JP2688061B2 - Positive resistance temperature coefficient heating element - Google Patents

Positive resistance temperature coefficient heating element

Info

Publication number
JP2688061B2
JP2688061B2 JP63133781A JP13378188A JP2688061B2 JP 2688061 B2 JP2688061 B2 JP 2688061B2 JP 63133781 A JP63133781 A JP 63133781A JP 13378188 A JP13378188 A JP 13378188A JP 2688061 B2 JP2688061 B2 JP 2688061B2
Authority
JP
Japan
Prior art keywords
conductive
resistance temperature
heating element
temperature coefficient
crystalline polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63133781A
Other languages
Japanese (ja)
Other versions
JPH01304681A (en
Inventor
和典 石井
誠之 寺門
國雄 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63133781A priority Critical patent/JP2688061B2/en
Publication of JPH01304681A publication Critical patent/JPH01304681A/en
Application granted granted Critical
Publication of JP2688061B2 publication Critical patent/JP2688061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具や一般の加熱装置に使用されて有
用な正抵抗温度係数発熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive resistance temperature coefficient heating element which is useful in a heating appliance and a general heating device.

従来の技術 従来の正の抵抗温度係数をもつ発熱体は、一対の電極
間の抵抗体の正抵抗温度特性により適宜な温度に自己制
御されているものであった。
2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance has been self-controlled to an appropriate temperature by the positive resistance temperature characteristic of a resistor between a pair of electrodes.

しかし、特に大きな電力密度や高温度が要求される場
合においては、発熱体自体の温度分布を一様にするため
に一対の電極間方向に温度分布を常に良好にすることが
不可欠であり、その解決策として第6図に示すように一
対の電極間距離を互いに接近させて構成する方法が講じ
らた。第6図において、1,2は互いに接近して設けられ
た一対の平行平板電極であり、この間に結晶性重合体に
導電性微粉末を混合分散して形成した抵抗体3を配する
ことにより高出力の正抵抗温度係数発熱体を現出する可
能性が見出された。
However, especially when a large power density or high temperature is required, it is essential to make the temperature distribution always good in the direction between the pair of electrodes in order to make the temperature distribution of the heating element itself uniform. As a solution, a method was adopted in which the distance between a pair of electrodes is made close to each other as shown in FIG. In FIG. 6, 1 and 2 are a pair of parallel plate electrodes provided close to each other, and by disposing a resistor 3 formed by mixing and dispersing conductive fine powder in a crystalline polymer between them, It has been found that a high-power positive resistance temperature coefficient heating element may emerge.

発明が解決しようとする課題 しかしながら上記のような従来の正抵抗温度係数発熱
体は、高出力を現出するための構造としては非常に優れ
ていたが、カーボンブラックなどの比較的低抵抗の導電
性微粉末を混合分散することによって構成される正抵抗
温度係数抵抗体の耐電圧破壊特性や、非常に高抵抗が要
求される体積固有抵抗値の領域などを考慮すると、解決
しなければならない多くの課題を有していた。たとえ
ば、電極間隔が非常に接近した正抵抗温度係数発熱体を
構成するためには、耐電圧破壊特性に優れた導電性微粉
末を選定するだけでなく、十分に大きい正の抵抗温度特
性を得ることによって、ピーク抵抗値を越えて暴走する
ことのないように配慮することが不可欠であった。ま
た、体積固有抵抗値は従来の100〜102Ωcmに対して、10
3〜105Ωcmの半導体領域が必要となり、導電性微粉末の
組成比を大幅に低減しなければならなくなった。その結
果、導電性微粉末同志の接触点の数は激減し、抵抗温度
特性は導電性微粉末が混合分散される結晶性重合体の融
点のみによって制御されるだけでなく、より低音域の熱
膨張、熱収縮などの各種構成材料の熱応力に起因すると
考えられる不安定な成分が飛躍的に増大することによ
り、極めて不安定な特性になった。さらに、経時変化に
おいて、結晶性重合体の結晶成長、発熱体各部の熱応
力、あるいは導電性微粉末の凝集などによって、抵抗値
や抵抗温度係数の大幅な変化が生じるようになり、温度
と電力の安定性に欠け、非常に短い発熱寿命であった
り、異常過熱、発煙、発火などの危険性を有したりし
て、実用上の許容範囲から大幅に外れるものであった。
このように、導電性微粉末の組成比を調整するだけでは
体積固有抵抗値103Ωcm以上の有用な正抵抗温度係数発
熱体を作り出すことができなかった。
However, the conventional positive resistance temperature coefficient heating element as described above was very excellent as a structure for producing a high output, but a relatively low resistance conductive material such as carbon black. Many problems have to be solved in consideration of the breakdown voltage breakdown characteristics of a positive temperature coefficient resistor made by mixing and dispersing conductive fine powder, and the volume resistivity region where extremely high resistance is required. Had the problem of. For example, in order to construct a positive resistance temperature coefficient heating element in which the electrode interval is very close, not only conductive fine powder having excellent withstand voltage breakdown characteristics is selected, but also a sufficiently large positive resistance temperature characteristic is obtained. Therefore, it was indispensable to take precautions so as not to run over the peak resistance value. The volume resistivity of the conventional 10 0 ~10 2 Ωcm, 10
A semiconductor region of 3 to 10 5 Ωcm is required, and the composition ratio of the conductive fine powder has to be significantly reduced. As a result, the number of contact points between the conductive fine powders is drastically reduced, and the resistance-temperature characteristic is controlled not only by the melting point of the crystalline polymer in which the conductive fine powders are mixed and dispersed, but also by the heat in the lower range. The unstable component, which is considered to be caused by the thermal stress of various constituent materials such as expansion and thermal contraction, dramatically increased, resulting in extremely unstable characteristics. In addition, due to changes over time, crystal resistance of the crystalline polymer, thermal stress in various parts of the heating element, or agglomeration of conductive fine powder will cause a large change in resistance and temperature coefficient of resistance. Was not stable, had a very short heat generation life, and had the risk of abnormal overheating, smoke emission, ignition, etc., and was far outside the practically acceptable range.
As described above, it was not possible to produce a useful positive resistance temperature coefficient heating element having a volume resistivity value of 10 3 Ωcm or more only by adjusting the composition ratio of the conductive fine powder.

本発明はかかる問題を解決するもので、実用に耐え得
る優れた抵抗安定性を実現できる正抵抗温度係数発熱体
の材料構成を提供することを目的とするものである。
The present invention solves such a problem, and an object of the present invention is to provide a material structure of a positive resistance temperature coefficient heating element capable of realizing excellent resistance stability that can withstand practical use.

課題を解決するための手段 上記課題を解決するために、本発明の正抵抗温度係数
発熱体は、結晶性重合体中に導電性微粉末を混合分散し
た導電性組成物を架橋し細分化してなり、かつ抵抗温度
係数が異なるように前記結晶性重合体の種類、前記導電
性微粉末の種類、前記結晶性重合体と前記導電性微粉末
の組成比率、架橋条件、粒子径のうちの少なくとも一つ
を調整してなる複数種類の粒子状導電性組成物(以下導
電性フィラーを称す)をさらに結晶性重合体に混合分散
して形成した薄厚状の正抵抗温度係数抵抗体と、その厚
さ方向に電圧を印加すべく設けられた一対の電極体を備
えたものである。
Means for Solving the Problems In order to solve the above problems, the positive resistance temperature coefficient heating element of the present invention is obtained by crosslinking and subdividing a conductive composition in which conductive fine powder is mixed and dispersed in a crystalline polymer. And the type of the crystalline polymer so that the temperature coefficient of resistance is different, the type of the conductive fine powder, the composition ratio of the crystalline polymer and the conductive fine powder, crosslinking conditions, at least one of the particle size Thin-type positive resistance temperature coefficient resistor formed by further mixing and dispersing a plurality of types of particulate conductive composition (hereinafter referred to as conductive filler) prepared by mixing one in a crystalline polymer, and its thickness It is provided with a pair of electrode bodies provided to apply a voltage in the vertical direction.

作用 上記構成により、正抵抗温度係数抵抗体の材料構成
は、結晶性重合体中に導電性微粉末が高比率で分散され
た部分とほとんど分散されていない部分とに分離され
て、この両者が海島状に配された構成になるので、結晶
性重合体中に導電性微粉末を混合分散した導電性組成物
を架橋し細分化してなる導電性フィラーは、前者の部分
に相当し、体積固有抵抗が100〜101Ωcmレベルであって
も極めて安定しており、また電子線もしくは有機過酸化
物によって架橋されておれば、導電性微粉末は導電性フ
ィラー中で確実に固定されて、経時的にも安定した抵抗
特性を示すことが可能となる。しかし、特に後者の結晶
性重合体部分が大きい場合には、導電性フィラーの可動
ゾーンが大きくなり動きやすくなるため、加工、熱、結
晶成長などに対する応力緩和によってアニール時に導電
性フィラーの凝集構造が緩和されるなどの変化を生じ、
導電経路が不安定になっていくが、実使用状態に相当す
る、ある温度域において大きく寄与しない高抵抗の他の
種類の導電性フィラーを導入することにより、導電性フ
ィラーの抵抗体に占める比率が大きくなり、動きにくく
なるばかりでなく、導電性微粉末自身の抵抗体中で密度
分布も小さくなっていくために、極めて安定した抵抗安
定性を保持できるようになる。結晶性重合体の種類、前
記導電性微粉末の種類、前記結晶性重合体と前記導電性
微粉末の組成比率、架橋条件、粒子径を変更することに
よって抵抗温度係数と体積固有抵抗値が異なる導電性フ
ィラーを形成することができる。これら導電性フィラー
は架橋されているために独立のフィラーを形成すること
ができる。これらの導電性フィラーは架橋されているた
めに独立のフィラーを形成することができる。これらの
導電性フィラーは架橋されているために独立のフィラー
粒子として結晶性重合体中に分散される。こうして、10
3Ωcm以上に及ぶ高抵抗の抵抗体の優れた安定性を図る
ことができ、高出力の正抵抗温度係数発熱体が実現でき
るようになる。
With the above configuration, the material configuration of the positive resistance temperature coefficient resistor is divided into a portion in which the conductive fine powder is dispersed in the crystalline polymer at a high ratio and a portion in which the conductive fine powder is hardly dispersed, and both of them are separated. Since it is arranged in a sea-island shape, the conductive filler obtained by crosslinking and subdividing the conductive composition obtained by mixing and dispersing conductive fine powder in a crystalline polymer corresponds to the former part and has a volume specific resistance were very stable even 10 0 to 10 1 [Omega] cm level and if I is crosslinked by electron beam or an organic peroxide, the conductive fine powder is securely fixed with a conductive filler in, It is possible to exhibit stable resistance characteristics over time. However, especially in the latter case where the crystalline polymer portion is large, the movable zone of the conductive filler becomes large and easy to move, so that the aggregate structure of the conductive filler during annealing due to stress relaxation due to processing, heat, crystal growth, etc. Changes such as being alleviated,
Although the conductive path becomes unstable, the ratio of the conductive filler to the resistor by introducing another type of high-resistance conductive filler that does not make a large contribution in a certain temperature range, which corresponds to the actual use state. Not only becomes larger and becomes hard to move, but also the density distribution in the resistor of the conductive fine powder itself becomes smaller, so that extremely stable resistance stability can be maintained. The type of crystalline polymer, the type of the conductive fine powder, the composition ratio of the crystalline polymer and the conductive fine powder, the cross-linking conditions, the resistance temperature coefficient and the volume specific resistance value are different by changing the particle diameter. A conductive filler can be formed. Since these conductive fillers are crosslinked, independent fillers can be formed. Since these conductive fillers are crosslinked, they can form independent fillers. Since these conductive fillers are crosslinked, they are dispersed in the crystalline polymer as independent filler particles. Thus, 10
It is possible to achieve excellent stability of a high resistance resistor of 3 Ωcm or more, and to realize a high output positive resistance temperature coefficient heating element.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の一実施例の正抵抗温度係数発熱体は、たとえ
ば、第1図に示すように、厚さ0.4mmの正抵抗温度係数
抵抗体4の上下面に電極5,6が接着され、さらに両者の
上に外装材7,8が外装されている。正抵抗温度係数抵抗
体4は以下のように形成されている。すなわち、導電性
微粉末としてのサーマルブラック55wt%と結晶性重合体
としての低密度ポリエチレン45wt%とを混練しつつ、有
機過酸化物であるジクミールパーオキサイドを抵密度ポ
リエチレンに対して2.5wt%添加し、熱処理を施すこと
によって架橋反応を完了させた後に、冷凍粉砕によって
平均粒径60μmの粉砕物、すなわち第1の導電性フィラ
ーを得た。次に、同様にして、ファーネスブラックとサ
ーマルブラックとを1:1に均一に分散した微粉末をつく
り、この導電性微粉末42wt%と結晶性重合体である高密
度ポリエチレン58wt%とを混練しつつ、有機過酸化物で
あるジクミールパーオキサイドを高密度ポリエチレンに
対して3wt%添加し、熱処理を施すことによって架橋反
応を完了させた後に、冷凍粉砕によって平均粒子70μm
の粉砕物、すなわち第2の導電性フィラーを得た。この
後、第1および第2の導電性フィラーを、両者の比率が
3:1で、かつ両導電性フィラーの抵抗体全量に占める比
率が54.3wt%となるように、さらに別の結晶性重合体と
してのマレイン酸変性高密度ポリエチレン中に均一に分
散して混練し、正抵抗温度係数抵抗体4を得た。さら
に、この抵抗体4を前記のように発熱体に加工した後、
アニールして所定の抵抗特性を得た。ここで、その有効
性を調べるために、上記仕様によるNo1仕様の外に、第
1および第2の導電性フィラーを適宜置換させた以下に
示すNo2,3,4仕様のサンプルを同様にして加工し、第1
表のサンプルを得た。
As shown in FIG. 1, the positive resistance temperature coefficient heating element of one embodiment of the present invention has electrodes 5 and 6 bonded to the upper and lower surfaces of the positive resistance temperature coefficient resistor 4 having a thickness of 0.4 mm, and Exterior materials 7 and 8 are provided on both sides. The positive resistance temperature coefficient resistor 4 is formed as follows. That is, while kneading 55 wt% of thermal black as a conductive fine powder and 45 wt% of low density polyethylene as a crystalline polymer, 2.5 wt% of dicumyl peroxide, which is an organic peroxide, with respect to low density polyethylene After the addition and heat treatment to complete the crosslinking reaction, a pulverized product having an average particle diameter of 60 μm, that is, a first conductive filler was obtained by freeze pulverization. Next, in the same manner, a fine powder in which furnace black and thermal black were uniformly dispersed at 1: 1 was prepared, and 42 wt% of this conductive fine powder was kneaded with 58 wt% of high density polyethylene which is a crystalline polymer. Meanwhile, the organic peroxide, dicumyl peroxide, was added to the high-density polyethylene in an amount of 3 wt% and the heat treatment was applied to complete the cross-linking reaction.
To obtain a pulverized product, that is, a second conductive filler. After that, the first and second conductive fillers are added in a ratio of both.
It is 3: 1 and the ratio of both conductive fillers to the total amount of resistors is 54.3 wt%, and it is uniformly dispersed and kneaded in maleic acid-modified high-density polyethylene as another crystalline polymer. A positive resistance temperature coefficient resistor 4 was obtained. Further, after processing the resistor 4 into a heating element as described above,
It was annealed to obtain a predetermined resistance characteristic. Here, in order to examine its effectiveness, in addition to the No1 specification according to the above specifications, the following No2, 3, and 4 specification samples in which the first and second conductive fillers were appropriately replaced were processed in the same manner. And first
A sample of the table was obtained.

ここで、固有抵抗の値は発熱体温度が20℃における体
積固有抵抗値であり、第1および第2のそれぞれの導電
性フィラーの微細分化前の材料より、測定された値であ
る。この値は、測定方法により測定値の絶対値に若干の
差が生ずるものの、同一測定方法で、体積固有抵抗が、
常温より使用可能温度までの温度域のどこかの温度で、
異なる2種類以上の導電性フィラーを有する正抵抗温度
係数抵抗体に適用するものであり、No.1〜3はこの実施
例、No.4は従来の比較例を示すものである。No.1および
No.4の抵抗温度特性図を第2図に示すが、両者の第1の
導電性フィラーは同一であり、No.1にはさらに第2の導
電性フィラーが含まれている。また、No.2,3の抵抗温度
特性図をそれぞれ第3図、第4図に示すが、抵抗温度特
性の差の小さい例、大きい例をそれぞれ言及するもので
ある。
Here, the value of the specific resistance is a volume specific resistance value when the temperature of the heating element is 20 ° C., and is a value measured from the materials of the first and second conductive fillers before fine division. Although this value causes a slight difference in the absolute value of the measured value depending on the measuring method, it is the same measuring method.
At some temperature in the temperature range from room temperature to usable temperature,
It is applied to a positive resistance temperature coefficient resistor having two or more different kinds of conductive fillers, Nos. 1 to 3 show this example, and No. 4 shows a conventional comparative example. No.1 and
The resistance temperature characteristic diagram of No. 4 is shown in FIG. 2. The first conductive fillers of both are the same, and No. 1 further contains the second conductive filler. Further, the resistance temperature characteristic charts of Nos. 2 and 3 are shown in FIGS. 3 and 4, respectively, and refer to examples in which the difference in resistance temperature characteristic is small and examples in which the difference is large.

実際に、No.1〜4のサンプルの通電試験による比較実
験を行なった。通電モードについては、熱サイクルによ
る加速評価するために10分毎の断続通電による評価とし
た。その結果を第5図に示している。第5図から明らか
なように、No.4の従来の比較例のサンプルでは、断続通
電サイクルの最大温度は1500hより下がりはじめ、2400h
後にはほとんど発熱しなくなるほど高抵抗となり、極め
て短寿命であった。これに対して、第2の導電性フィラ
ーを混練したNo.1サンプルは、7500h現在においても初
期の温度を保持しており、非常に安定した発熱特性とな
っており、また抵抗温度特性も非常に安定していた。こ
の他のNo.2,3のサンプルも、7500h現在においてNo.1サ
ンプルと同じように、極めて安定した発熱特性であっ
た。実際使用される通電モードにより寿命は異なるもの
の、他種類の導電性フィラーを導入することにより、長
寿命で、極めて安定した抵抗安定性を保持できるとい
う、画期的な抵抗安定化手法を現出できることがわかっ
た。
Actually, comparative experiments were conducted by conducting tests of No. 1 to 4 samples. The energization mode was evaluated by intermittent energization every 10 minutes in order to evaluate acceleration by the heat cycle. The result is shown in FIG. As is clear from FIG. 5, in the sample of the conventional comparative example of No. 4, the maximum temperature of the intermittent energization cycle starts to drop from 1500h to 2400h.
After that, the resistance became so high that almost no heat was generated, and the life was extremely short. On the other hand, the No. 1 sample in which the second conductive filler was kneaded maintained the initial temperature even at 7500h, has very stable heat generation characteristics, and has an extremely high resistance temperature characteristic. Was stable to. The other No. 2 and 3 samples also had extremely stable heat generation characteristics as of No. 1 sample at 7500h. Although it has a different life depending on the current-carrying mode actually used, the introduction of another type of conductive filler has brought about an epoch-making resistance stabilization method that maintains long-life and extremely stable resistance stability. I knew I could do it.

これは以下のメカニズムによるものと考えられる。す
なわち、結晶性重合体中に導電性微粉末を混合分散した
導電性組成物を架橋し細分化してなる導電性フィラーは
体積固有抵抗が100〜101Ωcmレベルであっても極めて安
定しており、また電子線もしくは有機過酸化物によって
架橋されているために、導電性微粉末は導電性フィラー
中で確実に固定されて、経時的にも安定した抵抗特性を
示すことが可能となる。しかし、特に導電性フィラーを
結合する結晶性重合体部分が大きい場合には、導電性フ
ィラーの可動ゾーンが大きくなり動きやすくなるため、
加工、熱、結晶成長などに対する応力緩和によってアニ
ール時に導電性フィラーの凝集構造が緩和されるなどの
変化を生じ、導電経路が不安定になっていくが、実使用
状態に相当する、ある温度域において大きく寄与しない
高抵抗の他の種類の導電性フィラーを導入することによ
り、導電性フィラーの抵抗体に占める比率が大きくな
り、動きにくくなるばかりでなく、導電性微粉末自身の
抵抗体中での密度分布も小さくなっていくために、極め
て安定した抵抗安定性を保持できるようになる。こうし
て、103Ωcm以上に及ぶ高抵抗の抵抗体の優れた安定性
を図ることができ、高出力の正抵抗温度係数発熱体が実
現できるようになる。
It is considered that this is due to the following mechanism. That is, the conductive filler obtained by crosslinking and subdividing the conductive composition obtained by mixing and dispersing the conductive fine powder in the crystalline polymer is extremely stable even if the volume resistivity is 10 0 to 10 1 Ωcm level. In addition, since the conductive fine powder is fixed in the conductive filler because it is crosslinked by the electron beam or the organic peroxide, it becomes possible to exhibit stable resistance characteristics over time. However, especially when the crystalline polymer portion that binds the conductive filler is large, since the movable zone of the conductive filler becomes large and easy to move,
Stress relaxation due to processing, heat, crystal growth, etc. causes changes such as relaxation of the agglomerate structure of the conductive filler during annealing, making the conductive path unstable, but at a certain temperature range corresponding to the actual use state. Introducing other types of high-resistance conductive fillers that do not contribute significantly in, the ratio of the conductive filler in the resistor increases, not only becomes difficult to move, in the resistor of the conductive fine powder itself Since the density distribution of is also reduced, extremely stable resistance stability can be maintained. In this way, it is possible to achieve excellent stability of a high resistance resistor of 10 3 Ωcm or more, and to realize a high output positive resistance temperature coefficient heating element.

なお、導電性フィラーを構成する材料としては、上記
の組合せに限定されるものではなく、低密度ポリエチレ
ン、中密度ポリエチレン、高密度ポリエチレン、リニア
ポリエチレン、エチレン酢酸ビニル共重合体、エチレン
アクリル酸共重合体、アイオノマー、ポリプロピレン、
ポリアミド、ポリ弗化ビニリデン、ポリエステルさらに
はアクリル酸やマレイン酸などの有機酸変性ポリエチレ
ンなどの結晶性重合体と、サーマルブラック、ファーネ
スブラック、チャンネルブラック、アセチレンブラック
などのカーボンブラックの中で顕著な正抵抗温度特性を
示す導電材料との適宜な組合せであってよく、この導電
性フィラーを複数種類用いるものであればよく、好まし
くは、体積固有抵抗が、常温より使用可能温度までの温
度域のどこかの温度で、1.5倍以上異なる2種類以上の
導電性フィラーを有する正抵抗温度係数抵抗体であれ
ば、No.2,3の例から明らかなように、異なる導電性フィ
ラーの体積固有抵抗の比が小さくても大きくても同等の
効果を奏するものである。
The material constituting the conductive filler is not limited to the above combination, but includes low density polyethylene, medium density polyethylene, high density polyethylene, linear polyethylene, ethylene vinyl acetate copolymer, ethylene acrylic acid copolymer. Coalesced, ionomer, polypropylene,
Among crystalline polymers such as polyamide, polyvinylidene fluoride, polyester, and organic acid-modified polyethylene such as acrylic acid and maleic acid, and carbon black such as thermal black, furnace black, channel black, and acetylene black It may be an appropriate combination with a conductive material exhibiting resistance-temperature characteristics, as long as a plurality of types of this conductive filler are used, and preferably the volume resistivity is in the temperature range from room temperature to usable temperature. If the positive resistance temperature coefficient resistor has two or more kinds of conductive fillers that differ by 1.5 times or more at that temperature, as is clear from the examples of Nos. 2 and 3, the volume resistivity of different conductive fillers Even if the ratio is small or large, the same effect can be obtained.

同様に、導電性フィラーが混練される結晶性重合体も
高密度ポリエチレンに限られるものではなく、導電性フ
ィラー中の結晶性重合体と同一であってもよい。又、複
数種類の導電性フィラーのうち少なくとも1種類は体積
固有抵抗値が102Ωcm以上であれば、この導電性フィラ
ーは抵抗温度特性にはほどんど寄与しないため、抵抗安
定性付与剤として添加することも可能である。さらに、
導電性フィラーの正抵抗温度係数抵抗体に占める比率
が、好ましくは、50wt%以上であるように構成すると、
抵抗安定性をさらに高めることができる。この他、導電
性フィラーの平均粒径を80μm以下にしたり、導電性フ
ィラーを混合分散してなる結晶性重合体と相溶性をもた
せることにより、マイクロクラックなどに起因するスパ
ークなどに対する安全性を高めることができる。また、
結晶性重合体に有機酸変性の官能基をもたせることによ
り、銅、銅合金などの金属電極との接着性を高めるだけ
でなく、導電性フィラー中の結晶性重合体に有機酸変性
の官能基をもたせることにより、架橋レベルを上げるこ
とができ、抵抗の安定性をさらに高められるという効果
も奏するものである。さらには、導電性フィラー中に他
の導電性フィラーを有してなる構成にすることにより高
度な抵抗安定性を得ることも可能である。また、正抵抗
温度係数抵抗体の厚さは1mm以下が好ましい。
Similarly, the crystalline polymer in which the conductive filler is kneaded is not limited to high density polyethylene, and may be the same as the crystalline polymer in the conductive filler. Further, if at least one of the plural kinds of conductive fillers has a volume resistivity of 10 2 Ωcm or more, this conductive filler hardly contributes to the resistance temperature characteristic, so that it is added as a resistance stability imparting agent. It is also possible to do so. further,
The ratio of the conductive filler in the positive resistance temperature coefficient resistor is preferably 50 wt% or more,
Resistance stability can be further improved. In addition, by increasing the average particle size of the conductive filler to 80 μm or less and making it compatible with the crystalline polymer prepared by mixing and dispersing the conductive filler, the safety against sparks caused by microcracks and the like is improved. be able to. Also,
By giving the crystalline polymer an organic acid-modified functional group, not only can the adhesive properties with metal electrodes such as copper and copper alloys be enhanced, but the crystalline polymer in the conductive filler can also have an organic acid-modified functional group. The effect of increasing the cross-linking level and further improving the resistance stability can be obtained by providing the above. Furthermore, it is also possible to obtain a high degree of resistance stability by adopting a structure in which another conductive filler is contained in the conductive filler. The thickness of the positive temperature coefficient resistor is preferably 1 mm or less.

発明の効果 以上に述べてきたように、高出力・高温度の正抵抗温
度係数発熱体を実現する場合に、半導体領域周辺の体積
固有抵抗値を有する抵抗体が必要となるが、単に、導電
性微粉末の組成比を調整しただけでは導電性微粉末同志
の接触点の数は激減するために、抵抗温度特性は結晶性
重合体の融点のみによって制御されるだけでなく、より
低温域の熱膨張、熱収縮などの各種構成材料の熱応力に
起因すると考えられる不安定な成分が飛躍的に増大する
ことになり、極めて不安定な特性になり、非常に短かい
発熱寿命であったり、異常過熱、発煙、発火などの危険
性を有したりしていたが、本発明の正抵抗温度係数発熱
体によれば、こうした問題点を解決できるものであり、
架橋により導電性微粉末が固定された安定な導電性フィ
ラーに、他の高抵抗で安定な導電性フィラーを導入する
ことにより、導電性フィラーの抵抗体に占める比率を高
め動きにくくするばかりでなく、導電性微粉末自身の抵
抗体中での密度分布も小さくできて、長期にわたる優れ
た抵抗安定性を実現し、高出力で長寿命の正抵抗温度係
数発熱体を得ることができる。さらには、異なる導電性
フィラーの配合比率を調整するだけで、材料ロット、加
工ロットなどによる抵抗値のばらつきと微調整できると
いう効果も有しているものであり、実用上極めて有利な
ものである。
EFFECTS OF THE INVENTION As described above, in order to realize a high output / high temperature positive resistance temperature coefficient heating element, a resistor having a volume specific resistance value around the semiconductor region is required. Since the number of contact points of the conductive fine powders is drastically reduced only by adjusting the composition ratio of the conductive fine powders, the resistance temperature characteristic is not only controlled by the melting point of the crystalline polymer, but also in the lower temperature range. Unstable components, which are considered to be caused by thermal stress of various constituent materials such as thermal expansion and thermal contraction, will dramatically increase, resulting in extremely unstable characteristics and extremely short heat generation life. Although there was a risk of abnormal overheating, smoking, ignition, etc., the positive resistance temperature coefficient heating element of the present invention can solve these problems,
By introducing other high resistance and stable conductive filler to the stable conductive filler in which the conductive fine powder is fixed by cross-linking, not only does it increase the ratio of the conductive filler in the resistor to make it difficult to move. In addition, the density distribution of the conductive fine powder itself in the resistor can be made small, excellent resistance stability can be realized for a long period of time, and a high output, long life positive resistance temperature coefficient heating element can be obtained. Further, it has an effect that it is possible to finely adjust the variation of the resistance value depending on the material lot, the processing lot, etc., only by adjusting the mixing ratio of different conductive fillers, which is extremely advantageous in practical use. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例の正抵抗温度係数発熱体
の斜視図、第2図は同発熱体の導電性フィラーの抵抗温
度特性図、第3図は第2の実施例の正抵抗温度係数発熱
体の導電性フィラーの抵抗温度特性図、第4図は第3の
実施例の正抵抗温度係数発熱体の導電性フィラーの抵抗
温度特性図、第5図は第1〜第3の実施例および従来の
正抵抗温度係数発熱体の表面温度の経時的変化を示す特
性図、第6図は従来の正抵抗温度係数発熱体の斜視図で
ある。 4……正抵抗温度係数抵抗体、5,6……電極、7,8……外
装材。
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element of a first embodiment of the present invention, FIG. 2 is a resistance temperature characteristic diagram of a conductive filler of the heating element, and FIG. 3 is a second embodiment. Resistance temperature characteristic diagram of the conductive filler of the positive resistance temperature coefficient heating element, FIG. 4 is a resistance temperature characteristic diagram of the conductive filler of the positive resistance temperature coefficient heating element of the third embodiment, and FIG. 3 is a characteristic diagram showing changes with time in the surface temperature of the example 3 and the conventional positive resistance temperature coefficient heating element, and FIG. 6 is a perspective view of the conventional positive resistance temperature coefficient heating element. 4 ... Positive resistance temperature coefficient resistor, 5,6 ... Electrode, 7,8 ... Exterior material.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶性重合体中に導電性微粉末を混合分散
した導電性組成物を架橋し細分化してなり、かつ抵抗温
度係数が異なるように前記結晶性重合体の種類、前記導
電性微粉末の種類、前記結晶性重合体と前記導電性微粉
末の組成比率、架橋条件、粒子径のうちの少なくとも一
つを調整してなる複数種類の粒子状導電性組成物(以下
導電性フィラーと称す)をさらに結晶性重合体に混合分
散して形成した薄厚状の正抵抗温度係数抵抗体と、その
厚さ方向に電圧を印加すべく設けられた一対の電極体を
備えた正抵抗温度係数発熱体。
1. A conductive polymer composition comprising a conductive fine powder mixed and dispersed in a crystalline polymer, which is obtained by crosslinking and finely dividing the conductive composition, and the type of the crystalline polymer and the conductive material have different resistance temperature coefficients. A plurality of types of particulate conductive composition prepared by adjusting at least one of the kind of fine powder, the composition ratio of the crystalline polymer and the conductive fine powder, the crosslinking condition, and the particle diameter (hereinafter referred to as conductive filler (Hereinafter referred to as)) is further mixed and dispersed in a crystalline polymer to form a thin positive temperature coefficient resistor having a positive resistance temperature, and a positive resistance temperature having a pair of electrode bodies provided to apply a voltage in the thickness direction thereof. Coefficient heating element.
【請求項2】複数種類の導電性フィラーのうち、各体積
固有抵抗値の比が少なくとも1.5倍以上である温度域を
有してなる請求項1記載の正抵抗温度係数発熱体。
2. A positive resistance temperature coefficient heating element according to claim 1, wherein the positive resistance temperature coefficient heating element has a temperature range in which a ratio of volume specific resistance values is at least 1.5 times or more among a plurality of kinds of conductive fillers.
【請求項3】複数種類の導電性フィラーのうち少なくと
も1種類は体積固有抵抗値が102Ωcm以上である請求項
1または2記載の正抵抗温度係数発熱体。
3. The positive resistance temperature coefficient heating element according to claim 1, wherein at least one of the plurality of kinds of conductive fillers has a volume resistivity value of 10 2 Ωcm or more.
JP63133781A 1988-05-31 1988-05-31 Positive resistance temperature coefficient heating element Expired - Lifetime JP2688061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133781A JP2688061B2 (en) 1988-05-31 1988-05-31 Positive resistance temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133781A JP2688061B2 (en) 1988-05-31 1988-05-31 Positive resistance temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPH01304681A JPH01304681A (en) 1989-12-08
JP2688061B2 true JP2688061B2 (en) 1997-12-08

Family

ID=15112843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133781A Expired - Lifetime JP2688061B2 (en) 1988-05-31 1988-05-31 Positive resistance temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JP2688061B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140092A (en) * 1984-12-11 1986-06-27 松下電器産業株式会社 Heat generating body

Also Published As

Publication number Publication date
JPH01304681A (en) 1989-12-08

Similar Documents

Publication Publication Date Title
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
JP2810740B2 (en) PTC composition by grafting method
GB2036754A (en) Low resistivity ptc compositions
CA1104808A (en) Conductive polymer compositions
JP3813611B2 (en) Conductive polymer having PTC characteristics, method for controlling PTC characteristics of the polymer, and electronic device using the polymer
JP2688061B2 (en) Positive resistance temperature coefficient heating element
JP3914899B2 (en) PTC thermistor body, PTC thermistor, method for manufacturing PTC thermistor body, and method for manufacturing PTC thermistor
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
JPH0217609A (en) Positive resistance temperature coefficient heating element
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JPH0218902A (en) Positive temperature coefficient heater
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JP2743388B2 (en) Positive resistance temperature coefficient heating element
GB2033707A (en) Conductive polymer compositions of an electrical device
JP2586486B2 (en) Positive resistance temperature coefficient heating element
JPH0217608A (en) Positive resistance temperature coefficient heating element
JPH02234380A (en) Positive-resistance temperature coefficient heating body
JP2638862B2 (en) Positive low temperature coefficient heating element
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2988011B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JPH0812791B2 (en) Positive resistance temperature coefficient heating element
JPH03176980A (en) Heating element with positive resistance temperature coefficient
JPH053072A (en) Positive resistance temperature coefficient heating element and its manufacture