of a positive resistance temperature coefficient heating element according to an embodiment of the present invention.

【図2】他の実施例の正抵抗温度係数発熱体の一部断面
斜視図
FIG. 2 is a partial cross-sectional perspective view of a positive resistance temperature coefficient heating element of another embodiment.

【図3】従来の正抵抗温度係数発熱体の一部断面斜視図FIG. 3 is a partial cross-sectional perspective view of a conventional positive resistance temperature coefficient heating element.

【符号の説明】[Explanation of symbols]

8,9 電極 10 抵抗体層 11,12 給電端子 13 ホットメルト層 14 電気絶縁層 15,16 給電端子 8, 9 electrode 10 resistor layer 11, 12 power supply terminal 13 hot melt layer 14 electric insulating layer 15, 16 power supply terminal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−102193(JP,A) 特開 昭55−25499(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01C 7/02 - 7/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-102193 (JP, A) JP-A-55-25499 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01C 7/02-7/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶性重合体中に導電性微粉末を添加して
なる正抵抗温度係数の抵抗体層と、その抵抗体層の表裏
の面に形成された一対の面対向する電極と、上記抵抗体
層と上記電極の全体を表裏の面から外装する一対のホッ
トメルト層と一対の電気絶縁層と、上記一対の電極に接
続された給電端子からなり、上記一対の電極の少なくと
も一方からはみ出し、上記電極間の電流経路に介在する
ように形成される上記抵抗体層の側端部の沿面距離が、
上記抵抗体層厚みより大きい正抵抗温度係数発熱体にお
いて、上記抵抗体層の側端部が外縁方向に薄肉化された
勾配を有し、その勾配に沿って上記ホットメルト層と上
記電気絶縁層で密封されたことを特徴とする正抵抗温度
係数発熱体。
1. A resistor layer having a positive resistance temperature coefficient obtained by adding a conductive fine powder to a crystalline polymer, and a pair of opposed electrodes formed on the front and back surfaces of the resistor layer, It consists of a pair of hot-melt layers and a pair of electrical insulating layers that cover the entirety of the resistor layer and the electrodes from the front and back surfaces, and a power supply terminal connected to the pair of electrodes , and at least the pair of electrodes .
Protrudes from one side and intervenes in the current path between the electrodes
Creepage distance of the side end of the resistor layer formed as
In the heating element having a positive resistance temperature coefficient larger than the thickness of the resistor layer, a side edge of the resistor layer has a slope whose thickness is reduced in an outer edge direction, and the hot melt layer and the electrical insulating layer are along the slope. A positive resistance temperature coefficient heating element characterized by being sealed with:
【請求項2】結晶性重合体中に導電性微粉末を添加して
なる正抵抗温度係数の抵抗体層と、その抵抗体層の表裏
の面に形成された一対の面対向する電極と、上記抵抗体
層と上記電極の全体を表裏の面から外装する一対のホッ
トメルト層と一対の電気絶縁層と、上記一対の電極に接
続された給電端子からなり、上記一対の電極の少なくと
も一方からはみ出し、上記電極間の電流経路に介在する
ように形成される上記抵抗体層の側端部の沿面距離が、
上記抵抗体層厚みより大きい正抵抗温度係数発熱体にお
いて、上記抵抗体層の側端部および上記給電端子の側端
部が外縁方向に薄肉化された勾配を有し、その勾配に沿
って上記ホットメルト層と上記電気絶縁層で密封された
ことを特徴とする正抵抗温度係数発熱体。
2. A resistor layer having a positive resistance temperature coefficient obtained by adding a conductive fine powder to a crystalline polymer, and a pair of opposed electrodes formed on the front and back surfaces of the resistor layer, It consists of a pair of hot-melt layers and a pair of electrical insulating layers that cover the entirety of the resistor layer and the electrodes from the front and back surfaces, and a power supply terminal connected to the pair of electrodes , and at least the pair of electrodes .
Protrudes from one side and intervenes in the current path between the electrodes
Creepage distance of the side end of the resistor layer formed as
In the heating element having a positive resistance temperature coefficient larger than the thickness of the resistor layer, a side end of the resistor layer and a side end of the power supply terminal have a slope whose thickness is reduced in an outer edge direction. A heating element having a positive resistance temperature coefficient, which is sealed by a hot melt layer and the electric insulating layer.
【請求項3】結晶性重合体中に導電性微粉末を添加して
なる正抵抗温度係数の抵抗体層の表裏の面に面対向する
一対の電極を溶着し、その電極の少なくとも一方からは
み出し、上記電極間の電流経路に介在するように形成さ
れる上記抵抗体層の側端部の沿面距離を、上記抵抗体層
厚みより大きくし、上記電極に給電端子を溶接し、上記
抵抗体層の側端部を上記結晶性重合体の融点の±30℃
に加熱して上記抵抗体の側端部の厚みを外縁方向に薄肉
化された勾配とし、上記電極の全体を表裏の面から一対
のホットメルト層と一対の電気絶縁層で密封する請求項
1項記載の正抵抗温度係数発熱体の製造方法。
3. A pair of electrodes facing each other on the front and back surfaces of a positive resistance temperature coefficient resistor layer obtained by adding conductive fine powder to a crystalline polymer , and at least one of the electrodes is welded.
And formed so as to intervene in the current path between the electrodes.
The creepage distance of the side edge of the resistor layer is larger than the thickness of the resistor layer, a power supply terminal is welded to the electrode, and the side edge of the resistor layer is ± 10% of the melting point of the crystalline polymer. 30 ° C
The thickness of the side end portion of the resistor is reduced so as to be thinner in the outer edge direction, and the whole of the electrode is sealed from the front and back surfaces with a pair of hot melt layers and a pair of electrical insulating layers. The method for producing a positive resistance temperature coefficient heating element according to the item.
【請求項4】結晶性重合体中に導電性微粉末を添加して
なる正抵抗温度係数の抵抗体層の表裏の面に側端部が外
縁方向に薄肉化された勾配の給電端子を有した面対向す
る一対の電極を溶着し、その電極の少なくとも一方から
はみ出し、上記電極間の電流経路に介在するように形成
される上記抵抗体層の側端部の沿面距離を上記抵抗体層
厚みより大きくし、上記抵抗体層の側端部を上記結晶性
重合体の融点の±30℃に加熱して上記抵抗体の側端部
の厚みを外縁方向に薄肉化された勾配とし、上記電極の
全体を表裏の面から一対のホットメルト層と一対の電気
絶縁層で密封する請求項2項記載の正抵抗温度係数発熱
体の製造方法。
4. A front surface and a back surface of a resistor layer having a positive resistance temperature coefficient obtained by adding a conductive fine powder to a crystalline polymer and having a slope power supply terminal whose side end is thinned toward an outer edge. Welded a pair of electrodes facing each other, from at least one of the electrodes
Extruded, formed so as to intervene in the current path between the above electrodes
The creepage distance of the side edge portion of the resistor layer to be formed is larger than the thickness of the resistor layer, and the side edge portion of the resistor layer is heated to ± 30 ° C. of the melting point of the crystalline polymer to form the resistor. 3. The temperature coefficient of positive resistance according to claim 2, wherein the thickness of the side end portion is a gradient reduced in the outer edge direction, and the whole of the electrode is sealed from the front and back surfaces with a pair of hot melt layers and a pair of electric insulating layers. Heating element manufacturing method.
JP3147407A 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same Expired - Fee Related JP3018586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147407A JP3018586B2 (en) 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147407A JP3018586B2 (en) 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04370902A JPH04370902A (en) 1992-12-24
JP3018586B2 true JP3018586B2 (en) 2000-03-13

Family

ID=15429602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147407A Expired - Fee Related JP3018586B2 (en) 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3018586B2 (en)

Also Published As

Publication number Publication date
JPH04370902A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
EP1911047B1 (en) Circuit protection device having thermally coupled mov overvoltage element and pptc overcurrent element
US6757963B2 (en) Method of joining components using a silver-based composition
JPH0616442B2 (en) Organic positive temperature coefficient thermistor
JP3018586B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
WO2022073359A1 (en) Low-voltage controlled fuse
JPH0723863Y2 (en) Thermal fuse
JPS63146380A (en) Positive resistane-temperature coefficient heater
JPS6134235B2 (en)
JPS6242460Y2 (en)
JPH04365303A (en) Heating element of positive resistance-temperature coefficient and manufacture thereof
JP2663935B2 (en) Plate-shaped ceramic heater and method of manufacturing the same
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JP4196582B2 (en) Electrical fuse element and manufacturing method thereof
JP2773244B2 (en) Manufacturing method of positive resistance temperature coefficient heating element
JPH07201516A (en) Thermistor
CN220325844U (en) Heating chip and heating floor
JPH05109465A (en) Positive-resistance temperature coefficient heating element and manufacture thereof
JPH09199302A (en) Chip thermistor and its manufacture
JPS63146379A (en) Positive resistane-temperature coefficient heater
JP2643398B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH02148681A (en) Positive resistance-temperature coefficient heater
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH10270204A (en) Organic ptc composite material
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JPH09246013A (en) Chip ptc thermistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees