JPS63307685A - Positive-resistance temperature coefficient heating element - Google Patents

Positive-resistance temperature coefficient heating element

Info

Publication number
JPS63307685A
JPS63307685A JP14167287A JP14167287A JPS63307685A JP S63307685 A JPS63307685 A JP S63307685A JP 14167287 A JP14167287 A JP 14167287A JP 14167287 A JP14167287 A JP 14167287A JP S63307685 A JPS63307685 A JP S63307685A
Authority
JP
Japan
Prior art keywords
temperature coefficient
heating element
annealing
melting point
resistance temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14167287A
Other languages
Japanese (ja)
Other versions
JPH0812791B2 (en
Inventor
Kazunori Ishii
和典 石井
Masayuki Terakado
誠之 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14167287A priority Critical patent/JPH0812791B2/en
Publication of JPS63307685A publication Critical patent/JPS63307685A/en
Publication of JPH0812791B2 publication Critical patent/JPH0812791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To maintain the stable function as a heating element for the long-term usage by applying the second annealing after the first annealing at specific temperatures respectively. CONSTITUTION:A thin positive-resistance temperature coefficient resistor 4 made of a conductive filler dispersed and pulverized with conductive fine grains in the first crystalline polymer having the melting point T1 and the second crystalline polymer having the melting point T2 higher than the melting point T1 as the main constituent and a pair of electrode bodies 5, 6 provided to apply the voltage in the thickness direction are provided. After the first annealing is applied at the temperature higher than the melting point T2, the second annealing is applied at the temperature lower than the melting point T2 and higher than the melting point T1. The positive-resistance temperature coefficient material with the large volume specific resistance can be thereby stabilized for a long time.

Description

【発明の詳細な説明】 産業上の利用公理 本発明は、採暖器具及び、一般の加熱装置として有用な
発熱体の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Axiom of Industrial Use The present invention relates to a heating device and a configuration of a heating element useful as a general heating device.

従来の技術 従来の正の抵抗温度係数をもつ(以下PTCと称す)発
熱体は、例えば特公昭57−43995号公報や特公昭
55−40181号公報に示されているような構成であ
り一対の電極間のPTC抵抗体のPTC特性により適宜
な温度に自己制御されているものであった。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance (hereinafter referred to as PTC) has a configuration as shown in, for example, Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-40181. The temperature was self-controlled to an appropriate temperature by the PTC characteristics of the PTC resistor between the electrodes.

しかし、特に大きな電力密度が要求される場合において
は、発熱体自体の温度分布を一様にするために一対の電
極間方向の温度分布を良好にすることが不可欠であり、
その解決策として特開昭60−28195号公報や第3
図に示すように一対の電極間距離を互いに接近させて構
成する方法が講じられた。第3図において1.2は互い
に接近して設けられた一対の平行平板状電極であり、こ
の間にPTC抵抗体3を配することにより高出力のPT
C発熱体を現出することが可能となった。
However, especially when a large power density is required, it is essential to improve the temperature distribution in the direction between the pair of electrodes in order to make the temperature distribution of the heating element itself uniform.
As a solution to this problem, Japanese Unexamined Patent Publication No. 60-28195 and No. 3
As shown in the figure, a method was adopted in which the distance between a pair of electrodes was made close to each other. In Fig. 3, reference numerals 1.2 are a pair of parallel plate-shaped electrodes provided close to each other, and by placing a PTC resistor 3 between them, high output PT.
It became possible to create a C heating element.

発明が解決しようとする問題点 しかしながら、こうした薄肉構造のP丁C発熱体を実現
していくためには構成材料や加工法等に多(の課題が存
在した。中でも抵抗温度特性の加工安定性あるいは耐熱
安定性などを確保していくことは、このPTC抵抗体が
高抵抗であるだけに非常に困難であった。こうした薄肉
構造では、P丁C抵抗体の体積固有抵抗を103〜10
5Ωルベルと、非常に高抵抗領域にすることが要求され
る。カーボンブラックは、素材自身の体積固有抵抗が相
当低いため、103〜105Ω1の値を出すためには少
ない添加量が要求され、微妙なカーボンブラック組成比
の調整が必要であるばかりでなく、そのカーボンブラッ
クの配列を崩さないためにも極めて高精度の加工法が不
可欠であり、さらには、長期の使用に際しても、発熱体
として安定した機能を保持させねばならず、実用上極め
て困難であった。
Problems to be Solved by the Invention However, in order to realize such a thin-walled PCB heating element, there were a number of problems with the constituent materials and processing methods. Among them, the processing stability of resistance temperature characteristics Also, it was very difficult to ensure heat resistance stability etc. because this PTC resistor has a high resistance.
It is required that the resistance be in the extremely high resistance region of 5Ω. Carbon black has a fairly low volume resistivity as a material itself, so in order to achieve a value of 103 to 105 Ω1, a small amount of carbon black is required to be added.Not only does it require delicate adjustment of the carbon black composition ratio, but also An extremely high-precision processing method is essential in order to maintain the black alignment, and furthermore, it must maintain a stable function as a heating element even during long-term use, which is extremely difficult in practice.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、融点T1
を有する第1の結晶性重合体中に導電性微粒子を分散さ
せられ細分化されてなる導電性フィラーと融点下1より
も高い温度の融点T2を有する第2の結晶性重合体とを
主成分とする薄肉正抵抗温度係数抵抗体と、その厚さ方
向に電圧を印加すべく設けられた一対の電極体とを備え
、T2よりも高い温度で第1のアニールをした後に、T
2よりも低くT1よりも高い温度で第2のアニールをし
てなる正抵抗温度係数発熱体を適用するものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is that the melting point T1
The main components are a conductive filler made by finely dividing conductive particles dispersed in a first crystalline polymer having A thin-walled positive resistance temperature coefficient resistor is provided, and a pair of electrode bodies are provided to apply a voltage in the thickness direction of the resistor.
In this embodiment, a positive resistance temperature coefficient heating element is applied, which is obtained by performing the second annealing at a temperature lower than T1 and higher than T1.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち結晶性重合体中に導電性微粒子を分散すること
によって得られる、常温体積固有抵抗値が10301以
上の非常に高抵抗領域にある薄肉状正抵抗温度係数抵抗
体組成物は、結晶性重合体の融点の近傍において顕著な
正抵抗温度係数を示すだけでなく、より低温域における
線膨張係数による影響や、結晶性重合体の結晶成長もし
くは導電性微粉末の凝集等による組成物の微細構造の影
響を強(受けるようになり、安定性に欠け、単品では実
用に耐えられるものではなくなる。
In other words, a thin-walled positive resistance temperature coefficient resistor composition having a room temperature volume resistivity value of 10301 or more, which is obtained by dispersing conductive fine particles in a crystalline polymer, is in a very high resistance region. In addition to exhibiting a remarkable positive temperature coefficient of resistance near the melting point of It becomes susceptible to strong effects, lacks stability, and cannot be used as a single item for practical use.

しかし、融点T1を有する結晶性重合体中に導電性微粒
子を分散させられた導電性フィラーの体積固有抵抗を1
03Ω1未満の安定した抵抗領域にし、この導電性フィ
ラーをT1より高い融点T2を有する第2の結晶性重合
体中に分散させることにより、安定した抵抗体を実現で
きるようになる。
However, the volume resistivity of a conductive filler in which conductive fine particles are dispersed in a crystalline polymer having a melting point of T1 is 1.
A stable resistor can be realized by achieving a stable resistance region of less than 03Ω1 and dispersing this conductive filler in a second crystalline polymer having a melting point T2 higher than T1.

しかしながら、こうした複合材料では、加工の際に、融
点T1.T2の相違、M−値の相違、各種加工に伴なう
熱、加圧等により加工歪が大きくなってしまうことにな
る。実使用により加工歪が低減されていき、安定な構造
になってい(が、結果的には、抵抗温度特性が経時的に
大きく変化してしまうことになり、実使用に際して満足
されるものではない。そこで、T2よりも高い温度で第
1のアニールを行なうことにより第1及び第2の結晶性
重合体が溶融し、前記加工歪が除去される。
However, during processing, such composite materials have a melting point T1. Processing distortion becomes large due to differences in T2, differences in M-value, heat and pressure accompanying various processes, and the like. Through actual use, processing distortion is reduced and the structure becomes stable (but as a result, the resistance-temperature characteristics change significantly over time, which is not satisfactory in actual use). Therefore, by performing the first annealing at a temperature higher than T2, the first and second crystalline polymers are melted and the processing strain is removed.

次に、一点T2よりも低くT 1よりも高い温度で第2
のアニールを行なうことにより、融点T1の第1の結晶
性重合体が溶融状態の中で、融点T2の第2の結晶性重
合体が安定して結晶化される。
Next, at a temperature lower than T2 and higher than T1, a second
By performing the annealing, the second crystalline polymer having a melting point T2 is stably crystallized while the first crystalline polymer having a melting point T1 is in a molten state.

この後、常温まで冷却される中で第1の結晶性重合体が
安定して結晶化されることになる。
Thereafter, the first crystalline polymer is stably crystallized while being cooled to room temperature.

こうして各種構成材料が安定な状態となるため、実使用
に際して抵抗温度特性の経時的変化は非常に小さくなり
、安定な正抵抗温度係数発熱体を実現できるようになる
Since the various constituent materials are in a stable state in this way, changes in resistance temperature characteristics over time during actual use become extremely small, making it possible to realize a stable positive resistance temperature coefficient heating element.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図において3は厚さ0.5mの正抵抗温度係数抵抗
体であり、この抵抗体3の上下面に一対の電極4.6が
接着されている。正抵抗温度係数抵抗体3は、融点13
0℃の高密度ポリエチレンにサーマルブラックを混練し
た混線物を細分化し融点160℃のポリエステル系エラ
ストマ中に分散させた組成物を用いた。具体的には以下
の手順により作製した。
In FIG. 1, 3 is a positive resistance temperature coefficient resistor having a thickness of 0.5 m, and a pair of electrodes 4.6 are bonded to the upper and lower surfaces of this resistor 3. The positive resistance temperature coefficient resistor 3 has a melting point of 13
A composition was used in which a mixed wire obtained by kneading thermal black into high-density polyethylene at 0°C was finely divided and dispersed in a polyester elastomer having a melting point of 160°C. Specifically, it was produced by the following procedure.

まず、高密度ポリエチレンとサーマルブラックを1対1
の比率で混練した後に、冷凍粉砕によって平均粒径1o
oμmの粉砕物を得た。その後、この粉砕物をポリエス
テル系エラストマ中にカーボンブラック組成比35wt
915で混練し、抵抗体3の組成物を得た。
First, mix high-density polyethylene and thermal black 1:1.
After kneading at a ratio of
A pulverized product of 0 μm was obtained. Thereafter, this pulverized material was added to a polyester elastomer with a carbon black composition ratio of 35 wt.
915 to obtain a composition for resistor 3.

この組成物を用いて第1図に示す構造に加工した後に、
170℃で1hアニールした後、140℃で1hアニー
ルし本発明のPTC発熱体を得た。
After processing this composition into the structure shown in Figure 1,
After annealing at 170° C. for 1 hour, annealing was performed at 140° C. for 1 hour to obtain a PTC heating element of the present invention.

比較例として、170℃で1hアニールのみしたPTC
発熱体を作製し、比較実験を行なった。比較実験として
AClooVで3000hにわたる通電試験を実施した
。驚くべきことに、第2図に示すように比較例のP丁C
発熱体が3000hで第2図(a)に示すように14.
5℃温度上昇したにもかかわらず、本発明の実施例のP
TC発熱体は3000h経過後においても第2図(bl
のように7.5℃の温度上昇に届まり安定化するという
すぐれた効果を有するものであった。これは、170’
Cのアニールで、高密度ポリエチレンとポリエステル系
エラストマとの両者が溶融し、加工歪、熱応力等が徐却
された後、140℃のアニールにより、ポリエステル系
エラストマのみが高密度ポリエチレン溶融状況の中で、
安定した状態で安定した位置に結晶化し、さらに常温ま
で冷却される中で高密度ポリエチレンが、ポリエステル
系エラストマと部分相溶して両者が適宜に相分離された
構造で安定して結晶化され、アニールによる熱歪、熱応
力をほとんどな(し安定した海島構造を実現しカーボン
ブラックの位置が安定化したことによるものである。さ
らに、第2の比較例としてカーボンブラックと高密度ポ
リエチレンのみの抵抗体組成物を同様に加工し、170
℃−1ttのアニールのみを行なったサンプルで、同じ
く通電試験を行なったところ第2図に示すように300
0hで第2図(c)に示すように18.6℃の温度上昇
となり、抵抗安定化に対して本発明の効果が非常に顕著
であることがわかった。
As a comparative example, PTC was annealed for only 1 hour at 170°C.
A heating element was manufactured and a comparative experiment was conducted. As a comparative experiment, an energization test was conducted for 3000 hours using AClooV. Surprisingly, as shown in FIG.
14. The heating element is heated for 3000 hours as shown in Fig. 2(a).
Despite the temperature increase of 5°C, P of the example of the present invention
Even after 3000 hours have elapsed, the TC heating element remains unchanged as shown in Figure 2 (bl
It had an excellent effect of stabilizing the temperature increase by 7.5°C. This is 170'
In the annealing step C, both the high-density polyethylene and the polyester elastomer are melted, and after the processing strain, thermal stress, etc. are gradually removed, by annealing at 140°C, only the polyester elastomer is melted in the high-density polyethylene melting state. in,
The high-density polyethylene is crystallized in a stable state and at a stable position, and while being further cooled to room temperature, the high-density polyethylene is partially compatible with the polyester elastomer, and the two are stably crystallized in a structure in which the two are properly phase-separated. This is due to the fact that thermal strain and thermal stress due to annealing are almost eliminated (a stable sea-island structure is realized, and the position of carbon black is stabilized.Furthermore, as a second comparative example, the resistance of only carbon black and high-density polyethylene is achieved). The body composition was processed in the same way, and 170
When the sample was annealed only at -1tt and was subjected to the same current test, it showed that the temperature was 300℃ as shown in Figure 2.
At 0 h, the temperature rose by 18.6° C. as shown in FIG. 2(c), indicating that the effect of the present invention on stabilizing resistance was very significant.

なお、正抵抗温度係数抵抗体を構成する材料としては、
高密度ポリエチレンとサーマルブラックとポリエステル
系エラストマとの組合わせに限定されるものではなく、
中密度ポリエチレン、低密度ホリエチレン、リニアポリ
エチレン、エチレン酢酸ビニル共重合体、エチレンアク
リル酸共重合体、アイオノマ、ポリアミド、ポリ弗化ビ
ニリデン、ポリエステル等の結晶性樹脂、各種熱可塑エ
ラストマさらには、上記結晶性重合体にアクリル酸、マ
レイン酸等の官能基を付加した変性重合体等どのような
結晶性重合体であってもよく、融点の異なる2種類以上
の結晶性重合体を適宜組み合わせられたものであればよ
い。
In addition, the materials constituting the positive resistance temperature coefficient resistor are:
It is not limited to the combination of high-density polyethylene, thermal black, and polyester elastomer,
Crystalline resins such as medium density polyethylene, low density polyethylene, linear polyethylene, ethylene vinyl acetate copolymer, ethylene acrylic acid copolymer, ionomer, polyamide, polyvinylidene fluoride, polyester, various thermoplastic elastomers, and the above Any crystalline polymer may be used, such as a modified polymer obtained by adding a functional group such as acrylic acid or maleic acid to a crystalline polymer, and two or more types of crystalline polymers having different melting points may be appropriately combined. It is fine as long as it is something.

また、カーボンブラックとしては、チャンネルブラック
、アセチレンブラック、ファーネスブラック等であって
もよく、また、2種類以上のカーボンブラックを組み合
わせた組成であってもよい。
Further, the carbon black may be channel black, acetylene black, furnace black, etc., or may be a composition in which two or more types of carbon black are combined.

また、上記結晶性重合体の3種類以上の組成物に対して
は、当然、これらの重合体の各融点間でアニールを行な
うことにより、抵抗の安定性を高めることが可能である
Furthermore, for compositions containing three or more types of the above-mentioned crystalline polymers, it is possible to improve the stability of resistance by annealing between the respective melting points of these polymers.

この各融点間におけるアニールは材料構造の安定化を図
るため、好ましくは30分以上すると効果が太き(、さ
らに好ましくは、この融点間におけるある適宜な温度で
一定にあるいは1°C/分以下の速度で徐冷するとよい
。また、カーボンプラツクが分散されてなる第1の結晶
性重合体により構成される導電性フィラーと第2の結晶
性重合体との結晶構造、位置関係をさらに安定化するた
めに各融点間における温度で5℃以上上下に変動させる
と、さらに抵抗は安定化し、耐熱等によってもほとんど
変化しなくなる。実際、前実施例の第2のアニールを1
40〜150℃間で2サイクル上下に変動させたサンプ
ルは、同試験3000 hにおいて第2図(d)に示す
ように3.5℃以下の温度上昇に届めることができた。
In order to stabilize the material structure, annealing between these melting points is preferably performed for 30 minutes or more for a greater effect (more preferably, annealing is performed at a constant temperature between these melting points or at a temperature of 1°C/min or less). In addition, the crystal structure and positional relationship between the conductive filler made of the first crystalline polymer in which carbon plaques are dispersed and the second crystalline polymer can be further stabilized. If the temperature between each melting point is varied up or down by 5°C or more in order to obtain
The sample, which was fluctuated up and down for two cycles between 40 and 150°C, was able to reach a temperature increase of less than 3.5°C in 3000 hours of the same test, as shown in Figure 2(d).

また、この導電性フィラー中のカーボンブラックを有機
過酸化物、あるいは電子線等で架橋すると、カーボンブ
ラックが第1の結晶性重合体に固定化されさらに安定な
導電性フィラーが実現されるばかりでなく、第2の結晶
性重合体との部分相溶性が顕著となり、各融点間におけ
るアニールも短縮化させることが可能となる。実際、前
実施例の導電性フィラーにパーオキサイドで架橋させた
ものでは、同一のアニール条件、170’C−1h。
Furthermore, when the carbon black in this conductive filler is crosslinked with organic peroxide or electron beam, the carbon black is immobilized on the first crystalline polymer and a more stable conductive filler is realized. Therefore, the partial compatibility with the second crystalline polymer becomes remarkable, and it becomes possible to shorten the annealing time between each melting point. In fact, for the conductive filler of the previous example crosslinked with peroxide, the annealing conditions were the same, 170'C-1h.

140℃−1hで、同試験3000 t+ ニお(、N
rも第2図(e)の如(+2℃以下の温度変化であった
At 140°C for 1 hour, the same test yielded 3000 t+ Ni (, N
As shown in FIG. 2(e), r also showed a temperature change of +2° C. or less.

この第1の結晶性重合体と第2の結晶性重合体とをsp
値の差が大きくかつ分散可能な部分相溶性の材料にする
ことも有効である。
This first crystalline polymer and second crystalline polymer are sp
It is also effective to use partially compatible materials that have a large difference in value and can be dispersed.

最後に、以上に述べた主な各種実験を整理してみると、
以下のようになる。
Finally, when we summarize the various main experiments mentioned above, we find that
It will look like this:

発明の効果 以上に述べてきたように、正抵抗温度係数抵抗体材料を
非常に接近した電極間で発熱させることにより高出力化
を達成しようとする場合等に、半導体領域に近い固有抵
抗値を有する正抵抗温度係数抵抗体材料が必要となるが
、単に、組成比を調整しただけでは微粉末同志の接触点
の数が大幅に減少するために、正抵抗温度係数が異常に
増大したり、経時変化によって、抵抗値と抵抗温度特性
が大きく変動する等、不安定で実用に耐えられない発熱
体しか得られなかったが、本発明によれば、この点を克
服することが可能となった。
Effects of the Invention As mentioned above, when trying to achieve high output by generating heat between electrodes of a positive resistance temperature coefficient resistor material, it is possible to achieve a specific resistance value close to that of a semiconductor region. A resistor material with a positive resistance temperature coefficient is required, but simply adjusting the composition ratio will greatly reduce the number of contact points between the fine powders, resulting in an abnormal increase in the positive resistance temperature coefficient. The resistance value and resistance temperature characteristics fluctuated greatly due to changes over time, resulting in heating elements that were unstable and unusable for practical use. However, the present invention has made it possible to overcome this problem. .

その結果、高出力で経時的に抵抗変化の非常に小さい画
期的な正抵抗温度係数発熱体を実際に広く用途展開して
いくことが可能となった。さらには、こうした体積固有
抵抗の大きな正抵抗温度係数材料の長期安定化が図られ
たことにより、各種産業分野にも実用上、大きな価値を
寄与するものである。
As a result, it has become possible to actually develop a revolutionary positive resistance temperature coefficient heating element with high output and extremely small resistance change over time for a wide range of applications. Furthermore, by achieving long-term stabilization of such a positive resistance temperature coefficient material with a large volume resistivity, it will contribute great practical value to various industrial fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の正抵抗温度係数発熱体の斜
視図、第2図は同実施例及び比較例の経時的温度変化の
性能図、第3図は従来の正抵抗温度係数発熱体の斜視図
である。 4・・・・・・正抵抗温度係数発熱体、5.6・・・・
・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名4−
1匙仇温X4I1.飲抵仇体 5.6−電 磁 第 1 図 乙 w!&2図 通電時間(x tooo h) 嬉3 図
Fig. 1 is a perspective view of a positive resistance temperature coefficient heating element according to an embodiment of the present invention, Fig. 2 is a performance diagram of temperature change over time of the same embodiment and a comparative example, and Fig. 3 is a conventional positive resistance temperature coefficient heating element. FIG. 3 is a perspective view of a heating element. 4...Positive resistance temperature coefficient heating element, 5.6...
··electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 4-
1 spoon warm x4I1. Drinking Resistance Body 5.6-Electromagnetic Figure 1 lol! &2 Figure energizing time (x too h) Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)融点T_1を有する第1の結晶性重合体中に導電
性微粒子を分散させ細分化されてなる導電性フィラーと
、融点T_1よりも高い温度の融点T_2を有する第2
の結晶性重合体とを主成分とする薄肉正抵抗温度係数抵
抗体と、その厚さ方向に電圧を印加すべく設けられた一
対の電極体とを備え、T_2よりも高い温度で第1のア
ニールをした後に、T_2よりも低くT_1よりも高い
温度で第2のアニールをしてなる正抵抗温度係数発熱体
(1) A conductive filler made by dispersing and finely dividing conductive fine particles in a first crystalline polymer having a melting point T_1, and a second conductive filler having a melting point T_2 higher than the melting point T_1.
A thin positive resistance temperature coefficient resistor whose main component is a crystalline polymer, and a pair of electrode bodies provided to apply a voltage in the thickness direction of the resistor. A positive resistance temperature coefficient heating element formed by performing annealing and then performing a second annealing at a temperature lower than T_2 and higher than T_1.
(2)第1あるいは第2のアニール処理時間は30分以
上である特許請求の範囲第1項記載の正抵抗温度係数発
熱体。
(2) The positive resistance temperature coefficient heating element according to claim 1, wherein the first or second annealing treatment time is 30 minutes or more.
(3)第1及び第2のアニールのうち少なくともいずれ
か一方は一定もしくは1℃/分以下の速度での徐冷処理
を20分以上有してなる特許請求の範囲第1項あるいは
第2項記載の正抵抗温度係数発熱体。
(3) Claims 1 or 2, wherein at least one of the first and second annealing includes slow cooling treatment at a constant rate or at a rate of 1° C./min or less for 20 minutes or more. Positive resistance temperature coefficient heating element as described.
(4)第1及び第2のアニールのうち少なくともいずれ
か一方は、各温度領域において温度を5℃以上上昇させ
る処理を有してなる特許請求の範囲第1項、第2項、第
3項のいずれか1つに記載の正抵抗温度係数発熱体。
(4) Claims 1, 2, and 3, wherein at least one of the first and second annealing includes a process of increasing the temperature by 5°C or more in each temperature range. The positive resistance temperature coefficient heating element according to any one of the above.
(5)導電性フィラーは電子線あるいは有機過酸化物等
で架橋されてなる特許請求の範囲第1項から第4項のい
ずれか1つに記載の正抵抗温度係数発熱体。
(5) The positive resistance temperature coefficient heating element according to any one of claims 1 to 4, wherein the conductive filler is crosslinked with an electron beam or an organic peroxide.
(6)導電性フィラーと第2の重合体とは部分相溶性を
有する特許請求の範囲第1項から第5項のいずれか1つ
に記載の正抵抗温度係数発熱体。
(6) The positive resistance temperature coefficient heating element according to any one of claims 1 to 5, wherein the conductive filler and the second polymer are partially compatible.
(7)第1あるいは第2の結晶性重合体はX線解析で結
晶化度が20%以上である特許請求の範囲第1項から第
6項のいずれか1つに記載の正抵抗温度係数発熱体。
(7) The positive temperature coefficient of resistance according to any one of claims 1 to 6, wherein the first or second crystalline polymer has a crystallinity of 20% or more according to X-ray analysis. heating element.
JP14167287A 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element Expired - Fee Related JPH0812791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14167287A JPH0812791B2 (en) 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14167287A JPH0812791B2 (en) 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPS63307685A true JPS63307685A (en) 1988-12-15
JPH0812791B2 JPH0812791B2 (en) 1996-02-07

Family

ID=15297512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14167287A Expired - Fee Related JPH0812791B2 (en) 1987-06-05 1987-06-05 Positive resistance temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JPH0812791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230684A (en) * 1989-03-02 1990-09-13 Norio Mori Planar heat generator
CN115926665A (en) * 2022-12-30 2023-04-07 郑州郑大可飞科技有限公司 Elastic self-adhesive conductive sealing gasket with composite structure and preparation method thereof
CN116199964A (en) * 2022-12-27 2023-06-02 上海维安电子股份有限公司 Island structure conductive composite material and PTC element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230684A (en) * 1989-03-02 1990-09-13 Norio Mori Planar heat generator
CN116199964A (en) * 2022-12-27 2023-06-02 上海维安电子股份有限公司 Island structure conductive composite material and PTC element
CN115926665A (en) * 2022-12-30 2023-04-07 郑州郑大可飞科技有限公司 Elastic self-adhesive conductive sealing gasket with composite structure and preparation method thereof
CN115926665B (en) * 2022-12-30 2024-05-10 郑州郑大可飞科技有限公司 Elastic self-adhesive conductive sealing gasket with composite structure and preparation method thereof

Also Published As

Publication number Publication date
JPH0812791B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JP3930904B2 (en) Electrical device
JPS6135223B2 (en)
JPS63307685A (en) Positive-resistance temperature coefficient heating element
US3503030A (en) Indirectly-heated thermistor
US4088609A (en) Current-conducting film for electric resistance heaters
US20050001207A1 (en) Polymeric PTC device capable of returning to its initial resistance after overcurrent protection
JPH0217609A (en) Positive resistance temperature coefficient heating element
JP2586486B2 (en) Positive resistance temperature coefficient heating element
JPH0218902A (en) Positive temperature coefficient heater
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JP2631117B2 (en) Manufacturing method of heating element with positive temperature characteristic
JP2688061B2 (en) Positive resistance temperature coefficient heating element
JPH09213779A (en) Ceramic electrostatic chuck
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
JP2730062B2 (en) Positive resistance temperature coefficient heating element
GB2033707A (en) Conductive polymer compositions of an electrical device
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPS62232902A (en) Manufacture of positive resistance temperature coefficient heating element resin compound
JPH01166479A (en) Exothermic body having positive resistance temperature coefficient
JPH0217608A (en) Positive resistance temperature coefficient heating element
JPH03269982A (en) Positive resistance temperature coefficient heating body
JPH0374481B2 (en)
SU517054A1 (en) Resistive material
SU1046776A1 (en) Composite resistive material
JPH07120573B2 (en) Method for manufacturing amorphous binary alloy thin film resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees