JPH053072A - Positive resistance temperature coefficient heating element and its manufacture - Google Patents

Positive resistance temperature coefficient heating element and its manufacture

Info

Publication number
JPH053072A
JPH053072A JP15298491A JP15298491A JPH053072A JP H053072 A JPH053072 A JP H053072A JP 15298491 A JP15298491 A JP 15298491A JP 15298491 A JP15298491 A JP 15298491A JP H053072 A JPH053072 A JP H053072A
Authority
JP
Japan
Prior art keywords
temperature coefficient
resistance temperature
positive resistance
resistor
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15298491A
Other languages
Japanese (ja)
Other versions
JP3092210B2 (en
Inventor
Kazunori Ishii
和典 石井
Masayuki Terakado
誠之 寺門
Takeshi Hayashi
武史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03152984A priority Critical patent/JP3092210B2/en
Publication of JPH053072A publication Critical patent/JPH053072A/en
Application granted granted Critical
Publication of JP3092210B2 publication Critical patent/JP3092210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a positive resistance temperature coefficient heater element without generating an abnormal overheating, smoking, firing, and the like, and with a safety, a long service life, and a high output. CONSTITUTION:This positive resistance temperature coefficient heater unit is composed of a sheet form positive resistance temperature coefficient resistor 4 which consists of a conductive minute powder and a crystalline polymer, a pair of electrode units 5 and 6 furnished to apply a voltage in the thickness direction of the positive resistance temperature coefficient resistor 4, and armoring materials 7, 8, 9, and 10 to armor the resistor 4 and the electrode units 5 and 6. And by composing to diffuse an oxidation preventive agent which consists of pentaerythritil-tetraxyth [3-(3 and 5 di-t-butil-4-hydroxyphenul) propionate] on the projection plane in the thickness direction of the positive resistance temperature coefficient resistor 4 at the position A where the pair of electrode units 5 and 6 are not superposed, a positive resistance temperature coefficient heater element of a safety, a long service life, and a high output can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、採暖器具および一般の
加熱装置として有用な正抵抗温度係数発熱体およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive resistance temperature coefficient heating element useful as a heating tool and a general heating device, and a method for producing the same.

【0002】[0002]

【従来の技術】従来の正抵抗温度係数発熱体は、例えば
特公昭57−43995号公報や特公昭55−4016
1号公報に示されているような構成であり、一対の電極
間の抵抗体の正抵抗温度特性により一定の温度に自己制
御されているものであった。しかし、特に大きな電力密
度や高温度が要求される場合においては、発熱体自体の
温度分布を一様にするために一対の電極間方向の温度分
布を常に良好にすることが不可欠であり、その解決策と
して特公昭62−59515号公報や図4に示すように
一対の電極間距離を互いに接近させて構成する方法が講
じられた。図4において、1,2は互いに接近して設け
られた一対の平行平板電極であり、その間に結晶性重合
体に導電性微粉末を混合分散して形成した抵抗体3を配
することにより高出力の正抵抗温度係数発熱体を現出す
る可能性が見出された。
2. Description of the Related Art A conventional positive resistance temperature coefficient heating element is disclosed in, for example, Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-4016.
The configuration is as shown in Japanese Patent Publication No. 1 and is self-controlled at a constant temperature by the positive resistance temperature characteristic of the resistor between the pair of electrodes. However, especially when a high power density or high temperature is required, it is essential to make the temperature distribution in the direction between the pair of electrodes always good in order to make the temperature distribution of the heating element itself uniform. As a solution, as shown in Japanese Examined Patent Publication No. 62-59515 and FIG. 4, a method is adopted in which the distance between a pair of electrodes is close to each other. In FIG. 4, reference numerals 1 and 2 denote a pair of parallel plate electrodes provided close to each other, and a resistor 3 formed by mixing and dispersing conductive fine powder in a crystalline polymer is disposed between the parallel plate electrodes to increase the height. It has been found that a positive temperature coefficient of resistance heating element may emerge.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の正抵抗温度係数発熱体は、高出力を現出する
ための構造としては非常に優れていたが、抵抗発熱する
部位を両面より電極で覆う構造となるため、電極と抵抗
体との接触面積も大きく、電極と抵抗体との界面部や電
極端部に熱応力が集中し、電圧集中によるホットゾーン
が発生することにより、抵抗体の損傷等が進み、寿命が
低下することがあった。また、電極間隔が非常に接近し
ていることにより、特に異極電極端部において、結晶性
重合体の劣化、さらには、結晶性重合体の劣化に伴うマ
イクロクラック等が生じ、湿気、気圧、さらには電極端
面のばり等によっては空中放電、耐電圧破壊し、発煙、
発火に至る危険性も有していた。発熱体としては、ライ
フエンド時までの安全性を図っていくことが最優先とな
るが、こうした安全性のメカニズムに関しては明確にな
っておらず、異常過熱、発煙、発火等の危険性のない、
安全でしかも長寿命な高出力の正抵抗温度係数発熱体を
作り出すことができなかった。
However, the conventional positive resistance temperature coefficient heating element as described above is very excellent as a structure for producing a high output, but the portion where resistance heating is generated from both sides is an electrode. Since the structure is covered with, the contact area between the electrode and the resistor is large, and thermal stress concentrates at the interface between the electrode and the resistor and the end of the electrode, creating a hot zone due to voltage concentration. There was a case that the life of the product deteriorated due to the damage of the product. Further, because the electrode interval is very close, especially in the end portion of the heteropolar electrode, deterioration of the crystalline polymer, further, microcracks and the like due to the deterioration of the crystalline polymer, moisture, atmospheric pressure, Furthermore, depending on the burr on the electrode end surface, air discharge, breakdown of withstand voltage, smoking,
There was also a risk of ignition. As a heating element, the highest priority is to ensure safety up to the end of its life, but the mechanism of such safety has not been clarified, and there is no danger of abnormal overheating, smoking, ignition, etc. ,
It was not possible to produce a high output positive resistance temperature coefficient heating element that is safe and has a long life.

【0004】本発明はこのような従来の問題点を解決
し、長寿命で安全性の高い正抵抗温度係数発熱体とその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above conventional problems and provide a positive resistance temperature coefficient heating element having a long life and high safety, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の正抵抗温度係数発熱体は、導電性微粉末と
結晶性重合体よりなるシート状の正抵抗温度係数抵抗体
と、その正抵抗温度係数抵抗体の厚さ方向に電圧を印加
するために設けられた一対の電極体と、前記正抵抗温度
係数抵抗体および前記一対の電極体を外装する外装材と
からなり、前記正抵抗温度係数抵抗体の厚さ方向の投影
面で前記一対の電極体が重合しない部位にペンタエリス
リチル−テトラキス〔3−(3,5−ジ−t−ブチル−
4−ヒドロキシフェニル)プロピオネート〕からなる酸
化防止剤を拡散させた構成とする。
In order to achieve the above object, a positive resistance temperature coefficient heating element of the present invention is a sheet-shaped positive resistance temperature coefficient resistor comprising conductive fine powder and a crystalline polymer, Consisting of a pair of electrode bodies provided for applying a voltage in the thickness direction of the positive resistance temperature coefficient resistor, and an exterior material that covers the positive resistance temperature coefficient resistor and the pair of electrode bodies, Positive temperature coefficient of resistance Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-
4-hydroxyphenyl) propionate].

【0006】[0006]

【作用】この技術的手段による作用は次のようになる。
すなわち、ペンタエリスリチル−テトラキス〔3−
(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)
プロピオネート〕からなる酸化防止剤は正抵抗温度係数
抵抗体に拡散することにより、結晶性重合体等の酸化劣
化を防止しマイクロクラック等の欠損により発生する発
煙、発火等の危険性を取り除くことができるが、この酸
化防止剤の相溶性、低融点等の要因から、この正抵抗温
度係数抵抗体中の導電性微粉末による連鎖に不導通部を
形成し、電気抵抗を高抵抗化していくことになる。本発
明の場合、正抵抗温度係数抵抗体の厚さ方向の投影面で
前記一対の電極体が重合する部位が有効発熱部であり、
金属材料等よりなる電極体で覆われているために劣化し
にくい。一方、重合しない部位はほとんど発熱に寄与せ
ず、また劣化しやすい部位であり、この部位にペンタエ
リスリチル−テトラキス〔3−(3,5−ジ−t−ブチ
ル−4−ヒドロキシフェニル)プロピオネート〕からな
る酸化防止剤を導入することにより、前記正抵抗温度係
数抵抗体の劣化を抑制でき、発煙、発火等の危険性を防
止できる。さらには、電極で覆われないこの部位の正抵
抗温度係数抵抗体の体積固有抵抗を増大させ、この部位
で発生し易い電圧集中によるホットゾーンを防止するこ
とになる。
The function of this technical means is as follows.
That is, pentaerythrityl-tetrakis [3-
(3,5-di-t-butyl-4-hydroxyphenyl)
Propionate] is an antioxidant that can diffuse into positive temperature coefficient resistors to prevent oxidative deterioration of crystalline polymers, etc., and eliminate the risk of smoke, ignition, etc., caused by defects such as microcracks. However, due to factors such as the compatibility and low melting point of this antioxidant, it is necessary to form a non-conducting part in the chain of conductive fine powder in this positive temperature coefficient resistor to increase the electrical resistance. become. In the case of the present invention, the portion where the pair of electrode bodies are superposed on the projection surface in the thickness direction of the positive resistance temperature coefficient resistor is an effective heat generating portion,
It is hard to deteriorate because it is covered with an electrode body made of a metal material or the like. On the other hand, a site that does not polymerize hardly contributes to heat generation and is a site that easily deteriorates, and pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is present in this site. Introducing an antioxidant consisting of can suppress the deterioration of the positive temperature coefficient resistor and prevent the risk of smoking, ignition, and the like. Further, the volume resistivity of the positive resistance temperature coefficient resistor in this portion which is not covered with the electrode is increased, and the hot zone due to the voltage concentration which is likely to occur in this portion is prevented.

【0007】[0007]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。本実施例の正抵抗温度係数発熱体は、例え
ば、図1の斜視図、図2の断面図に示すように、厚さ
0.5mmの正抵抗温度係数抵抗体4の上下面に電極体5,
6が接着され、さらに両者の上にホットメルト層7,
8、その上に電気絶縁層9,10からなる外装材からな
っている。正抵抗温度係数抵抗体4は以下のように形成
されている。すなわち導電性微粉末として、ファーネス
ブラック60wt%と高密度ポリエチレン40wt%と
を混練しつつ、有機過酸化物であるジクミールバーオキ
サイドを高密度ポリエチレンに対して3wt%添加し、
熱処理を施すことによって架橋反応を完了させた後に、
冷凍粉砕によって平均粒径50μmの粉砕物、すなわち
導電性フィラーを得た。次に、この導電性フィラーをカ
ーボンブラック組成比が全量の45.0wt%になるよう
に、マレイン酸変性高密度ポリエチレン中に均一分散さ
れるように混練し、正抵抗温度係数抵抗体4を得た。さ
らに、この正抵抗温度係数抵抗体4を前記のように電極
体を接着後、ペンタエリスリチル−テトラキス〔3−
(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)
プロピオネート〕からなる酸化防止剤(チバガイギー:
IRGANOX 1010)を添加したホットメルト層
7,8および電気絶縁層9,10で順次外装した後、ア
ニールして所定の正抵抗温度係数特性を得るとともに、
図2に示した正抵抗温度係数抵抗体のA部にアニールす
ることによりホットメルト層7,8に含有された酸化防
止剤を拡散させた。本実施例の場合、このホットメルト
層を正抵抗温度係数抵抗体4の材料と相溶性をもつ材料
とすることにより効果的にこの酸化防止剤を拡散させる
ことができた。この拡散により、正抵抗温度係数抵抗体
のA部が高抵抗化されていくため、この部位に発生しや
すいホットゾーンを抑制し長寿命化を図るとともに、酸
化劣化を抑え異極間耐電圧性能をも向上させるものであ
る。本発明の有効性を調べるために、この酸化防止剤の
添加サンプル、無添加サンプルを加工し、実際に次の比
較実験を行った。
Embodiments of the present invention will be described below with reference to the accompanying drawings. For example, as shown in the perspective view of FIG. 1 and the sectional view of FIG. 2, the positive resistance temperature coefficient heating element of the present embodiment has an electrode body 5 on the upper and lower surfaces of a positive resistance temperature coefficient resistor 4 having a thickness of 0.5 mm. ,
6 is adhered, and a hot melt layer 7,
8 and an outer covering material composed of electric insulating layers 9 and 10 thereon. The positive resistance temperature coefficient resistor 4 is formed as follows. That is, as conductive fine powder, while kneading 60 wt% of furnace black and 40 wt% of high-density polyethylene, 3 wt% of dicumyl peroxide, which is an organic peroxide, was added to high-density polyethylene,
After completing the crosslinking reaction by applying a heat treatment,
A pulverized product having an average particle size of 50 μm, that is, a conductive filler was obtained by freeze pulverization. Next, this conductive filler was kneaded so that the composition ratio of carbon black was 45.0 wt% of the total amount so as to be uniformly dispersed in maleic acid-modified high-density polyethylene, to obtain a positive resistance temperature coefficient resistor 4. It was Further, the positive resistance temperature coefficient resistor 4 was bonded to the electrode body as described above, and then pentaerythrityl-tetrakis [3-
(3,5-di-t-butyl-4-hydroxyphenyl)
Propionate] antioxidant (Ciba Geigy:
IRGANOX 1010) is added to the hot melt layers 7 and 8 and the electric insulating layers 9 and 10 in that order, and then annealed to obtain a desired positive resistance temperature coefficient characteristic.
The antioxidant contained in the hot melt layers 7 and 8 was diffused by annealing the portion A of the positive resistance temperature coefficient resistor shown in FIG. In the case of the present embodiment, the antioxidant can be effectively diffused by using a material having compatibility with the material of the positive resistance temperature coefficient resistor 4 for the hot melt layer. Due to this diffusion, the resistance A of the positive temperature coefficient resistor increases in resistance. Therefore, the hot zone, which tends to occur in this area, is suppressed and the life is extended. It also improves In order to investigate the effectiveness of the present invention, the samples with and without addition of the antioxidant were processed and the following comparative experiments were actually carried out.

【0008】この比較実験は150℃耐熱促進後に通電
評価する方法で行い、通電測定前には通電エージングに
より抵抗安定化処理を行った。その結果を図3に示して
いる。図3から明らかなように、この酸化防止剤が添加
されているサンプルでは、150℃耐熱処理が3000
hレベルまで発熱温度はほとんど変化なく、それ以降徐
々に発熱温度が低下していっており、試験サンプル数n
=10のばらつきも小さいものであった。これに対し
て、この酸化防止剤の無添加のサンプルでは、n=10
の試験サンプルのうちn=3のサンプルは300〜40
0hから発熱温度が低下していっており、その他のサン
プルは4000hレベルまで発熱異常はなかったが、約
4500hでn=2が、約5000hでn=1がスパー
ク発生した。実際の発熱体寿命は熱、通電、湿度等によ
り決ってくるが、シミュレーション等によりこの通電寿
命を推定すると、この酸化防止剤が添加されているサン
プルでは、30000〜40000hでそれ以降は徐々
に発熱温度が降下し、安全にライフエンドとなる。ま
た、酸化防止剤無添加組成では、3000〜4000h
程度の短い発熱寿命であったり、20000hレベル以
上発熱するが、ライフエンド時にスパーク、さらには発
煙・発火に至るという極めて高い危険性を有したりする
ものもあり、ばらつきも大きく寿命も定まらないと想定
される。実際使用されるモードにより寿命は変化するも
のの、この酸化防止剤を添加することによりライフエン
ド時までの高い安全性を確保できるという優れた性能を
示した。また、長期にわたる安全性が図れるだけでな
く、各種用途における実用期間や構成材料の耐熱特性等
に適合した発熱寿命になるように、酸化防止剤を適宜添
加することができる。このようにして、ペンタエリスリ
チル−テトラキス〔3−(3,5−ジ−t−ブチル−4
−ヒドロキシフェニル)プロピオネート〕からなる酸化
防止剤を添加することにより、ライフエンド時までの安
全性のメカニズムを明確にし、異常過熱、発煙、発火等
の危険性のない、安全でしかも長寿命な高出力の正抵抗
温度係数発熱体を提供できるものであり、実用上極めて
有益なものである。
This comparative experiment was carried out by a method of evaluating energization after promoting heat resistance at 150 ° C., and resistance stabilization treatment was carried out by energization aging before energization measurement. The result is shown in FIG. As is clear from FIG. 3, the sample to which this antioxidant was added was subjected to a heat resistance treatment of 3000 at 150 ° C.
The exothermic temperature hardly changed up to the h level, and the exothermic temperature gradually decreased thereafter, and the number of test samples n
The variation of 10 was also small. On the other hand, in the sample without addition of this antioxidant, n = 10
Of the test samples of n = 3 are 300 to 40
The exothermic temperature had dropped from 0 h, and the other samples had no exothermic abnormalities up to the 4000 h level, but n = 2 at about 4500 h and n = 1 at about 5000 h. The actual life of the heating element is determined by heat, current flow, humidity, etc., but if this current life is estimated by simulation etc., the sample with the antioxidant added will gradually generate heat after 30,000 to 40,000 h. The temperature drops and it safely reaches the end of life. In addition, in the composition without antioxidant, 3000 to 4000 h
Some have a short heat generation life, or generate heat over the level of 20000h, but there are also some that have a very high risk of sparking at the end of the life, and further smoking / ignition. is assumed. Although the life varies depending on the mode actually used, the addition of this antioxidant showed excellent performance of ensuring high safety up to the life end. Further, an antioxidant can be appropriately added so that not only long-term safety can be achieved but also a heat generation life suitable for a practical period in various applications and heat resistance characteristics of constituent materials. Thus, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4]
-Hydroxyphenyl) propionate] is added to clarify the safety mechanism up to the end of the life, and there is no risk of abnormal overheating, smoking, ignition, etc. It is possible to provide a positive resistance temperature coefficient heating element for output, which is extremely useful in practice.

【0009】酸化防止剤は一般に有機系の正抵抗温度係
数抵抗体に添加すると樹脂の酸化劣化は向上するが、抵
抗値等の電気的物性に対する影響が大きく、安定して使
いこなすことが困難であった。本発明のヒンダードフェ
ノール系酸化防止剤であるペンタエリスリチル−テトラ
キス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシ
フェニル)プロピオネート〕からなる酸化防止剤は、電
気物性についてはこの抵抗体を特異的に安定化して高抵
抗化していく作用があり、抵抗体劣化、ホットゾーン等
の発生し易い、一対の電極体が重合しない部位に構成す
ることにより、上記の効果を奏することを可能にするも
のである。この酸化防止剤の構成としては、外装材から
の拡散に限定するものではなく、一対の電極体が重合し
ない部位に作用できればよく、例えば、外装材を被覆す
る前にこの部位に添加してもよく、また電極体が重合し
ない部位にこの酸化防止剤添加の抵抗体を形成してもよ
い。さらには、導電性微粉末を結晶性重合体中に分散さ
せ、その後架橋し細分化してなる粒子状正抵抗温度係数
抵抗組成物を結晶性重合体等のバインダー中に分散させ
抵抗安全性を高めた組成では、導電性微粉末による明確
な連鎖が形成されているだけに、この酸化防止剤の上記
のような作用も顕著となり、その信頼性はさらに確実な
ものとなる。また、前記のように高出力化には、好まし
くは、正抵抗温度係数抵抗体の厚さが1mm以下であると
よく、このように電極間隔が接近するほど上記効果も顕
著となるものである。
[0009] In general, when an antioxidant is added to an organic positive temperature coefficient resistor, oxidative deterioration of the resin is improved, but it has a great influence on electrical properties such as resistance and is difficult to use stably. It was The antioxidant consisting of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], which is the hindered phenolic antioxidant of the present invention, has the following electrical properties. The resistor has the effect of specifically stabilizing and increasing the resistance, and is susceptible to the deterioration of the resistor, the hot zone, etc., and the above-mentioned effects can be obtained by configuring the pair of electrode bodies in a non-polymerizable portion. Is what makes it possible. The composition of the antioxidant is not limited to diffusion from the exterior material, as long as it can act on the site where the pair of electrode bodies does not polymerize, and for example, even if added to this site before coating the exterior material. Of course, this antioxidant-added resistor may be formed at the site where the electrode body does not polymerize. Furthermore, the conductive fine powder is dispersed in a crystalline polymer, and then a particulate positive temperature coefficient of resistance coefficient resistance composition obtained by crosslinking and subdividing is dispersed in a binder such as a crystalline polymer to enhance resistance safety. In the above composition, since the conductive fine powder forms a clear chain, the above-mentioned action of this antioxidant becomes remarkable, and its reliability is further ensured. Further, as described above, in order to increase the output, it is preferable that the thickness of the positive temperature coefficient resistor is 1 mm or less, and the above effect becomes more remarkable as the electrode interval becomes closer. .

【0010】[0010]

【発明の効果】以上のように本発明によれば、次の効果
が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0011】(1)劣化しやすい部位の劣化を抑制し、
異常過熱、発煙、発火等の危険性のない、長期にわたり
高い安全性を有する正抵抗温度係数抵抗体が得られる。
(1) Suppressing deterioration of easily deteriorated parts,
It is possible to obtain a positive temperature coefficient resistor having high safety for a long period of time without danger of abnormal overheating, smoke generation, ignition, etc.

【0012】(2)酸化防止剤を外装材に添加し、アニ
ールにより正抵抗温度係数抵抗体の劣化しやすい部位に
酸化防止剤を拡散させるので簡単に本発明の構造の正抵
抗温度係数抵抗体が製造できる。
(2) An antioxidant is added to the exterior material, and the antioxidant is diffused by annealing to the site where the positive resistance temperature coefficient resistor is prone to deterioration. Therefore, the positive resistance temperature coefficient resistor having the structure of the present invention can be easily manufactured. Can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における正抵抗温度係数発熱
体の斜視図
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element according to an embodiment of the present invention.

【図2】同発熱体の断面図FIG. 2 is a sectional view of the heating element.

【図3】同発熱体の発熱温度性能図[Fig. 3] Heat generation temperature performance diagram of the same heating element

【図4】従来の正抵抗温度係数発熱体の斜視図FIG. 4 is a perspective view of a conventional positive resistance temperature coefficient heating element.

【符号の説明】[Explanation of symbols]

4 正抵抗温度係数抵抗体 5,6 電極体 7,8 ホットメルト層(外装材) 9,10 電気絶縁層(外装材) 4 Positive resistance temperature coefficient resistor 5,6 electrode body 7,8 Hot melt layer (exterior material) 9,10 Electric insulation layer (exterior material)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】導電性微粉末と結晶性重合体よりなるシー
ト状の正抵抗温度係数抵抗体と、その正抵抗温度係数抵
抗体の厚さ方向に電圧を印加するために設けられた一対
の電極体と、前記正抵抗温度係数抵抗体および前記一対
の電極体を外装する外装材とからなり、前記正抵抗温度
係数抵抗体の厚さ方向の投影面で前記一対の電極体が重
合しない部位にペンタエリスリチル−テトラキス〔3−
(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)
プロピオネート〕からなる酸化防止剤を拡散させた正抵
抗温度係数発熱体。
1. A sheet-like positive resistance temperature coefficient resistor comprising conductive fine powder and a crystalline polymer, and a pair of positive resistance temperature coefficient resistor provided for applying a voltage in the thickness direction of the positive resistance temperature coefficient resistor. A portion composed of an electrode body and an exterior material for exteriorizing the positive resistance temperature coefficient resistor and the pair of electrode bodies, and a portion where the pair of electrode bodies does not overlap with each other in a projection plane in the thickness direction of the positive resistance temperature coefficient resistor. Pentaerythrityl-tetrakis [3-
(3,5-di-t-butyl-4-hydroxyphenyl)
Propionate] antioxidant with a positive temperature coefficient of resistance.
【請求項2】正抵抗温度係数抵抗体が導電性微粉末を結
晶性重合体中に分散された後架橋されてなる請求項1記
載の正抵抗温度係数発熱体。
2. The positive resistance temperature coefficient heating element according to claim 1, wherein the positive resistance temperature coefficient resistor is formed by dispersing conductive fine powder in a crystalline polymer and then crosslinking the fine particles.
【請求項3】正抵抗温度係数抵抗体の厚さが1mm以下で
ある請求項1または2記載の正抵抗温度係数発熱体。
3. The positive resistance temperature coefficient heating element according to claim 1, wherein the positive resistance temperature coefficient resistor has a thickness of 1 mm or less.
【請求項4】正抵抗温度係数抵抗体と相溶性を有する外
装材に酸化防止剤を添加し、アニールにより正抵抗温度
係数抵抗体の厚さ方向の投影面で一対の電極体が重合し
ない部位に前記酸化防止剤を拡散させる請求項1記載の
正抵抗温度係数発熱体の製造方法。
4. A portion in which a pair of electrode bodies are not polymerized on a projection plane in the thickness direction of the positive resistance temperature coefficient resistor by adding an antioxidant to an exterior material having compatibility with the positive resistance temperature coefficient resistor and annealing. The method for producing a positive resistance temperature coefficient heating element according to claim 1, wherein the antioxidant is diffused into the material.
【請求項5】正抵抗温度係数抵抗体が導電性微粉末を結
晶性重合体中に分散された後架橋されてなる請求項4記
載の正抵抗温度係数発熱体の製造方法。
5. The method for producing a positive resistance temperature coefficient heating element according to claim 4, wherein the positive resistance temperature coefficient resistor comprises a conductive polymer powder dispersed in a crystalline polymer and then crosslinked.
【請求項6】正抵抗温度係数抵抗体の厚さが1mm以下で
ある請求項4または5記載の正抵抗温度係数発熱体の製
造方法。
6. The method for producing a positive resistance temperature coefficient heating element according to claim 4, wherein the positive resistance temperature coefficient resistor has a thickness of 1 mm or less.
JP03152984A 1991-06-25 1991-06-25 Positive resistance temperature coefficient heating element and method of manufacturing the same Expired - Fee Related JP3092210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03152984A JP3092210B2 (en) 1991-06-25 1991-06-25 Positive resistance temperature coefficient heating element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03152984A JP3092210B2 (en) 1991-06-25 1991-06-25 Positive resistance temperature coefficient heating element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH053072A true JPH053072A (en) 1993-01-08
JP3092210B2 JP3092210B2 (en) 2000-09-25

Family

ID=15552425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03152984A Expired - Fee Related JP3092210B2 (en) 1991-06-25 1991-06-25 Positive resistance temperature coefficient heating element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3092210B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923086A1 (en) * 1997-12-11 1999-06-16 Abb Research Ltd. Protection element
WO2023105654A1 (en) * 2021-12-08 2023-06-15 日本たばこ産業株式会社 Aerosol generation system
WO2023105655A1 (en) * 2021-12-08 2023-06-15 日本たばこ産業株式会社 Aerosol generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923086A1 (en) * 1997-12-11 1999-06-16 Abb Research Ltd. Protection element
WO2023105654A1 (en) * 2021-12-08 2023-06-15 日本たばこ産業株式会社 Aerosol generation system
WO2023105655A1 (en) * 2021-12-08 2023-06-15 日本たばこ産業株式会社 Aerosol generation system

Also Published As

Publication number Publication date
JP3092210B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
EP0038716B1 (en) A ptc circuit protection device
JPS643322B2 (en)
EP0038717B1 (en) Electrical devices containing ptc elements
JPH0241161B2 (en)
JPH0819174A (en) Protective circuit with ptc device
EP0063440B1 (en) Radiation cross-linking of ptc conductive polymers
JP2000188206A (en) Polymer ptc composition and ptc device
JP3506628B2 (en) Manufacturing method of organic positive temperature coefficient thermistor
JPH053072A (en) Positive resistance temperature coefficient heating element and its manufacture
JP3125330B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP2988011B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
TWI744625B (en) PTC circuit protection device
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH0151041B2 (en)
JP2743388B2 (en) Positive resistance temperature coefficient heating element
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
KR960000423B1 (en) Conductive polymer composition
KR100679742B1 (en) Polymer composition having ptc-characteristics and ptc polymer thermistor prepared thereof
JPH05114465A (en) Heating body having positive resistance temperature coefficient and manufacture thereof
JP2688061B2 (en) Positive resistance temperature coefficient heating element
JP2643398B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH0737679A (en) Heater element with positive temperature coefficient of resistance
JPH05343164A (en) Positive resistance temperature coefficient heating element and its manufacture
JPH07235370A (en) Heater
KR100307731B1 (en) PTC Resistance Unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees