JP2743388B2 - Positive resistance temperature coefficient heating element - Google Patents

Positive resistance temperature coefficient heating element

Info

Publication number
JP2743388B2
JP2743388B2 JP16540488A JP16540488A JP2743388B2 JP 2743388 B2 JP2743388 B2 JP 2743388B2 JP 16540488 A JP16540488 A JP 16540488A JP 16540488 A JP16540488 A JP 16540488A JP 2743388 B2 JP2743388 B2 JP 2743388B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive
resistance temperature
resistance
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16540488A
Other languages
Japanese (ja)
Other versions
JPH0215602A (en
Inventor
和典 石井
誠之 寺門
國雄 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16540488A priority Critical patent/JP2743388B2/en
Publication of JPH0215602A publication Critical patent/JPH0215602A/en
Application granted granted Critical
Publication of JP2743388B2 publication Critical patent/JP2743388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具および、一般の加熱装置として有
用な正抵抗温度係数発熱体に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device and a positive resistance temperature coefficient heating element useful as a general heating device.

従来の技術 従来の正の抵抗温度係数をもつ発熱体は、例えば特公
昭57−43995号公報や特公昭55−40161号公報に示されて
いるような構成であり、一対の電極間の抵抗体の正抵抗
温度特性により適宜な温度に自己制御されているもので
あった。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance has a configuration as shown in, for example, Japanese Patent Publication No. 57-43995 or Japanese Patent Publication No. 55-40161, in which a resistor between a pair of electrodes is used. Was self-controlled to an appropriate temperature by the positive resistance temperature characteristic.

しかし、特に大きな電力密度や高温度が要求される場
合においては、発熱体自体の温度分布を一様にするため
に一対の電極間方向の温度分布を常に良好にすることが
不可欠であり、その解決策として特公昭62−59515号公
報や第3図に示すように一対の電極間距離を互いに接近
させて構成する方法が講じられた。第3図において、
1、2は互いに接近して設けられた一対の平行平板電極
であり、この間に結晶性重合体に導電性微粉末を混合分
散して形成した抵抗体3を配することにより高出力の正
抵抗温度係数発熱体を現出する可能性が見出された。
However, especially when a large power density or high temperature is required, it is essential to always make the temperature distribution between the pair of electrodes good in order to make the temperature distribution of the heating element itself uniform. As a solution, as shown in Japanese Patent Publication No. Sho 62-59515 and FIG. 3, a method is adopted in which the distance between a pair of electrodes is made closer to each other. In FIG.
Reference numerals 1 and 2 denote a pair of parallel plate electrodes provided close to each other, and a resistor 3 formed by mixing and dispersing a conductive fine powder in a crystalline polymer is disposed between the parallel plate electrodes. The possibility of exposing a temperature coefficient heating element has been found.

発明が解決しようとする課題 しかしながら上記のような従来の正抵抗温度係数発熱
体は、高出力を現出するための構造としては非常に優れ
ていたが、カーボンブラック等の比較的低抵抗の導電性
微粉末を混合分散することによって構成される正抵抗温
度係数抵抗体の耐電圧破壊特性や、非常に高抵抗が要求
される体積固有抵抗値の領域等を考慮すると、解決しな
ければならない多くの課題を有していた。電極間隔が非
常に接近した正抵抗温度係数発熱体を構成するために
は、耐電圧破壊特性に優れた導電性微粉末を選定するだ
けでなく、十分に大きい正の抵抗温度特性を得ることに
よって、ピーク抵抗値を越えて暴走することのないよう
に配慮することが不可欠であった。また経時変化におい
て、結晶性重合体の結晶成長、発熱体各部の熱応力、あ
るいは導電性微粉末の凝集等によって、抵抗値や抵抗温
度係数の大幅な変化が生じるようになり、温度と電力の
安定性に欠け、さらには重合体の劣化に伴うマイクロク
ラックによりスパークが発生したり、非常に短かい発熱
寿命であったり、異常過熱、発煙、発火等の危険性を有
したりしており、実用上の許容範囲から大幅に外れるも
のであった。発熱体としては、ライフエンド時までの安
全性を図っていくことが最優先となるが、こうした安全
性のメカニズムに関して、全く明確になっておらず、異
常過熱、発煙、発火等の危険性のない、安全で高出力な
正抵抗温度係数発熱体を作り出すことができなかった。
Problems to be Solved by the Invention However, the conventional positive temperature coefficient heating element as described above is very excellent as a structure for producing high output, but has a relatively low resistance conductive material such as carbon black. Considering the withstand voltage breakdown characteristics of the positive resistance temperature coefficient resistor composed by mixing and dispersing the conductive fine powder, and the region of the volume resistivity where extremely high resistance is required, many problems must be solved. Had the problem of. In order to construct a heating element with a positive resistance temperature coefficient in which the electrode spacing is very close, not only must a conductive fine powder with excellent withstand voltage breakdown characteristics be selected, but also by obtaining a sufficiently large positive resistance temperature characteristic Therefore, it was essential to take care not to runaway beyond the peak resistance value. Further, in the course of aging, the resistance value and the temperature coefficient of resistance significantly change due to the crystal growth of the crystalline polymer, the thermal stress of each part of the heating element, or the aggregation of the conductive fine powder, and the temperature and the power Lack of stability, sparks due to micro cracks due to polymer deterioration, very short heat generation life, abnormal overheating, smoke, ignition, etc. This was far outside the practically acceptable range. As a heating element, the highest priority is to ensure safety until the end of life.However, such a safety mechanism has not been clarified at all, and there is a danger of abnormal overheating, smoking, and ignition. No safe, high power positive temperature coefficient of resistance heating element could be created.

本発明はかかる課題を解決し、実用に耐え得る優れた
安全性を実現できる正抵抗温度係数発熱体の材料構成を
提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a material configuration of a positive temperature coefficient heating element capable of realizing excellent safety that can withstand practical use.

課題を解決するための手段 上記課題を解決するために、本発明の正抵抗温度係数
発熱体は、導電性微粉末と結晶性重合体よりなる厚みが
薄肉状の正抵抗温度係数抵抗体と、前記正抵抗温度係数
抗体の厚さ方向に電圧を引加すべく設けられた一対の金
属電極体とを備え、少なくとも で示される構造を有する重金属不活性化剤を、前記正抵
抗温度係数抗体中と前記正抵抗温度係数抵抗体および前
記金属電極体との構成体を外装する外装体中の少なくと
もいずれか一方に分散あるいは添加したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the positive resistance temperature coefficient heating element of the present invention is a thin-walled positive resistance temperature coefficient resistor made of a conductive fine powder and a crystalline polymer, A pair of metal electrode bodies provided to apply a voltage in the thickness direction of the positive resistance temperature coefficient antibody, at least A heavy metal deactivator having a structure represented by the formula (1) is dispersed in at least one of the positive resistance temperature coefficient antibody and at least one of the exterior bodies for exteriorizing the structure of the positive resistance temperature coefficient resistor and the metal electrode body. Alternatively, it is added.

作用 上記構成により、結晶性重合体中または外装体中に分
散あるいは添加した で示される構造を有する重金属不活性化剤は外装体に添
加したものであっても正抵抗温度係数抵抗体に移行し、
金属電極体に用いられる銅、鉄、クロム等の金属イオン
に特異的に作用して経時的に不活性な金属錯化合物を形
成していくことにより、結晶性重合体等の酸化劣化を防
止しマイクロクラック等の欠損により発生する発煙、発
火等の危険性を取り除くとともに、本発熱体構造の場
合、発熱面積にも匹敵する金属電極体と正抵抗温度係数
抵抗体との界面に形成されていくこの金属錯化合物によ
り電気抵抗が高抵抗化していき、安全にライフエンドを
迎えることができるようになる。
Action Dispersed or added in the crystalline polymer or in the outer package by the above configuration The heavy metal deactivator having the structure shown in the formula shifts to a positive resistance temperature coefficient resistor even if added to the exterior body,
Prevents oxidative degradation of crystalline polymers, etc. by forming inactive metal complex compounds over time by specifically acting on metal ions such as copper, iron and chromium used for metal electrode bodies. In addition to eliminating the dangers of smoke and ignition caused by defects such as microcracks, this heating element structure is formed at the interface between the metal electrode and the positive temperature coefficient resistor, which are comparable to the heating area. The electrical resistance is increased by the metal complex compound, and the end of life can be safely reached.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。本実施例の正抵抗温度係数発熱体は、例えば、第1
図に示すように、厚さ0.5mmの正抵抗温度係数抵抗体4
の上下面に金属電極体5、6が接着され、さらにこの両
者の構成体に外装体7、8が外装されている。正抵抗温
度係数抵抗体4は以下のように形成されている。すなわ
ち導電性微粉末として、ファーネスブラック55wt%と低
密度ポリエチレン45wt%とを混練しつつ、有機過酸化物
であるジクミールパーオキサイドを低密度ポリエチレン
に対して3wt%添加し、熱処理を施すことによって架橋
反応を完了させた後に、冷凍粉砕によって平均粒径50μ
mの粉砕物、すなわち導電性フィラーを得た。次に、こ
の導電性フィラーと の構造である重金属不活性化剤(アデカ・アーガス:MAR
K CDA−6)とを、カーボンブラック組成比が全量の2
9.5wt%になるように、マレイン酸変性高密度ポリエチ
レン中に均一分散されるように混練し、正抵抗温度係数
抵抗体4を得た。さらに、この正抵抗温度係数抵抗体4
を前記のように発熱体に加工の後、アニールして所定の
抵抗特性を得た。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. The positive resistance temperature coefficient heating element of this embodiment is, for example,
As shown in the figure, a 0.5 mm thick positive resistance temperature coefficient resistor 4
Metal electrode bodies 5 and 6 are adhered to the upper and lower surfaces of the upper and lower surfaces, respectively. The positive resistance temperature coefficient resistor 4 is formed as follows. That is, as a conductive fine powder, 55% by weight of furnace black and 45% by weight of low-density polyethylene are kneaded, and 3% by weight of dicumyl peroxide, an organic peroxide, is added to the low-density polyethylene, followed by heat treatment. After the completion of the crosslinking reaction, the average particle size is 50 μm by freeze grinding.
m, that is, a conductive filler was obtained. Next, with this conductive filler Heavy metal deactivator (Adeka Argus: MAR)
K CDA-6) and the carbon black composition ratio of 2
The mixture was kneaded so as to be 9.5 wt% so as to be uniformly dispersed in the maleic acid-modified high-density polyethylene to obtain a positive temperature coefficient coefficient resistor 4. Further, the positive resistance temperature coefficient resistor 4
Was processed into a heating element as described above, and then annealed to obtain a predetermined resistance characteristic.

なお、本発明の有効性を調べるために、重金属活性化
剤に関しては、この添加量(CDA6量)が前記高密度ポリ
エチレン量に対して2、1、0phrの3種類の組成を上記
のように加工しサンプルを得た。
In order to examine the effectiveness of the present invention, three types of compositions, in which the amount of the heavy metal activator added (the amount of CDA6) is 2, 1, and 0 phr with respect to the amount of the high-density polyethylene, as described above, were used. Processing was performed to obtain a sample.

実際に、上記3種類のサンプルの150℃耐熱試験によ
る比較実験を行なった。なお、抵抗測定前には通電エー
ジングにより抵抗安定化処理を行った。その結果を第2
図に示している。
Actually, a comparative experiment was conducted on the above three types of samples by a 150 ° C. heat resistance test. Before the resistance measurement, a resistance stabilization process was performed by current aging. The result is
It is shown in the figure.

第2図から明らかなように、重金属不活性化剤が添加
されている組成では、80℃の抵抗値(R80)は1500hレベ
ルまで抵抗変化はほとんどなく、それ以降徐々に抵抗増
大していっており、この添加量の比較では、1phrの組成
より2phrの組成の方が若干早く抵抗増大した。これに対
して、重金属不活性化剤無添加組成では、2000hレベル
まで抵抗変化はほとんどないものの、それ以降徐々に低
抵抗化現象が現出してきており、2430hまでにこの3/7の
サンプルがスパーク発生した。アレニウスの式より実際
の通電寿命を推定すると、重金属不活性化剤が添加され
ている組成では30000〜40000hでそれ以降は徐々に温度
降下し、安全にライフエンドとなる。重金属不活性化剤
無添加組成では、40000hレベル以上発熱するが、ライフ
エンド時にスパーク、さらには発煙・発火に至るという
極めて高い危険性を有するものであった。
As is clear from FIG. 2, in the composition in which the heavy metal deactivator is added, the resistance value at 80 ° C. (R80) shows almost no resistance change up to the level of 1500 h, and the resistance gradually increases thereafter. In this comparison of the addition amount, the resistance increased slightly faster in the composition of 2 phr than in the composition of 1 phr. On the other hand, in the composition without the heavy metal deactivator, there was almost no change in resistance up to the level of 2000 h, but the phenomenon of lowering resistance gradually began to appear thereafter. A spark has occurred. When the actual current life is estimated from the Arrhenius equation, the temperature gradually decreases from 30,000 to 40,000 hours after the addition of the heavy metal deactivator, and the life end is safely reached. In the composition without the heavy metal deactivator, heat was generated at a level of 40,000 hours or more, but there was an extremely high risk of sparking at the end of life, and furthermore, smoking and ignition.

実際使用されるモードにより寿命は異なるものの、重
金属不活性化剤を添加することによりライフエンド時ま
での高い安全性を有するという優れた性能を寄与するも
のである。また、長期にわたる安全性が図れるだけでな
く、各種用途における実用期間や構成材料の耐熱特性等
に適合した発熱寿命になるように、重金属不活性化剤を
適宜添加することもできる。
Although the service life differs depending on the mode actually used, the addition of a heavy metal deactivator contributes to the excellent performance of having high safety until the end of life. In addition, a heavy metal deactivator can be appropriately added so that long-term safety can be achieved, and a heat generation life suitable for a practical period in various applications and heat resistance characteristics of constituent materials is obtained.

これは以下のメカニズムによると考えられる。すなわ
ち、結晶性重合体中または外装体中に分散あるいは添加
した で示される構造を有する重金属不活性化剤は外装体に添
加したものであっても正抵抗温度係数抵抗体に移行し、
金属電極体に用いられる銅、鉄、クロム等の金属イオン
に特異的に作用して経時的に不活性な金属錯化合物を形
成していくことにより、結晶性重合体等の酸化劣化を防
止しマイクロクラック等の欠損により発生する発煙、発
火等の危険性を取り除くとともに、本発熱体構造の場
合、発熱面積にも匹敵する金属電極体と正抵抗温度係数
抵抗体との界面に形成されていくこの金属錯化合物によ
り電気抵抗が高抵抗化していき、安全にライフエンドを
迎えることができるようになる。こうして、103Ωcm以
上におよぶ高抵抗の正抵抗温度係数抵抗体の優れた安全
性を図ることができ、高出力で発熱安定性の高い正抵抗
温度係数発熱体が実現できるようになる。
This is thought to be due to the following mechanism. That is, dispersed or added in the crystalline polymer or in the outer package The heavy metal deactivator having the structure shown in the formula shifts to a positive resistance temperature coefficient resistor even if added to the exterior body,
Prevents oxidative degradation of crystalline polymers, etc. by forming inactive metal complex compounds over time by specifically acting on metal ions such as copper, iron and chromium used for metal electrode bodies. In addition to eliminating the dangers of smoke and ignition caused by defects such as microcracks, this heating element structure is formed at the interface between the metal electrode and the positive temperature coefficient resistor, which are comparable to the heating area. The electrical resistance is increased by the metal complex compound, and the end of life can be safely reached. In this way, it is possible to achieve excellent safety of the high-resistance positive-resistance temperature coefficient resistor of 10 3 Ωcm or more, and to realize a high-resistance positive-resistance temperature coefficient heating element with high heat generation stability.

ところで、金属不活性化剤は上記実施例に示したよう
に正抵抗温度係数抵抗体中に分散されて具備されていて
も、正抵抗温度係数抵抗体と一対の金属電極体との構成
体を外装する外装材料に添加する等して具備させても、
外装材料からこれに当接する正抵抗温度係数抵抗体に経
時的に金属不活性化剤が移行することにより、同様の効
果を奏することができるようになる。さらには導電性微
粉末結晶性重合体中に分散させ、この後架橋し細分化し
てなる粒子状正抵抗温度係数抵抗組成物を結晶性重合体
等のバインダー中に分散させ抵抗安定性を高めた組成で
は、この粒子状正抵抗温度係数抵抗組成物中にこの金属
不活性化剤を添加すると安定した導電経路であるだけ
に、この安全性はさらに確実なものとなる。また結晶性
重合体の一部に有機酸変性の官能基を導入することによ
っても、導電経路が安定化されるために、この安全性の
効果をさらに高めることが可能である。
By the way, even if the metal deactivator is dispersed and provided in the positive resistance temperature coefficient resistor as shown in the above embodiment, the structure of the positive resistance temperature coefficient resistor and the pair of metal electrode bodies is formed. Even if it is prepared by adding it to the exterior material to be exterior,
By transferring the metal deactivator over time from the exterior material to the positive temperature coefficient coefficient resistor that comes into contact therewith, the same effect can be achieved. Further, the particulate positive resistance temperature coefficient resistance composition obtained by dispersing in a conductive fine powder crystalline polymer and then crosslinking and fragmenting was dispersed in a binder such as a crystalline polymer to enhance the resistance stability. In the composition, the addition of the metal deactivator to the particulate positive temperature coefficient of resistance composition provides a more secure safety path, as it is a stable conductive path. Also, by introducing an organic acid-modified functional group into a part of the crystalline polymer, the conductive path is stabilized, so that the safety effect can be further enhanced.

なお、正抵抗温度係数抵抗体を構成する材料として
は、低密度ポリエチレンとファーネスブラックとの組合
せに限定されるものではなく、低密度ポリエチレン、中
密度ポリエチレ、高密度ポリエチレン、リニアポリエチ
レン、エチレン酢酸ビニル共重合体、エチレンアクリル
酸共重合体、アイオノマー、ポリプロピレン、ポリアミ
ド、ポリ弗化ビニリデン、ポリエステルさらにはアクリ
ル酸やマレイン酸等の有機酸変性ポリエチレン等の結晶
性重合体とファーネスブラック、サーマルブラック、チ
ャンネルブラック、アセチレンブラック等のカーボンブ
ラックの中で顕著な正抵抗温度特性を示す導電材料との
組合せを用いても、同等の効果を奏するものであり、さ
らに他の高分子材料等を添加するものであってもよい。
The material constituting the positive temperature coefficient resistor is not limited to the combination of low density polyethylene and furnace black, but may be low density polyethylene, medium density polyethylene, high density polyethylene, linear polyethylene, ethylene vinyl acetate. Copolymers, ethylene acrylic acid copolymers, ionomers, polypropylenes, polyamides, polyvinylidene fluoride, polyesters, and crystalline polymers such as acrylic acid and maleic acid-modified polyethylene, and furnace black, thermal black, channels Black, acetylene black, etc., even when used in combination with a conductive material exhibiting remarkable positive resistance temperature characteristics among carbon blacks, the same effect is achieved, and further, other polymer materials and the like are added. There may be.

発明の効果 以上に述べてきたように、高出力・高温度の正抵抗温
度係数発熱体を実現する場合等に、非常に接近した電極
間隔を構成することが不可欠となり、非常に短かい発熱
寿命であったり、異常過熱、発煙、発火等の危険性を有
したりしていたが、本発明の正抵抗温度係数発熱体は、
こうした課題を解決するものである。すなわち、重金属
不活性化剤を正抵抗温度係数抵抗体中と正抵抗温度係数
抵抗体および金属電極体との構成体を外装する外装体中
の少なくともいずれか一方に分散または添加して、金属
電極体と正抵抗温度係数抵抗体との界面に金属錯化合物
を形成することにより、正抵抗温度係数発熱体の各種用
途や周辺材料に適合した発熱寿命時に、電気抵抗が高抵
抗化していき、安全にライフエンドを迎えることができ
るようになる。こうして103Ωcm以上におよぶ高抵抗の
正抵抗温度係数抵抗体の優れた安全性を図ることがで
き、高出力で発熱安定性の高い正抵抗温度係数発熱体が
実現できるようになるという実用上極めて有利なもので
ある。
Effect of the Invention As described above, when realizing a high-output, high-temperature, positive-resistance temperature coefficient heating element, it is indispensable to configure a very close electrode spacing, and a very short heat generation life Or had the danger of abnormal overheating, smoke, ignition, etc., the positive resistance temperature coefficient heating element of the present invention,
It is to solve these problems. That is, the heavy metal deactivator is dispersed or added to at least one of the positive resistance temperature coefficient resistor and at least one of the exterior members that package the structure of the positive resistance temperature coefficient resistor and the metal electrode body, By forming a metal complex compound at the interface between the body and the positive resistance temperature coefficient resistor, the electrical resistance increases during the heat generation life that is suitable for various uses of the positive resistance temperature coefficient heating element and surrounding materials. Will be able to reach the end of life. In this way, it is possible to achieve excellent safety of a positive resistance temperature coefficient resistor having a high resistance of 10 3 Ωcm or more, and to realize a positive resistance temperature coefficient heating element with high output and high heat generation stability. This is extremely advantageous.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の正抵抗温度係数発熱体の斜
視図、第2図は同発熱体の80℃の抵抗値の経時的変化を
示す特性図、第3図は従来の正抵抗温度係数発熱体の斜
視図である。 4……正抵抗温度係数抵抗体、5、6……電極、7、8
……外装材。
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element according to one embodiment of the present invention, FIG. 2 is a characteristic diagram showing a change in resistance value of the heating element at 80 ° C. with time, and FIG. It is a perspective view of a resistance temperature coefficient heating element. 4... Positive resistance temperature coefficient resistor, 5, 6... Electrodes, 7, 8
…… Exterior material.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性微粉末と結晶性重合体よりなる厚み
が薄肉状の正抵抗温度係数抵抗体と、前記正抵抗温度係
数抵抗体の厚さ方向に電圧を印加すべく設けられた一対
の金属電極体とを備え、少なくとも で示される構造を有する重金属不活性化剤を、前記正抵
抗温度係数抵抗体中と前記抵抗正抵抗温度係数抵抗体お
よび前記金属電極体との構成体を外装する外装体中の少
なくともいずれか一方に分散あるいは添加してなる正抵
抗温度係数発熱体。
1. A thin-walled positive-resistance temperature coefficient resistor made of a conductive fine powder and a crystalline polymer, and a pair of thin-film positive-resistance temperature coefficient resistors provided to apply a voltage in a thickness direction of the positive-resistance temperature coefficient resistor. And a metal electrode body of at least A heavy metal deactivator having a structure represented by the following formula: at least one of the positive resistance temperature coefficient resistor and at least one of an exterior body for exteriorly covering the structure of the resistance positive temperature coefficient resistor and the metal electrode body. Heating element with positive resistance temperature coefficient dispersed or added to
JP16540488A 1988-07-01 1988-07-01 Positive resistance temperature coefficient heating element Expired - Lifetime JP2743388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16540488A JP2743388B2 (en) 1988-07-01 1988-07-01 Positive resistance temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16540488A JP2743388B2 (en) 1988-07-01 1988-07-01 Positive resistance temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPH0215602A JPH0215602A (en) 1990-01-19
JP2743388B2 true JP2743388B2 (en) 1998-04-22

Family

ID=15811767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16540488A Expired - Lifetime JP2743388B2 (en) 1988-07-01 1988-07-01 Positive resistance temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JP2743388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598942A (en) * 1995-09-25 1997-02-04 Cowie; Ross Waste basket liner system

Also Published As

Publication number Publication date
JPH0215602A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
JPS643322B2 (en)
KR100454732B1 (en) Conductive polymers having a positive temperature coefficient, method for controlling the positive temperature coefficient property of this polymers and electrical devices containing this polymers
GB1597007A (en) Conductive polymer compositions and devices
US4460497A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives
JP2743388B2 (en) Positive resistance temperature coefficient heating element
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
KR100224945B1 (en) Conductive polymer composition
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JPH0217609A (en) Positive resistance temperature coefficient heating element
US4452728A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum, boron and selected alkali metal additives
JP3092210B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP3729426B2 (en) PTC element
JP2688061B2 (en) Positive resistance temperature coefficient heating element
JPH0218902A (en) Positive temperature coefficient heater
JP2988011B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JP3125330B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2586486B2 (en) Positive resistance temperature coefficient heating element
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2643398B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH0812791B2 (en) Positive resistance temperature coefficient heating element
JPH05343164A (en) Positive resistance temperature coefficient heating element and its manufacture
JPH02234380A (en) Positive-resistance temperature coefficient heating body
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090206