JPH0812791B2 - Positive resistance temperature coefficient heating element - Google Patents

Positive resistance temperature coefficient heating element

Info

Publication number
JPH0812791B2
JPH0812791B2 JP14167287A JP14167287A JPH0812791B2 JP H0812791 B2 JPH0812791 B2 JP H0812791B2 JP 14167287 A JP14167287 A JP 14167287A JP 14167287 A JP14167287 A JP 14167287A JP H0812791 B2 JPH0812791 B2 JP H0812791B2
Authority
JP
Japan
Prior art keywords
heating element
temperature coefficient
positive resistance
resistance temperature
coefficient heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14167287A
Other languages
Japanese (ja)
Other versions
JPS63307685A (en
Inventor
和典 石井
誠之 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14167287A priority Critical patent/JPH0812791B2/en
Publication of JPS63307685A publication Critical patent/JPS63307685A/en
Publication of JPH0812791B2 publication Critical patent/JPH0812791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分理 本発明は、採暖器具及び、一般の加熱装置として有用
な発熱体の構成に関するものである。
TECHNICAL FIELD The present invention relates to a heat collecting tool and a structure of a heating element useful as a general heating device.

従来の技術 従来の正の抵抗温度係数をもつ(以下PTCと称す)発
熱体は、例えば特公昭57−43995号公報や特公昭55−401
61号公報に示されているような構成であり一対の電極間
のPTC抵抗体のPTC特性により適宜な温度に自己制御され
ているものであった。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance (hereinafter referred to as PTC) is disclosed, for example, in Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-401.
The structure is as shown in Japanese Patent Laid-Open No. 61, and it was self-controlled to an appropriate temperature by the PTC characteristics of the PTC resistor between a pair of electrodes.

しかし、特に大きな電力密度が要求される場合におい
ては、発熱体自体の温度分布を一様にするために一対の
電極間方向の温度分布を良好にすることが不可欠であ
り、その解決策として特開昭60−28195号公報や第3図
に示すように一対の電極間距離を互いに接近させて構成
する方法が講じられた。第3図において1、2は互いに
接近して設けられた一対の平行平板状電極であり、この
間にPTC抵抗体3を配することにより高出力のPTC発熱体
を現出することが可能となった。
However, especially when a high power density is required, it is essential to improve the temperature distribution in the direction between the pair of electrodes in order to make the temperature distribution of the heating element itself uniform. As shown in Japanese Laid-Open Patent Publication No. 60-28195 and FIG. 3, a method has been taken in which a distance between a pair of electrodes is close to each other. In FIG. 3, 1 and 2 are a pair of parallel plate electrodes provided close to each other, and by arranging a PTC resistor 3 between them, it becomes possible to expose a high-output PTC heating element. It was

発明が解決しようとする問題点 しかしながら、こうした薄肉構造のPTC発熱体を実現
していくためには構成材料や加工法等に多くの課題が存
在した。中でも抵抗温度特性の加工安定性あるいは耐熱
安定性などを確保していくことは、このPTC抵抗体が高
抵抗であるだけに非常に困難であった。こうした薄肉構
造では、PTC抵抗体の体積固有抵抗を103〜105Ωcmレベ
ルと、非常に高抵抗領域にすることが要求される。カー
ボンブラックは、素材自身の体積固有抵抗が相当低いた
め、103〜105Ωcmの値を出すためには少ない添加量が要
求され、微妙なカーボンブラック組成比の調整が必要で
あるばかりでなく、そのカーボンブラックの配列を崩さ
ないためにも極めて高精度の加工法が不可欠であり、さ
らには、長期の使用に際しても、発熱体として安定した
機能を保持させねばならず、実用上極めて困難であっ
た。
Problems to be Solved by the Invention However, in order to realize such a thin-walled PTC heating element, there are many problems in the constituent materials and processing methods. Above all, it is very difficult to secure the processing stability or the heat resistance stability of the resistance temperature characteristic because the PTC resistor has a high resistance. In such a thin-walled structure, the volume resistivity of the PTC resistor is required to be in a very high resistance region of 10 3 to 10 5 Ωcm level. Since carbon black has a considerably low volume resistivity of the material itself, a small addition amount is required to obtain a value of 10 3 to 10 5 Ωcm, and it is not only necessary to finely adjust the carbon black composition ratio. In order to keep the arrangement of the carbon black, an extremely high precision processing method is indispensable. Furthermore, even if it is used for a long period of time, it must maintain a stable function as a heating element, which is extremely difficult in practice. there were.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、融点T1
を有する第1の結晶性重合体中に導電性微粒子を分散さ
せられ細分化されてなる導電性フィラーと融点T1よりも
高い温度の融点T2を有する第2の結晶性重合体とを主成
分とする薄肉正抵抗温度係数抵抗体と、その厚さ方向に
電圧を印加すべく設けられた一対の電極体とを備え、T2
よりも高い温度で第1のアニールをした後に、T2よりも
低くT1よりも高い温度で第2のアニールをしてなる正抵
抗温度係数発熱体を適用するものである。
Means for Solving Problems The technical means of the present invention for solving the above problems is a melting point T 1
Mainly containing a conductive filler obtained by dispersing conductive fine particles in a first crystalline polymer having a temperature difference of 1 and a second crystalline polymer having a melting point T 2 higher than the melting point T 1. comprising a thin positive resistance temperature coefficient resistor whose components, and a pair of electrode bodies provided in order to apply a voltage in the thickness direction, T 2
The positive resistance temperature coefficient heating element is formed by performing the first annealing at a higher temperature and then performing the second annealing at a temperature lower than T 2 and higher than T 1 .

作用 この技術的手段による作用は次のようになる。すなわ
ち結晶性重合体中に導電性微粒子を分散することによっ
て得られる、常温体積固有抵抗値が103Ωcm以上の非常
に高抵抗領域にある薄肉状正抵抗温度係数抵抗体組成物
は、結晶性重合体の融点の近傍において顕著な正抵抗温
度係数を示すだけでなく、より低温域における線膨張係
数による影響や、結晶性重合体の結晶成長もしくは導電
性微粉末の凝集等による組成物の微細構造の影響を強く
受けるようになり、安定性に欠け、単品では実用に耐え
られるものではなくなる。
Action The action of this technical means is as follows. That is, a thin-walled positive resistance temperature coefficient resistor composition in a very high resistance region having a room temperature volume resistivity of 10 3 Ωcm or more, which is obtained by dispersing conductive fine particles in a crystalline polymer, has a crystalline property. Not only does it show a significant positive resistance temperature coefficient near the melting point of the polymer, but it is also affected by the linear expansion coefficient in the lower temperature range, and the composition becomes fine due to crystal growth of the crystalline polymer or aggregation of conductive fine powder. It becomes strongly affected by the structure, lacks stability, and cannot be put to practical use as a single item.

しかし、融点T1を有する結晶性重合体中に導電性微粒
子を分散させられた誘電性フィラーの体積固有抵抗を10
3Ωcm未満の安定した抵抗領域にし、この導電性フィラ
ーをT1より高い融点T2を有する第2の結晶性重合体中に
分散させることにより、安定した抵抗体を実現できるよ
うになる。しかしながら、こうした複合材料では、加工
の際に、融点T1,T2の相違、溶融粘度を示すメルトイン
デックス(M1)の値の相違、各種加工に伴なう熱、加圧
等により加工歪が大きくなってしまうことになる。実使
用により加工歪が低減されていき、安定な構造になって
いくが、結果的には、抵抗温度特性が経時的に大きく変
化してしまうことになり、実使用に際して満足されるも
のではない。そこで、T2よりも高い温度で第1のアニー
ルを行なうことにより第1及び第2の結晶性重合体が溶
融し、前記加工歪が除去される。次に、融点T2よりも低
くT1よりも高い温度で第2のアニールを行なうことによ
り、融点T1の第1の結晶性重合体が溶融状態の中で、融
点T2の第2の結晶性重合体が安定して結晶化される。こ
の後、常温まで冷却される中で第1の結晶性重合体が安
定して結晶化されることになる。
However, the volume resistivity of the dielectric filler in which the conductive fine particles are dispersed in the crystalline polymer having the melting point T 1 is 10
A stable resistor can be realized by forming a stable resistance region of less than 3 Ωcm and dispersing this conductive filler in the second crystalline polymer having a melting point T 2 higher than T 1 . However, in such a composite material, during processing, processing strains are caused by differences in melting points T 1 and T 2 , differences in melt index (M1) value indicating melt viscosity, heat and pressure accompanying various processes, and the like. It will become big. Processing strain is reduced by actual use and the structure becomes stable, but as a result, the resistance temperature characteristics change significantly over time, which is not satisfactory in actual use. . Then, the first annealing is performed at a temperature higher than T 2 to melt the first and second crystalline polymers, and the working strain is removed. Next, by performing a second annealing at a temperature lower than the melting point T 2 and higher than T 1 , the second crystalline polymer having the melting point T 2 is melted while the first crystalline polymer having the melting point T 1 is in a molten state. The crystalline polymer is stably crystallized. After that, the first crystalline polymer is stably crystallized while being cooled to room temperature.

こうして各種構成材料が安定な状態となるため、実使
用に際して抵抗温度特性の経時的変化は非常に小さくな
り、安定な正抵抗温度係数発熱体を実現できるようにな
る。
In this way, since the various constituent materials are in a stable state, the change with time of the resistance-temperature characteristic becomes very small during actual use, and a stable positive resistance temperature coefficient heating element can be realized.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図において4は厚さ0.5mmの正抵抗温度係数低抗
体であり、この低抗体4の上下面に一対の電極5、6が
装着されている。正抵抗温度係数低抗体4には融点130
℃の高密度ポリエチレンにサーマルブラックを混練した
混練物を細分化し融点160℃のポリエステル系エラスト
マ中に分散された組成物を用いた。具体的には以下の手
順により作製した。
In FIG. 1, reference numeral 4 is an antibody having a low positive temperature coefficient of resistance of 0.5 mm, and a pair of electrodes 5 and 6 are mounted on the upper and lower surfaces of the low antibody 4. Positive resistance temperature coefficient Low melting point for antibody 4 130
A composition obtained by subdividing a kneaded material obtained by kneading high temperature polyethylene with high temperature polyethylene into thermal black and dispersing it into a polyester elastomer having a melting point of 160 ° C. was used. Specifically, it was manufactured by the following procedure.

まず、高密度ポリエチレンとサーマルブラックを1対
1の比率で混練した後に、冷凍粉砕によって平均粒径10
0μmの粉砕物を得た。その後、この粉砕物をポリエス
テル系エラストマ中にカーボンブラック組成比35wt%で
混練し、抵抗体4の組成物を得た。
First, high-density polyethylene and thermal black are kneaded at a ratio of 1: 1 and then frozen and ground to obtain an average particle size of 10
A ground product of 0 μm was obtained. Then, this pulverized product was kneaded in a polyester elastomer at a carbon black composition ratio of 35 wt% to obtain a composition of a resistor 4.

この組成物を用いて第1図に示す構造に加工した後
に、170℃で1hアニールした後、140℃で1hアニールし本
発明のPTC発熱体を得た。比較例として、170℃で1hアニ
ールのみしたPTC発熱体を作製し、比較実験を行なっ
た。比較実験としてAC100Vで3000hにわたる通電試験を
実施した。驚くべきことに、第2図に示すように比較例
のPTC発熱体が3000hで第2図(a)に示すように14.5℃
温度上昇したにもかかわらず、本発明の実施例のPTC発
熱体は3000h経過後においても第2図(b)のように7.5
℃の温度上昇に届まり安定化するというすぐれた効果を
有するものであった。これは、170℃のアニールで、高
密度ポリエチレンとポリエステル系エラストマとの両者
が溶融し、加工歪、熱応力等が徐却された後、140℃の
アニールにより、ポリエステル系エラストマのみが高密
度ポリエチレン溶融状況の中で、安定した状態で安定し
た位置に結晶化し、さらに常温まで冷却される中で高密
度ポリエチレンが、ポリエステル系エラストマと部分相
溶して両者が適宜に相分離された構造で安定して結晶化
され、アニールによる熱歪、熱応力をほとんどなくし安
定した海島構造を実現しカーボンブラックの位置が安定
化したことによるものである。さらに、第2の比較例と
してカーボンブラックと高密度ポリエチレンのみの抵抗
体組成物を同様に加工し、170℃−1hのアニールのみを
行なったサンプルで、同じく通電試験を行なったところ
第2図に示すように3000hで第2図(c)に示すように1
8.6℃の温度上昇となり、抵抗安定化に対して本発明の
効果が非常に顕著であることがわかった。
The composition was processed into the structure shown in FIG. 1 and then annealed at 170 ° C. for 1 h and then at 140 ° C. for 1 h to obtain a PTC heating element of the present invention. As a comparative example, a PTC heating element that was only annealed at 170 ° C. for 1 hour was manufactured and a comparative experiment was conducted. As a comparative experiment, an energization test was conducted at AC 100 V for 3000 hours. Surprisingly, as shown in FIG. 2, the PTC heating element of the comparative example was 3000 h at 14.5 ° C. as shown in FIG. 2 (a).
Despite the temperature rise, the PTC heating element of the embodiment of the present invention shows 7.5% even after 3000 hours as shown in FIG. 2 (b).
It had an excellent effect of reaching a temperature rise of ℃ and stabilizing. This is because after annealing at 170 ° C, both the high-density polyethylene and the polyester-based elastomer are melted, and processing strain, thermal stress, etc. are gradually eliminated, and then at 140 ° C, only the polyester-based elastomer is high-density polyethylene. In the molten state, it crystallizes in a stable position in a stable state, and while it is cooled to room temperature, the high-density polyethylene is partially compatible with the polyester elastomer and is stable in a structure in which both are appropriately phase-separated. This is due to the fact that the carbon black is crystallized, the thermal strain and thermal stress due to annealing are almost eliminated, a stable sea-island structure is realized, and the position of the carbon black is stabilized. Further, as a second comparative example, a resistor composition containing only carbon black and high-density polyethylene was processed in the same manner and annealed at 170 ° C. for 1 hour only. As shown in Fig. 2 (c) at 3000h 1
It was found that the temperature rises by 8.6 ° C., and the effect of the present invention is very remarkable for resistance stabilization.

なお、正抵抗温度係数抵抗体を構成する材料として
は、高密度ポリエチレンとサーマルブラックとポリエス
テル系エラストマとの組合わせに限定されるものではな
く、中密度ポリエチレン、低密度ポリエチレン、リニア
ポリエチレン、エチレン酢酸ビニル共重合体、エチレン
アクリル酸共重合体、アイオノマ、ポリアミド、ポリ弗
化ビニリデン、ポリエステル等の結晶性樹脂、各種熱可
塑エラストマさらには、上記結晶性重合体にアクリル
酸、マレイン酸等の官能基を付加した変性重合体等どの
ような結晶性重合体であってもよく、融点の異なる2種
類以上の結晶性重合体を適宜組み合わせられたものであ
ればよい。
The material forming the positive temperature coefficient resistor is not limited to the combination of high density polyethylene, thermal black, and polyester elastomer, and may be medium density polyethylene, low density polyethylene, linear polyethylene, or ethylene acetate. Crystalline resins such as vinyl copolymers, ethylene acrylic acid copolymers, ionomers, polyamides, polyvinylidene fluoride, polyesters, various thermoplastic elastomers, and functional groups such as acrylic acid and maleic acid in the above crystalline polymers. It may be any crystalline polymer such as a modified polymer to which is added, as long as two or more crystalline polymers having different melting points are appropriately combined.

また、カーボンブラックとしては、チャンネルブラッ
ク、アセチレンブラック、ファーネスブラック等であっ
てもよく、また、2種類以上のカーボンブラックを組み
合わせた組成であってもよい。
The carbon black may be channel black, acetylene black, furnace black, or the like, or may be a composition in which two or more kinds of carbon black are combined.

また、上記結晶性重合体の3種類以上の組成物に対し
ては、当然、これらの重合体の各融点間でアニールを行
なうことにより、抵抗の安定性を高めることが可能であ
る。
Further, it is naturally possible to improve the resistance stability of three or more compositions of the above-mentioned crystalline polymer by annealing between the melting points of these polymers.

この各融点間におけるアニールは材料構造の安定化を
図るため、好ましくは30分以上すると効果が大きく、さ
らに好ましくは、この融点間におけるある適宜な温度で
一定にあるいは1℃/分以下の速度で徐冷するとよい。
また、カーボンブラックが分散されてなる第1の結晶性
重合体により構成される導電性フィラーと第2の結晶性
重合体との結晶構造、位置関係をさらに安定化するため
に各融点間における温度で5℃以上上下に変動させる
と、さらに抵抗は安定化し、耐熱等によってもほとんど
変化しなくなる。実際、前実施例の第2のアニールを14
0〜150℃間で2サイクル上下に変動させたサンプルは、
同試験3000hにおいて第2図(d)に示すように3.5℃以
下の温度上昇に届めることができた。
The annealing between the melting points has a large effect, preferably for 30 minutes or more, in order to stabilize the material structure. More preferably, it is constant or at a rate of 1 ° C./minute or less at an appropriate temperature between the melting points. Gradually cool.
Further, in order to further stabilize the crystal structure and the positional relationship between the conductive filler composed of the first crystalline polymer in which carbon black is dispersed and the second crystalline polymer, the temperature between the melting points is increased. If the temperature is fluctuated up or down by 5 ° C. or more, the resistance is further stabilized and hardly changes due to heat resistance. In fact, the second anneal of the previous embodiment is 14
Samples that fluctuated up and down 2 cycles between 0 and 150 ℃,
In the same test 3000h, it was possible to reach a temperature rise of 3.5 ° C or less as shown in Fig. 2 (d).

また、この導電性フィラー中のカーボンブラックを有
機過酸化物、あるいは電子線等で架橋すると、カーボン
ブラックが第1の結晶性重合体に固定化されさらに安定
な導電性フィラーが実現されるばかりでなく、第2の結
晶性重合体との部分相溶性が顕著となり、各融点間にお
けるアニールも短縮化させることが可能となる。実際、
前実施例の導電性フィラーにパーオキサイドで架橋させ
たものでは、同一のアニール条件、170℃−1h、140℃−
1hで、同試験3000hにおいても第2図(e)の如く+2
℃以下の温度変化であった。
Further, when the carbon black in the conductive filler is cross-linked with an organic peroxide, an electron beam or the like, the carbon black is fixed to the first crystalline polymer and a more stable conductive filler is not only realized. However, the partial compatibility with the second crystalline polymer becomes remarkable, and the annealing between the melting points can be shortened. In fact
In the case where the conductive filler of the previous example is cross-linked with peroxide, the same annealing conditions are used: 170 ° C-1h, 140 ° C-
1h, +2 as shown in Fig. 2 (e) even in the same test 3000h
The temperature change was ℃ or less.

この第1の結晶性重合体の第2の結晶性重合体とを凝
集エネルギー密度の平方根であるソルビリティパラメー
タ(SP)の値の差が大きくかつ分散可能な部分相溶性の
材料にすることも有効である。
The second crystalline polymer of the first crystalline polymer may be made a dispersible partially compatible material having a large difference in the value of the solubility parameter (SP), which is the square root of the cohesive energy density. It is valid.

最後に、以上に述べた主な各種実験を整理してみる
と、以下のようになる。
Finally, the following is a summary of the main experiments described above.

発明の効果 以上に述べてきたように、正抵抗温度係数抵抗体材料
を非常に接近した電極間で発熱させることにより高出力
化を達成しようとする場合等に、半導体領域に近い固有
抵抗値を有する正抵抗温度係数抵抗体材料が必要となる
が、単に、組成比を調整しただけでは微粉末同志の接触
点の数が大幅に減少するために、正抵抗温度係数が異常
に増大したり、経時変化によって、抵抗値と抵抗温度特
性が大きく変動する等、不安定で実用に耐えられない発
熱体しか得られなかったが、本発明によれば、この点を
克服することが可能となった。
Effect of the Invention As described above, when an attempt is made to achieve high output by, for example, generating a positive resistance temperature coefficient resistor material between very close electrodes, a specific resistance value close to the semiconductor region is obtained. Although it is necessary to have a positive resistance temperature coefficient resistor material, simply adjusting the composition ratio significantly reduces the number of contact points between fine powders, so the positive resistance temperature coefficient abnormally increases, Due to the change over time, only a heating element that is unstable and cannot withstand practical use was obtained, for example, the resistance value and the resistance temperature characteristic fluctuated greatly. However, according to the present invention, this point can be overcome. .

その結果、高出力で経時的に抵抗変化の非常に小さい
画期的な正抵抗温度係数発熱体を実際に広く用途展開し
ていくことが可能となった。さらには、こうした体積固
有抵抗の大きな正抵抗温度係数材料の長期安定化が図ら
れたことにより、各種産業分野にも実用上、大きな価値
を寄与するものである。
As a result, it has become possible to expand the application of the revolutionary positive resistance temperature coefficient heating element with high output and very small resistance change over time. Furthermore, the long-term stabilization of such a positive temperature coefficient material having a large volume resistivity contributes to a great value in practical use in various industrial fields.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の正抵抗温度係数発熱体の斜
視図、第2図は同実施例及び比較例の経時的温度変化の
性能図、第3図は従来の正抵抗温度係数発熱体の斜視図
である。 4……正抵抗温度係数抵抗体、5,6……電極。
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element of an embodiment of the present invention, FIG. 2 is a performance diagram of temperature change with time of the same embodiment and a comparative example, and FIG. 3 is a conventional positive resistance temperature coefficient. It is a perspective view of a heating element. 4 ... Positive resistance temperature coefficient resistor, 5, 6 ... Electrode.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】融点T1を有する第1の結晶性重合体中に導
電性微粒子を分散させ細分化されてなる導電性フィラー
と、融点T1よりも高い温度の融点T2を有する第2の結晶
性重合体とを主成分とする薄肉正抵抗温度係数抵抗体
と、その厚さ方向に電圧を印加すべく設けられた一対の
電極体とを備え、T2よりも高い温度で第1のアニールを
した後に、T2よりも低くT1よりも高い温度で第2のアニ
ールをしてなる正抵抗温度係数発熱体。
1. A conductive filler which is obtained by dispersing conductive fine particles in a first crystalline polymer having a melting point T 1 and is subdivided, and a second melting point T 2 having a temperature higher than the melting point T 1 . and crystalline polymer and the thin positive resistance temperature coefficient resistor whose main component, and a pair of electrode bodies provided in order to apply a voltage in the thickness direction, first at a temperature higher than T 2 A positive resistance temperature coefficient heating element obtained by performing a second anneal at a temperature lower than T 2 and higher than T 1 after the annealing.
【請求項2】第1あるいは第2のアニール処理時間は30
分以上である特許請求の範囲第1項記載の正抵抗温度係
数発熱体。
2. The first or second annealing treatment time is 30
The positive resistance temperature coefficient heating element according to claim 1, wherein the heating coefficient is positive or negative.
【請求項3】第1及び第2のアニールのうち少なくとも
いずれか一方は一定もしくは1℃/分以下の速度での徐
冷処理を20分以上有してなる特許請求の範囲第1項ある
いは第2項記載の正抵抗温度係数発熱体。
3. The method according to claim 1, wherein at least one of the first and second anneals has a slow cooling treatment at a constant rate or at a rate of 1 ° C./minute or less for 20 minutes or more. A positive resistance temperature coefficient heating element according to item 2.
【請求項4】第1及び第2のアニールのうち少なくとも
いずれか一方は、各温度領域において温度を5℃以上上
昇させる処理を有してなる特許請求の範囲第1項、第2
項、第3項のいずれか1つに記載の正抵抗温度係数発熱
体。
4. The method according to claim 1, wherein at least one of the first and second annealing has a process of raising the temperature by 5 ° C. or more in each temperature region.
The positive resistance temperature coefficient heating element according to any one of items 1 and 3.
【請求項5】導電性フィラーは電子線あるいは有機過酸
化物等で架橋されてなる特許請求の範囲第1項から第4
項のいずれか1つに記載の正抵抗温度係数発熱体。
5. The conductive filler is crosslinked with an electron beam, an organic peroxide or the like, and the conductive filler is crosslinked.
A positive resistance temperature coefficient heating element according to any one of items.
【請求項6】導電性フィラーと第2の重合体とは部分相
溶性を有する特許請求の範囲第1項から第5項のいずれ
か1つに記載の正抵抗温度係数発熱体。
6. The positive resistance temperature coefficient heating element according to claim 1, wherein the conductive filler and the second polymer are partially compatible with each other.
【請求項7】第1あるいは第2の結晶性重合体はX線解
析で結晶化度が20%以上である特許請求の範囲第1項か
ら第6項のいずれか1つに記載の正抵抗温度係数発熱
体。
7. The positive resistance according to any one of claims 1 to 6, wherein the first or second crystalline polymer has a crystallinity of 20% or more by X-ray analysis. Temperature coefficient heating element.
JP14167287A 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element Expired - Fee Related JPH0812791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14167287A JPH0812791B2 (en) 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14167287A JPH0812791B2 (en) 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPS63307685A JPS63307685A (en) 1988-12-15
JPH0812791B2 true JPH0812791B2 (en) 1996-02-07

Family

ID=15297512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14167287A Expired - Fee Related JPH0812791B2 (en) 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JPH0812791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748396B2 (en) * 1989-03-02 1995-05-24 禮男 森 Sheet heating element

Also Published As

Publication number Publication date
JPS63307685A (en) 1988-12-15

Similar Documents

Publication Publication Date Title
US4304987A (en) Electrical devices comprising conductive polymer compositions
US4560498A (en) Positive temperature coefficient of resistance compositions
JP4664556B2 (en) Conductive polymer composition
US4286376A (en) Method of making heater cable of self-limiting conductive extrudates
US4237441A (en) Low resistivity PTC compositions
EP0731065B1 (en) Zinc oxide ceramics and method for producing the same
CA1074096A (en) Positive temperature coefficient compositions
GB1597007A (en) Conductive polymer compositions and devices
JPH0812791B2 (en) Positive resistance temperature coefficient heating element
US5057161A (en) P-type fe silicide thermoelectric conversion material
US4954695A (en) Self-limiting conductive extrudates and methods therefor
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
JPH0217609A (en) Positive resistance temperature coefficient heating element
JP2586486B2 (en) Positive resistance temperature coefficient heating element
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JP2688061B2 (en) Positive resistance temperature coefficient heating element
CA1133085A (en) Temperature sensitive electrical device
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JPH0218902A (en) Positive temperature coefficient heater
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JP2743388B2 (en) Positive resistance temperature coefficient heating element
JPH01166479A (en) Exothermic body having positive resistance temperature coefficient
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPS6034792B2 (en) heating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees