TWI744625B - PTC circuit protection device - Google Patents

PTC circuit protection device Download PDF

Info

Publication number
TWI744625B
TWI744625B TW108113000A TW108113000A TWI744625B TW I744625 B TWI744625 B TW I744625B TW 108113000 A TW108113000 A TW 108113000A TW 108113000 A TW108113000 A TW 108113000A TW I744625 B TWI744625 B TW I744625B
Authority
TW
Taiwan
Prior art keywords
particle size
tungsten carbide
protection device
carbide particles
circuit protection
Prior art date
Application number
TW108113000A
Other languages
Chinese (zh)
Other versions
TW202040902A (en
Inventor
陳繼聖
江長鴻
Original Assignee
富致科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富致科技股份有限公司 filed Critical 富致科技股份有限公司
Priority to TW108113000A priority Critical patent/TWI744625B/en
Publication of TW202040902A publication Critical patent/TW202040902A/en
Application granted granted Critical
Publication of TWI744625B publication Critical patent/TWI744625B/en

Links

Images

Abstract

一種PTC電路保護裝置,包含一正溫度係數聚合物材料及貼附在該正溫度係數聚合物材料上的兩個電極。該正溫度係數聚合物材料包括一聚合物基材及一分散在該聚合物基材中的顆粒狀導電填料。該聚合物基材是由一聚合物組成物所製成,該聚合物組成物含有一非接枝的聚烯烴。該顆粒狀導電填料包括第一碳化鎢顆粒,該等第一碳化鎢顆粒具有一小於2.5 μm的第一平均費氏微篩粒徑,及一第一粒徑分布,該第一粒徑分布的D10粒徑小於2.0 μm,該第一粒徑分布的D100粒徑小於10.0 μm。本發明的PTC電路保護裝置在高電壓下具有極佳的電穩定性。A PTC circuit protection device includes a positive temperature coefficient polymer material and two electrodes attached to the positive temperature coefficient polymer material. The positive temperature coefficient polymer material includes a polymer substrate and a particulate conductive filler dispersed in the polymer substrate. The polymer substrate is made of a polymer composition containing a non-grafted polyolefin. The particulate conductive filler includes first tungsten carbide particles, the first tungsten carbide particles having a first average Fischer microsieve particle size less than 2.5 μm, and a first particle size distribution. The D10 particle size is less than 2.0 μm, and the D100 particle size of the first particle size distribution is less than 10.0 μm. The PTC circuit protection device of the present invention has excellent electrical stability under high voltage.

Description

PTC電路保護裝置PTC circuit protection device

本發明是有關於一種正溫度係數(PTC)電路保護裝置,特別是指一種在高電壓下具有極佳電穩定性的PTC電路保護裝置。The present invention relates to a positive temperature coefficient (PTC) circuit protection device, in particular to a PTC circuit protection device with excellent electrical stability under high voltage.

正溫度係數(Positive temperature coefficient, PTC)元件展現出等效於電路保護裝置(例如可復式保險絲)的正溫度係數效應。該PTC元件包括一PTC聚合物材料,及貼附該PTC聚合物材料兩相反表面的一第一電極及一第二電極。A positive temperature coefficient (PTC) element exhibits a positive temperature coefficient effect equivalent to a circuit protection device (such as a resettable fuse). The PTC element includes a PTC polymer material, and a first electrode and a second electrode attached to two opposite surfaces of the PTC polymer material.

該PTC聚合物材料包括一含有一晶體區域及一非晶體區域的聚合物基材,及一顆粒狀導電填料。該顆粒狀導電填料分散於該聚合物基體之非晶體區域,並形成一用於電連接該第一電極及該第二電極之間的連續導電路徑。該正溫度係數效應指的是一種現象,該現象是當該晶體區域的溫度被升高至其熔點時,該晶體區域中的結晶開始熔化,從而產生一新的非晶體區域。當該新的非晶體區域增加至一合併至該原非晶體區域的程度時,該顆粒狀導電填料的導電路徑會轉變為非連續且該PTC聚合物材料的阻值會大幅增加,造成該第一電極及該第二電極之間電不導通。The PTC polymer material includes a polymer substrate containing a crystalline region and an amorphous region, and a particulate conductive filler. The particulate conductive filler is dispersed in the amorphous region of the polymer matrix and forms a continuous conductive path for electrically connecting the first electrode and the second electrode. The positive temperature coefficient effect refers to a phenomenon in which when the temperature of the crystalline region is increased to its melting point, the crystals in the crystalline region begin to melt, thereby generating a new amorphous region. When the new amorphous region is increased to the extent that it merges into the original amorphous region, the conductive path of the particulate conductive filler will become discontinuous and the resistance of the PTC polymer material will increase significantly, resulting in the first There is no electrical conduction between one electrode and the second electrode.

雖然該PTC聚合物材料的導電性可藉由使用顆粒狀非碳顆粒(例如金屬顆粒)而顯著提升,但該等導電非碳顆粒具有的高導電性容易導致使用該PTC聚合物材料時在其中產生不希望有的電弧。電弧會使該PTC聚合物材料的分子結構惡化而造成該PTC元件的電性不穩定,並使該PTC元件的使用年限減低。Although the conductivity of the PTC polymer material can be significantly improved by using granular non-carbon particles (such as metal particles), the high conductivity of the conductive non-carbon particles can easily lead to the use of the PTC polymer material. An undesirable arc is generated. The electric arc will deteriorate the molecular structure of the PTC polymer material and cause the electrical instability of the PTC element, and reduce the service life of the PTC element.

美國專利US 10,147,525 B1公開一種PTC聚合物材料。該PTC聚合物材料包括一聚合物基材及分散在該聚合物基材中的碳化鎢顆粒。基於該等碳化鎢顆粒的總重,該碳化鎢顆粒的總碳含量的範圍為5.0~6.0 wt%,因此含有該PTC聚合物材料的裝置可在12 Vdc中操作且電穩定性可獲得改善。然而,仍有需要進一步提升在較高電壓(例如30 Vdc)中的電穩定性。US patent US 10,147,525 B1 discloses a PTC polymer material. The PTC polymer material includes a polymer substrate and tungsten carbide particles dispersed in the polymer substrate. Based on the total weight of the tungsten carbide particles, the total carbon content of the tungsten carbide particles ranges from 5.0 to 6.0 wt%, so the device containing the PTC polymer material can be operated at 12 Vdc and the electrical stability can be improved. However, there is still a need to further improve the electrical stability at higher voltages (for example, 30 Vdc).

因此,本發明之目的,即在提供一種PTC電路保護裝置,可以克服上述先前技術的至少一個缺點。Therefore, the purpose of the present invention is to provide a PTC circuit protection device that can overcome at least one of the above-mentioned disadvantages of the prior art.

於是,本發明PTC電路保護裝置包含一正溫度係數聚合物材料及貼附在該正溫度係數聚合物材料上的兩個電極。該正溫度係數聚合物材料包括一聚合物基材及一分散在該聚合物基材中的顆粒狀導電填料。Therefore, the PTC circuit protection device of the present invention includes a positive temperature coefficient polymer material and two electrodes attached to the positive temperature coefficient polymer material. The positive temperature coefficient polymer material includes a polymer substrate and a particulate conductive filler dispersed in the polymer substrate.

該聚合物基材是由一聚合物組成物所製成,該聚合物組成物含有一非接枝的聚烯烴。該顆粒狀導電填料包括第一碳化鎢顆粒,該等第一碳化鎢顆粒具有一小於2.5 μm的第一平均費氏微篩粒徑(Fisher sub-sieve particle size, FSSS),及一第一粒徑分布,該第一粒徑分布的D10粒徑小於2.0 μm,該第一粒徑分布的D100粒徑小於10.0 μm。The polymer substrate is made of a polymer composition containing a non-grafted polyolefin. The particulate conductive filler includes first tungsten carbide particles, the first tungsten carbide particles having a first average Fisher sub-sieve particle size (Fisher sub-sieve particle size, FSSS) less than 2.5 μm, and a first particle Diameter distribution, the D10 particle size of the first particle size distribution is less than 2.0 μm, and the D100 particle size of the first particle size distribution is less than 10.0 μm.

本發明之功效在於:本發明的PTC電路保護裝置在高電壓下具有極佳的電穩定性。The effect of the present invention is that the PTC circuit protection device of the present invention has excellent electrical stability under high voltage.

以下將就本發明內容進行詳細說明:The content of the present invention will be described in detail below:

在某些具體實施例中,該非接枝的聚烯烴是非接枝的聚乙烯。在某些具體實施例中,該非接枝的聚烯烴是高密度聚乙烯(HDPE)。In certain embodiments, the non-grafted polyolefin is non-grafted polyethylene. In certain embodiments, the non-grafted polyolefin is high density polyethylene (HDPE).

在某些具體實施例中,該聚合物組成物還包括一經接枝的聚烯烴。在某些具體實施例中,該經接枝的聚烯烴是經羧酸酐接枝的聚乙烯。該經羧酸酐接枝的聚乙烯可為經羧酸酐接枝的高密度聚乙烯。在本實施例中,該經羧酸酐接枝的高密度聚乙烯是經馬來酸酐接枝的高密度聚乙烯。In some embodiments, the polymer composition further includes a grafted polyolefin. In certain embodiments, the grafted polyolefin is polyethylene grafted with carboxylic anhydride. The polyethylene grafted with carboxylic anhydride may be high-density polyethylene grafted with carboxylic anhydride. In this embodiment, the high-density polyethylene grafted with carboxylic anhydride is a high-density polyethylene grafted with maleic anhydride.

在某些具體實施例中,該等第一碳化鎢顆粒的第一平均費氏微篩粒徑大於1.9 μm。在某些具體實施例中,該等第一碳化鎢顆粒的第一平均費氏微篩粒徑小於2.0 μm。In some embodiments, the first average Fischer microsieve particle size of the first tungsten carbide particles is greater than 1.9 μm. In some embodiments, the first average Fischer microsieve particle size of the first tungsten carbide particles is less than 2.0 μm.

在某些具體實施例中,該第一粒徑分布的D10粒徑大於0.9 μm。在某些具體實施例中,該第一粒徑分布的D10粒徑小於1.0 μm。In some specific embodiments, the D10 particle size of the first particle size distribution is greater than 0.9 μm. In some specific embodiments, the D10 particle size of the first particle size distribution is less than 1.0 μm.

在某些具體實施例中,該第一粒徑分布的D100粒徑大於7.0 μm。在某些具體實施例中,該第一粒徑分布的D100粒徑小於8.0 μm。In some specific embodiments, the D100 particle size of the first particle size distribution is greater than 7.0 μm. In some specific embodiments, the D100 particle size of the first particle size distribution is less than 8.0 μm.

較佳地,該等第一碳化鎢顆粒具有一總碳含量,基於該等第一碳化鎢顆粒的總重,該總碳含量的範圍為5.0~6.1 wt%。在某些具體實施例中,該等第一碳化鎢顆粒具有一總碳含量,基於該等第一碳化鎢顆粒的總重,該總碳含量的範圍為5.6~6.1 wt%。在某些具體實施例中,該等第一碳化鎢顆粒具有一總碳含量,基於該等第一碳化鎢顆粒的總重,該總碳含量的範圍為5.6~5.9 wt%。Preferably, the first tungsten carbide particles have a total carbon content, and based on the total weight of the first tungsten carbide particles, the total carbon content ranges from 5.0 to 6.1 wt%. In some embodiments, the first tungsten carbide particles have a total carbon content, and based on the total weight of the first tungsten carbide particles, the total carbon content ranges from 5.6 to 6.1 wt%. In some embodiments, the first tungsten carbide particles have a total carbon content, and based on the total weight of the first tungsten carbide particles, the total carbon content ranges from 5.6 to 5.9 wt%.

在某些具體實施例中,基於該正溫度係數聚合物材料的總重,該聚合物基材的含量範圍為4~6 wt%,該顆粒狀導電填料的含量範圍為94~96 wt%。在某些具體實施例中,基於該正溫度係數聚合物材料的總重,該等第一碳化鎢顆粒的含量至少為48 wt%。In some specific embodiments, based on the total weight of the positive temperature coefficient polymer material, the content of the polymer substrate ranges from 4 to 6 wt%, and the content of the particulate conductive filler ranges from 94 to 96 wt%. In some embodiments, based on the total weight of the positive temperature coefficient polymer material, the content of the first tungsten carbide particles is at least 48 wt%.

在某些具體實施例中,該顆粒狀導電填料還包括第二碳化鎢顆粒,該等第二碳化鎢顆粒具有一大於該第一平均費氏微篩粒徑的第二平均費氏微篩粒徑,及一第二粒徑分布,該第二粒徑分布的D10粒徑大於該第一粒徑分布的D10粒徑,且該第二粒徑分布的D100粒徑大於該第一粒徑分布的D100粒徑。In some embodiments, the particulate conductive filler further includes second tungsten carbide particles, and the second tungsten carbide particles have a second average Fischer microsieve particle size larger than the first average Fischer microsieve particle size Diameter, and a second particle size distribution, the D10 particle size of the second particle size distribution is greater than the D10 particle size of the first particle size distribution, and the D100 particle size of the second particle size distribution is greater than the first particle size distribution The D100 particle size.

在某些具體實施例中,該等第一碳化鎢顆粒的含量大於或等於該等第二碳化鎢顆粒的含量。在某些具體實施例中,如前所述,基於該正溫度係數聚合物材料的總重,該等第一碳化鎢顆粒的含量至少為48 wt%。In some embodiments, the content of the first tungsten carbide particles is greater than or equal to the content of the second tungsten carbide particles. In some embodiments, as mentioned above, based on the total weight of the positive temperature coefficient polymer material, the content of the first tungsten carbide particles is at least 48 wt%.

本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further described with the following examples, but it should be understood that these examples are for illustrative purposes only and should not be construed as limitations to the implementation of the present invention.

參閱圖1,本發明PTC電路保護裝置之實施例包含一正溫度係數聚合物材料2及分別貼附在該正溫度係數聚合物材料2之兩相反面上的兩個電極3。Referring to FIG. 1, an embodiment of the PTC circuit protection device of the present invention includes a positive temperature coefficient polymer material 2 and two electrodes 3 attached to two opposite surfaces of the positive temperature coefficient polymer material 2 respectively.

該正溫度係數聚合物材料2包括一聚合物基材21及一分散在該聚合物基材21中的顆粒狀導電填料22。該聚合物基材21是由一聚合物組成物所製成,該聚合物組成物含有一非接枝的聚烯烴。The positive temperature coefficient polymer material 2 includes a polymer substrate 21 and a particulate conductive filler 22 dispersed in the polymer substrate 21. The polymer substrate 21 is made of a polymer composition containing a non-grafted polyolefin.

根據本發明,該顆粒狀導電填料包括第一碳化鎢顆粒,該等第一碳化鎢顆粒具有一小於2.5 μm的第一平均費氏微篩粒徑,及一第一粒徑分布,該第一粒徑分布的D10粒徑小於2.0 μm,該第一粒徑分布的D100粒徑小於10.0 μm。According to the present invention, the particulate conductive filler includes first tungsten carbide particles, the first tungsten carbide particles having a first average Fischer microsieve particle size less than 2.5 μm, and a first particle size distribution. The D10 particle size of the particle size distribution is less than 2.0 μm, and the D100 particle size of the first particle size distribution is less than 10.0 μm.

實施例Example

實施例Example 1 (E1)1 (E1)

在Brabender混煉機中混煉9 g HDPE(購自於台灣塑膠工業股份有限公司,型號為HDPE 9002)作為非接枝的聚烯烴、9 g經馬來酸酐接枝的HDPE(購自於Dupont,型號為MD100D)作為經接枝的聚烯烴、及282 g碳化鎢顆粒(WC-1顆粒)作為顆粒狀導電填料的第一碳化鎢顆粒。9 g HDPE (purchased from Taiwan Plastics Industry Co., Ltd., model HDPE 9002) was mixed in a Brabender mixer as a non-grafted polyolefin, and 9 g of HDPE grafted with maleic anhydride (purchased from Dupont , The model is MD100D) as the grafted polyolefin, and 282 g tungsten carbide particles (WC-1 particles) as the first tungsten carbide particles of the particulate conductive filler.

如表1所示,該等WC-1顆粒的平均費氏微篩粒徑為1.96 μm,總碳含量為5.6 wt%,粒徑分佈的D10粒徑為0.97 μm,粒徑分佈的D100粒徑為7.09 μm。該等WC-1顆粒藉由使鎢金屬及碳顆粒接觸並在約1750℃中及氫氣存在下碳化,接著以高壓空氣粉碎成顆粒所製成。該混煉溫度為200℃,攪拌速度為50 rpm,加壓重量為5 kg,混煉時間為10 min。As shown in Table 1, the average Fischer microsieve particle size of the WC-1 particles is 1.96 μm, the total carbon content is 5.6 wt%, the D10 particle size of the particle size distribution is 0.97 μm, and the D100 particle size of the particle size distribution is It is 7.09 μm. The WC-1 particles are made by contacting tungsten metal and carbon particles, carbonizing at about 1750°C in the presence of hydrogen, and then pulverizing into particles with high-pressure air. The mixing temperature is 200°C, the stirring speed is 50 rpm, the pressurized weight is 5 kg, and the mixing time is 10 min.

所得的混煉混合物經熱壓而壓制成該正溫度係數聚合物材料2的薄片,其厚度為0.28 mm。該熱壓溫度為200℃,熱壓時間為4 min,該熱壓壓力為80 kg/cm2 。兩個銅箔片(作為電極)貼附至該薄片的二相反側,並在熱壓溫度為200℃、熱壓時間為4 min、熱壓壓力為80 kg/cm2 的環境下熱壓以形成一厚度為0.35 mm三明治結構的正溫度係數層合體。該正溫度係數層合體被裁切成多個尺寸為4.5 mm×3.2 mm×0.35 mm的測試樣品,並用Co-60 γ射線以總輻射劑量150 kGy照射。The obtained mixed mixture was pressed into a sheet of the positive temperature coefficient polymer material 2 by hot pressing, the thickness of which was 0.28 mm. The hot pressing temperature is 200° C., the hot pressing time is 4 min, and the hot pressing pressure is 80 kg/cm 2 . Two copper foil sheets (as electrodes) are attached to the two opposite sides of the sheet, and are hot-pressed under an environment where the hot-pressing temperature is 200℃, the hot-pressing time is 4 min, and the hot-pressing pressure is 80 kg/cm 2 A positive temperature coefficient laminate with a thickness of 0.35 mm sandwich structure is formed. The positive temperature coefficient laminate was cut into multiple test samples with dimensions of 4.5 mm×3.2 mm×0.35 mm, and irradiated with Co-60 γ rays with a total radiation dose of 150 kGy.

實施例Example 22 and 3 (E23 (E2 and E3)E3)

實施例2及3 (E2及E3)之測試樣品的製程條件與實施例1相似,差異之處在於將該等第一碳化鎢顆粒、HDPE及經接枝的HDPE的使用量分別改變如表1所示。The process conditions of the test samples of Examples 2 and 3 (E2 and E3) are similar to those of Example 1. The difference is that the usage amounts of the first tungsten carbide particles, HDPE and grafted HDPE are changed as shown in Table 1. Shown.

實施例Example 44 and 5 (E45 (E4 and E5)E5)

實施例4及5 (E4及E5)之測試樣品的製程條件與實施例3相似,差異之處在於將作為第一碳化鎢顆粒的該等碳化鎢顆粒類型分別改變為WC-2顆粒及WC-3顆粒。The process conditions of the test samples of Examples 4 and 5 (E4 and E5) are similar to those of Example 3. The difference is that the types of the tungsten carbide particles as the first tungsten carbide particles are changed to WC-2 particles and WC- particles, respectively. 3 particles.

如表1所示,該等WC-2顆粒的平均費氏微篩粒徑為2.45 μm,總碳含量為5.9 wt%,粒徑分佈的D10粒徑為1.90 μm,粒徑分佈的D100粒徑為9.86 μm。該等WC-3顆粒的平均費氏微篩粒徑為2.40 μm,總碳含量為6.1 wt%,粒徑分佈的D10粒徑為1.52 μm,粒徑分佈的D100粒徑為8.92 μm。As shown in Table 1, the average Fischer microsieve particle size of the WC-2 particles is 2.45 μm, the total carbon content is 5.9 wt%, the D10 particle size of the particle size distribution is 1.90 μm, and the D100 particle size of the particle size distribution is It is 9.86 μm. The average Fischer microsieve particle size of the WC-3 particles is 2.40 μm, the total carbon content is 6.1 wt%, the D10 particle size of the particle size distribution is 1.52 μm, and the D100 particle size of the particle size distribution is 8.92 μm.

實施例Example 66 and 7 (E67 (E6 and E7)E7)

實施例6及7 (E6及E7)之測試樣品的製程條件與實施例3相似,差異之處在於該顆粒狀導電填料還包括不同量的碳化鎢顆粒(WC-4顆粒)作為第二碳化鎢顆粒。The process conditions of the test samples of Examples 6 and 7 (E6 and E7) are similar to those of Example 3. The difference is that the particulate conductive filler also includes different amounts of tungsten carbide particles (WC-4 particles) as the second tungsten carbide Particles.

如表1所示,該等WC-4顆粒的平均費氏微篩粒徑為3.10 μm,總碳含量為5.6 wt%,粒徑分佈的D10粒徑為2.56 μm,粒徑分佈的D100粒徑為18.50 μm。該等WC-4顆粒藉由使鎢金屬及碳顆粒接觸並在約1750℃中及氫氣存在下碳化所製成。HDPE、經接枝的HDPE、該等第一碳化鎢顆粒及該等第二碳化鎢顆粒的使用量分別如表1所示。As shown in Table 1, the average Fischer microsieve particle size of the WC-4 particles is 3.10 μm, the total carbon content is 5.6 wt%, the D10 particle size of the particle size distribution is 2.56 μm, and the D100 particle size of the particle size distribution is It is 18.50 μm. The WC-4 particles are made by contacting tungsten metal and carbon particles and carbonizing at about 1750°C in the presence of hydrogen. The usage amounts of HDPE, grafted HDPE, the first tungsten carbide particles and the second tungsten carbide particles are shown in Table 1, respectively.

<比較<Compare example 11 to 5 (CE15 (CE1 to CE5)CE5)

比較例1至5 (CE1至CE5)之測試樣品的製程條件分別與實施例1至5相似,差異之處在於比較例1至3將作為第一碳化鎢顆粒的該等碳化鎢顆粒類型改變為WC-4顆粒,比較例4及5將作為第一碳化鎢顆粒的該等碳化鎢顆粒類型分別改變為WC-5顆粒及WC-6顆粒。The process conditions of the test samples of Comparative Examples 1 to 5 (CE1 to CE5) are similar to those of Examples 1 to 5, respectively. The difference is that Comparative Examples 1 to 3 change the types of tungsten carbide particles as the first tungsten carbide particles to WC-4 particles, Comparative Examples 4 and 5 changed the types of the tungsten carbide particles as the first tungsten carbide particles to WC-5 particles and WC-6 particles, respectively.

如表1所示,該等WC-5顆粒的平均費氏微篩粒徑為2.93 μm,總碳含量為5.9 wt%,粒徑分佈的D10粒徑為2.45 μm,粒徑分佈的D100粒徑為16.21 μm。該等WC-6顆粒的平均費氏微篩粒徑為2.91 μm,總碳含量為6.1 wt%,粒徑分佈的D10粒徑為2.08 μm,粒徑分佈的D100粒徑為15.34 μm。 【表1】 聚合物基材 顆粒狀導電填料 第一碳化鎢(WC)顆粒 第二碳化鎢顆粒 HDPE (wt%) 經接 枝的HDPE (wt%) 類型 wt% FSSS (μm) D10 (μm) D100 (μm) 總W/C 含量 (wt%) 類型 wt% FSSS (μm) D10 (μm) D100 (μm) 總W/C 含量 (wt%) E1 3.0 3.0 WC-1 94.0 1.96 0.97 7.09 94.4/5.6       E2 2.5 2.5 WC-1 95.0 1.96 0.97 7.09 94.4/5.6       E3 2.0 2.0 WC-1 96.0 1.96 0.97 7.09 94.4/5.6       E4 2.0 2.0 WC-2 96.0 2.45 1.90 9.86 94.1/5.9       E5 2.0 2.0 WC-3 96.0 2.40 1.52 8.92 93.9/6.1       E6 2.0 2.0 WC-1 72.0 1.96 0.97 7.09 94.4/5.6 WC-4 24.0 3.10 2.56 18.50 94.4/5.6 E7 2.0 2.0 WC-1 48.0 1.96 0.97 7.09 94.4/5.6 WC-4 48.0 3.10 2.56 18.50 94.4/5.6 CE1 3.0 3.0 WC-4 94.0 3.10 2.56 18.50 94.4/5.6       CE2 2.5 2.5 WC-4 95.0 3.10 2.56 18.50 94.4/5.6       CE3 2.0 2.0 WC-4 96.0 3.10 2.56 18.50 94.4/5.6       CE4 2.0 2.0 WC-5 96.0 2.93 2.45 16.21 94.1/5.9       CE5 2.0 2.0 WC-6 96.0 2.91 2.08 15.34 93.9/6.1       As shown in Table 1, the average Fischer microsieve particle size of the WC-5 particles is 2.93 μm, the total carbon content is 5.9 wt%, the D10 particle size of the particle size distribution is 2.45 μm, and the D100 particle size of the particle size distribution is It is 16.21 μm. The average Fischer microsieve particle size of the WC-6 particles is 2.91 μm, the total carbon content is 6.1 wt%, the D10 particle size of the particle size distribution is 2.08 μm, and the D100 particle size of the particle size distribution is 15.34 μm. 【Table 1】 Polymer substrate Granular conductive filler The first tungsten carbide (WC) particles Second tungsten carbide particles HDPE (wt%) Grafted HDPE (wt%) type wt% FSSS (μm) D10 (μm) D100 (μm) Total W/C content (wt%) type wt% FSSS (μm) D10 (μm) D100 (μm) Total W/C content (wt%) E1 3.0 3.0 WC-1 94.0 1.96 0.97 7.09 94.4/5.6 E2 2.5 2.5 WC-1 95.0 1.96 0.97 7.09 94.4/5.6 E3 2.0 2.0 WC-1 96.0 1.96 0.97 7.09 94.4/5.6 E4 2.0 2.0 WC-2 96.0 2.45 1.90 9.86 94.1/5.9 E5 2.0 2.0 WC-3 96.0 2.40 1.52 8.92 93.9/6.1 E6 2.0 2.0 WC-1 72.0 1.96 0.97 7.09 94.4/5.6 WC-4 24.0 3.10 2.56 18.50 94.4/5.6 E7 2.0 2.0 WC-1 48.0 1.96 0.97 7.09 94.4/5.6 WC-4 48.0 3.10 2.56 18.50 94.4/5.6 CE1 3.0 3.0 WC-4 94.0 3.10 2.56 18.50 94.4/5.6 CE2 2.5 2.5 WC-4 95.0 3.10 2.56 18.50 94.4/5.6 CE3 2.0 2.0 WC-4 96.0 3.10 2.56 18.50 94.4/5.6 CE4 2.0 2.0 WC-5 96.0 2.93 2.45 16.21 94.1/5.9 CE5 2.0 2.0 WC-6 96.0 2.91 2.08 15.34 93.9/6.1

每一實施例及每一比較例皆使用微歐姆計測試10個樣品。分別測量E1~E7及CE1~CE5之測試樣品在25℃中的初始電阻(Ri , ohm)及體積電阻率(V-R, ohm-cm),其平均值分別如表2所示。In each example and each comparative example, 10 samples were tested using a micro-ohmmeter. Measure the initial resistance (R i , ohm) and volume resistivity (VR, ohm-cm) of the test samples of E1~E7 and CE1~CE5 at 25°C. The average values are shown in Table 2.

性能測試Performance Testing

將兩個錫箔片分別貼附至E1~E7及CE1~CE5之每一測試樣品的該等銅箔片上,以進行下述的崩壞(breakdown)測試、切換循環(switching cycle)測試及老化(aging)測試。Attach two tin foil sheets to the copper foil sheets of each test sample of E1~E7 and CE1~CE5, respectively, to perform the following breakdown test, switching cycle test and aging ( aging) test.

[[ 崩壞測試Collapse test (Breakdown test)](Breakdown test)]

分別對E1~E7及CE1~CE5所製得樣品進行崩壞測試:每一實施例及每一比較例皆先測試10個樣品,以起始電壓8 Vdc及定電流10 A通電60 s後斷電60 s循環10次進行測試。若10個樣品皆沒有燒燬(表示通過率為100%),另取10個樣品,並將電壓改變為12 Vdc循環10次進行測試。若皆沒有燒燬,逐次電壓改變為增加4 Vdc。分別記錄E1~E7及CE1~CE5之測試樣品測試後10個樣品皆不燒燬的最高耐受電壓(即崩壞電壓),結果如表2所示。Carry out the collapse test on the samples prepared by E1~E7 and CE1~CE5 respectively: each example and each comparative example are tested with 10 samples first, and the starting voltage is 8 Vdc and the constant current 10 A is energized for 60 s and then cut off. Electricity 60 s cycle 10 times to test. If none of the 10 samples are burnt (indicating that the pass rate is 100%), another 10 samples are taken, and the voltage is changed to 12 Vdc for 10 cycles for testing. If none is burnt, the voltage is changed to increase 4 Vdc successively. Record the maximum withstand voltage (ie, collapse voltage) of the test samples of E1~E7 and CE1~CE5 after the test of 10 samples without burning, and the results are shown in Table 2.

由表2可以看出,E1~E7之測試樣品的崩壞電壓(40~48 Vdc)明顯高於對應的CE1~CE5之測試樣品的崩壞電壓(8~12 Vdc)。此結果顯示含有平均費氏微篩粒徑小於2.5 μm、粒徑分布的D10粒徑小於2.0 μm且粒徑分布的D100粒徑小於10.0 μm的碳化鎢顆粒的PTC裝置可有效抵擋在較高電壓中崩壞。It can be seen from Table 2 that the breakdown voltage (40~48 Vdc) of the test samples of E1~E7 is significantly higher than the breakdown voltage (8~12 Vdc) of the corresponding test samples of CE1~CE5. This result shows that a PTC device containing tungsten carbide particles with an average Fischer microsieve particle size of less than 2.5 μm, a particle size distribution of D10 particle size less than 2.0 μm, and a particle size distribution of D100 particle size less than 10.0 μm can effectively withstand higher voltages. In the collapse.

此外,相較於CE3之測試樣品,E6及E7之測試樣品除了含有粒徑較大的WC-4以外,還含有粒徑較小的WC-1(且其含量不小於WC-4的含量),展現出較高的崩壞電壓。In addition, compared to the test samples of CE3, the test samples of E6 and E7 not only contain WC-4 with a larger particle size, but also contain WC-1 with a smaller particle size (and its content is not less than the content of WC-4) , Showing a higher breakdown voltage.

因此,申請人推測粒徑較小的碳化鎢顆粒在高電壓及高電流中的互相接觸較少(即傾向分散),可避免不希望有的電弧及閃絡(flashover),進而防止PTC裝置損毀或燒燬。Therefore, the applicant speculates that tungsten carbide particles with a smaller particle size have less contact with each other (that is, tend to disperse) in high voltage and high current, which can avoid undesirable arcs and flashovers, thereby preventing PTC device damage Or burned.

[[ 切換循環測試Toggle cycle test (Switching cycle test)](Switching cycle test)]

每一實施例及每一比較例皆進行切換循環測試10個樣品。分別以30 Vdc的電壓及10 A的電流接通E1~E7及CE1~CE5之測試樣品60秒,接著切斷60秒,如此進行7200次切換循環。分別測量開始前及7200次循環後的每一測試樣品的電阻(Ri 及Rf ),測定每一實施例及每一比較例的平均電阻變化率(Rf /Ri ×100%),並計算每一實施例及每一比較例的切換循環通過率(n/10×100%,n表示通過切換循環測試而沒有燒燬的測試樣品數量)。切換循環測試的結果顯示於表2。For each embodiment and each comparative example, 10 samples were tested in a switching cycle. The test samples of E1~E7 and CE1~CE5 were connected with a voltage of 30 Vdc and a current of 10 A respectively for 60 seconds, and then switched off for 60 seconds, thus performing 7200 switching cycles. Measure the resistance (R i and R f ) of each test sample before the start and after 7,200 cycles, and determine the average resistance change rate (R f /R i ×100%) of each example and each comparative example, And calculate the switching cycle pass rate of each embodiment and each comparative example (n/10×100%, n represents the number of test samples that passed the switching cycle test without burning). The results of the switching cycle test are shown in Table 2.

結果顯示E1~E7之測試樣品全部通過切換循環測試(切換循環通過率100%)。而CE1~CE5之測試樣品的切換循環通過率皆在20%以下,其表示CE1~CE5之測試樣品在30 Vdc的電壓下容易損毀。此外,E1~E7之測試樣品的平均電阻變化率明顯低於CE1~CE5。The results show that all test samples from E1 to E7 have passed the switching cycle test (the switching cycle pass rate is 100%). The switching cycle pass rates of the test samples of CE1~CE5 are all below 20%, which means that the test samples of CE1~CE5 are easily damaged under a voltage of 30 Vdc. In addition, the average resistance change rate of the test samples from E1 to E7 is significantly lower than that of CE1 to CE5.

[[ 老化測試Aging test (Aging test)](Aging test)]

每一實施例及每一比較例皆進行老化測試10個樣品。分別施加30 Vdc的電壓及10 A的電流於E1~E7及CE1~CE5之測試樣品1000小時。分別測量開始前及施加1000小時後的每一測試樣品的電阻(Ri 及Rf ),測定每一實施例及每一比較例的平均電阻變化率(Rf /Ri ×100%),並計算每一實施例及每一比較例的老化通過率(n/10×100%,n表示通過老化測試而沒有燒毀的測試樣品數量)。老化測試的結果顯示於表2。Ten samples were subjected to aging test for each example and each comparative example. Apply a voltage of 30 Vdc and a current of 10 A to the test samples of E1~E7 and CE1~CE5 for 1000 hours. Measure the resistance (R i and R f ) of each test sample before and after 1000 hours of application, and determine the average resistance change rate (R f /R i ×100%) of each example and each comparative example, And calculate the aging pass rate of each embodiment and each comparative example (n/10×100%, n represents the number of test samples that passed the aging test without being burnt). The results of the aging test are shown in Table 2.

結果顯示E1~E7之測試樣品全部通過老化測試(老化通過率100%)。CE1~CE5之測試樣品的老化通過率皆在20%以下,其表示CE1~CE5之測試樣品在30 Vdc的電壓下容易損毀。此外,E1~E7之測試樣品的平均電阻變化率明顯低於CE1~CE5。 【表2】 測試樣品 崩壞 測試 切換循環測試 (7200次循環) 老化測試 (1000小時) Ri (ohm) V-R (ohm-cm) (Vdc) Rf /Ri ×100% 通過率 Rf /Ri ×100% 通過率 E1 0.00452 0.01860 48 2777% 100% 1232% 100% E2 0.00403 0.01658 48 2674% 100% 1259% 100% E3 0.00361 0.01485 48 2886% 100% 1198% 100% E4 0.00385 0.01584 40 2751% 100% 1365% 100% E5 0.00407 0.01675 40 3702% 100% 2012% 100% E6 0.00396 0.01629 36 5730% 100% 2861% 100% E7 0.00426 0.01753 32 6969% 100% 3769% 100% CE1 0.00524 0.02156 12 12029% 20% 8057% 10% CE2 0.00448 0.01843 12 12533% 20% 8869% 20% CE3 0.00405 0.01666 12 13265% 10% 9124% 20% CE4 0.00423 0.01740 12 14572% 10% 12328% 10% CE5 0.00511 0.02102 8 NA 0% NA 0% The results show that all test samples of E1~E7 have passed the aging test (aging pass rate is 100%). The aging pass rates of the test samples of CE1~CE5 are all below 20%, which means that the test samples of CE1~CE5 are easily damaged under a voltage of 30 Vdc. In addition, the average resistance change rate of the test samples from E1 to E7 is significantly lower than that of CE1 to CE5. 【Table 2】 testing sample Collapse test Switching cycle test (7200 cycles) Aging test (1000 hours) R i (ohm) VR (ohm-cm) (Vdc) R f /R i ×100% Passing rate R f /R i ×100% Passing rate E1 0.00452 0.01860 48 2777% 100% 1232% 100% E2 0.00403 0.01658 48 2674% 100% 1259% 100% E3 0.00361 0.01485 48 2886% 100% 1198% 100% E4 0.00385 0.01584 40 2751% 100% 1365% 100% E5 0.00407 0.01675 40 3702% 100% 2012% 100% E6 0.00396 0.01629 36 5730% 100% 2861% 100% E7 0.00426 0.01753 32 6969% 100% 3769% 100% CE1 0.00524 0.02156 12 12029% 20% 8057% 10% CE2 0.00448 0.01843 12 12533% 20% 8869% 20% CE3 0.00405 0.01666 12 13265% 10% 9124% 20% CE4 0.00423 0.01740 12 14572% 10% 12328% 10% CE5 0.00511 0.02102 8 NA 0% NA 0%

在表2中,“NA”表示無法獲得。In Table 2, "NA" means unavailable.

綜上所述,藉由含有平均費氏微篩粒徑小於2.5 μm、粒徑分布的D10粒徑小於2.0 μm且粒徑分布的D100粒徑小於10.0 μm的碳化鎢顆粒,本發明PTC電路保護裝置可在較高電壓(例如30 Vdc)中操作並展現良好的電穩定性,故確實能達成本發明之目的。In summary, by containing tungsten carbide particles with an average Fischer microsieve particle size less than 2.5 μm, a particle size distribution D10 particle size less than 2.0 μm, and a particle size distribution D100 particle size less than 10.0 μm, the PTC circuit protection of the present invention The device can operate at a higher voltage (for example, 30 Vdc) and exhibit good electrical stability, so it can indeed achieve the purpose of the invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to This invention patent covers the scope.

2:正溫度係數聚合物材料 21:聚合物基材 22:顆粒狀導電填料 3:電極 2:Positive temperature coefficient polymer material 21: Polymer substrate 22: Granular conductive filler 3: electrode

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: [圖1]是本發明PTC電路保護裝置的實施例的剖視示意圖。Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: [Figure 1] is a schematic cross-sectional view of an embodiment of the PTC circuit protection device of the present invention.

2:正溫度係數聚合物材料 2:Positive temperature coefficient polymer material

21:聚合物基材 21: Polymer substrate

22:顆粒狀導電填料 22: Granular conductive filler

3:電極 3: electrode

Claims (10)

一種PTC電路保護裝置,包含:一正溫度係數聚合物材料,包括一聚合物基材及一分散在該聚合物基材中的顆粒狀導電填料;及貼附在該正溫度係數聚合物材料上的兩個電極;其中,該聚合物基材是由一聚合物組成物所製成,該聚合物組成物含有一非接枝的聚烯烴;及其中,該顆粒狀導電填料包括第一碳化鎢顆粒,該等第一碳化鎢顆粒具有一小於2.5μm且大於1.9μm的第一平均費氏微篩粒徑,及一第一粒徑分布,該第一粒徑分布的D10粒徑小於2.0μm且大於0.9μm,該第一粒徑分布的D100粒徑小於10.0μm且大於7.0μm;基於該正溫度係數聚合物材料的總重,該等第一碳化鎢顆粒的含量範圍為48~96wt%。 A PTC circuit protection device, comprising: a positive temperature coefficient polymer material, including a polymer substrate and a granular conductive filler dispersed in the polymer substrate; and attached to the positive temperature coefficient polymer material The two electrodes; wherein, the polymer substrate is made of a polymer composition, the polymer composition contains a non-grafted polyolefin; and wherein, the particulate conductive filler includes the first tungsten carbide Particles, the first tungsten carbide particles have a first average Fischer microsieve particle size smaller than 2.5 μm and larger than 1.9 μm, and a first particle size distribution, the D10 particle size of the first particle size distribution is smaller than 2.0 μm And greater than 0.9 μm, the D100 particle size of the first particle size distribution is less than 10.0 μm and greater than 7.0 μm; based on the total weight of the positive temperature coefficient polymer material, the content of the first tungsten carbide particles ranges from 48 to 96 wt% . 如請求項1所述的PTC電路保護裝置,其中,該等第一碳化鎢顆粒的第一平均費氏微篩粒徑小於2.0μm且大於1.9μm。 The PTC circuit protection device according to claim 1, wherein the first average Fischer microsieve particle size of the first tungsten carbide particles is less than 2.0 μm and greater than 1.9 μm. 如請求項1所述的PTC電路保護裝置,其中,該第一粒徑分布的D10粒徑小於1.0μm且大於0.9μm。 The PTC circuit protection device according to claim 1, wherein the D10 particle size of the first particle size distribution is less than 1.0 μm and greater than 0.9 μm. 如請求項1所述的PTC電路保護裝置,其中,該第一粒徑分布的D100粒徑小於8.0μm且大於7.0μm。 The PTC circuit protection device according to claim 1, wherein the D100 particle size of the first particle size distribution is less than 8.0 μm and greater than 7.0 μm. 如請求項1所述的PTC電路保護裝置,其中,基於該正溫度係數聚合物材料的總重,該聚合物基材的含量範圍為4~6wt%,該顆粒狀導電填料的含量範圍為94~96wt%。 The PTC circuit protection device according to claim 1, wherein, based on the total weight of the positive temperature coefficient polymer material, the content of the polymer substrate ranges from 4 to 6 wt%, and the content of the particulate conductive filler is 94 ~96wt%. 如請求項1所述的PTC電路保護裝置,其中,該非接枝的聚烯烴是高密度聚乙烯。 The PTC circuit protection device according to claim 1, wherein the non-grafted polyolefin is high-density polyethylene. 如請求項1所述的PTC電路保護裝置,其中,該聚合物組成物還包括一經接枝的聚烯烴。 The PTC circuit protection device according to claim 1, wherein the polymer composition further includes a grafted polyolefin. 如請求項7所述的PTC電路保護裝置,其中,該經接枝的聚烯烴是經羧酸酐接枝的高密度聚乙烯。 The PTC circuit protection device according to claim 7, wherein the grafted polyolefin is high-density polyethylene grafted with carboxylic anhydride. 如請求項1所述的PTC電路保護裝置,其中,該等第一碳化鎢顆粒具有一總碳含量,基於該等第一碳化鎢顆粒的總重,該總碳含量的範圍為5.0~6.1wt%。 The PTC circuit protection device according to claim 1, wherein the first tungsten carbide particles have a total carbon content, and based on the total weight of the first tungsten carbide particles, the total carbon content ranges from 5.0 to 6.1 wt %. 如請求項1所述的PTC電路保護裝置,其中,該等第一碳化鎢顆粒具有一總碳含量,基於該等第一碳化鎢顆粒的總重,該總碳含量的範圍為5.6~5.9wt%。 The PTC circuit protection device according to claim 1, wherein the first tungsten carbide particles have a total carbon content, and based on the total weight of the first tungsten carbide particles, the total carbon content ranges from 5.6 to 5.9 wt %.
TW108113000A 2019-04-15 2019-04-15 PTC circuit protection device TWI744625B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108113000A TWI744625B (en) 2019-04-15 2019-04-15 PTC circuit protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108113000A TWI744625B (en) 2019-04-15 2019-04-15 PTC circuit protection device

Publications (2)

Publication Number Publication Date
TW202040902A TW202040902A (en) 2020-11-01
TWI744625B true TWI744625B (en) 2021-11-01

Family

ID=74201501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113000A TWI744625B (en) 2019-04-15 2019-04-15 PTC circuit protection device

Country Status (1)

Country Link
TW (1) TWI744625B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604182B (en) * 2021-08-16 2022-11-29 广东生益科技股份有限公司 Resin composition and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593843B1 (en) * 2000-06-28 2003-07-15 Tyco Electronics Corporation Electrical devices containing conductive polymers
US20070024413A1 (en) * 2005-07-29 2007-02-01 Tdk Corporation Organic positive temperature coefficient thermistor
US8558655B1 (en) * 2012-07-03 2013-10-15 Fuzetec Technology Co., Ltd. Positive temperature coefficient polymer composition and positive temperature coefficient circuit protection device
CN104425088A (en) * 2013-08-19 2015-03-18 富致科技股份有限公司 Over-current protection apparatus and battery assembly using same
TWI480384B (en) * 2011-07-19 2015-04-11 Fuzetec Technology Co Ltd A positive temperature coefficient material composition for making a positive temperature coefficient circuit protection device includes a positive temperature coefficient polymer unit and a conductive filler
JP5711365B2 (en) * 2010-07-08 2015-04-30 上海長園維安電子線路保護有限公司 Conductive composite material having positive temperature coefficient resistance and overcurrent protection element
CN106024229A (en) * 2009-10-30 2016-10-12 沙特基础全球技术有限公司 Positive temperature coefficient materials with reduced negative temperature coefficient effect
TWI606470B (en) * 2015-10-20 2017-11-21 Fuzetec Technology Co Ltd Positive temperature coefficient current protection wafer device and its production method
TW201809168A (en) * 2016-04-08 2018-03-16 力特福斯股份有限公司 Ultrathin positive temperature coefficient sheet and method for making same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593843B1 (en) * 2000-06-28 2003-07-15 Tyco Electronics Corporation Electrical devices containing conductive polymers
US20070024413A1 (en) * 2005-07-29 2007-02-01 Tdk Corporation Organic positive temperature coefficient thermistor
CN106024229A (en) * 2009-10-30 2016-10-12 沙特基础全球技术有限公司 Positive temperature coefficient materials with reduced negative temperature coefficient effect
JP5711365B2 (en) * 2010-07-08 2015-04-30 上海長園維安電子線路保護有限公司 Conductive composite material having positive temperature coefficient resistance and overcurrent protection element
TWI480384B (en) * 2011-07-19 2015-04-11 Fuzetec Technology Co Ltd A positive temperature coefficient material composition for making a positive temperature coefficient circuit protection device includes a positive temperature coefficient polymer unit and a conductive filler
US8558655B1 (en) * 2012-07-03 2013-10-15 Fuzetec Technology Co., Ltd. Positive temperature coefficient polymer composition and positive temperature coefficient circuit protection device
CN104425088A (en) * 2013-08-19 2015-03-18 富致科技股份有限公司 Over-current protection apparatus and battery assembly using same
TWI606470B (en) * 2015-10-20 2017-11-21 Fuzetec Technology Co Ltd Positive temperature coefficient current protection wafer device and its production method
TW201809168A (en) * 2016-04-08 2018-03-16 力特福斯股份有限公司 Ultrathin positive temperature coefficient sheet and method for making same

Also Published As

Publication number Publication date
TW202040902A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
JP4664556B2 (en) Conductive polymer composition
EP0063440B1 (en) Radiation cross-linking of ptc conductive polymers
JPH07507655A (en) conductive polymer composition
JP2013535804A (en) Conductive composite material having positive temperature coefficient resistance and overcurrent protection element
JPH0474383B2 (en)
TWI744625B (en) PTC circuit protection device
TW201305351A (en) A positive temperature coefficient material composition for making a positive temperature coefficient circuit protection device includes a positive temperature coefficient polymer unit and a conductive filler
JP3813611B2 (en) Conductive polymer having PTC characteristics, method for controlling PTC characteristics of the polymer, and electronic device using the polymer
US9773589B1 (en) PTC circuit protection device
Das et al. Effect of filler treatment and crosslinking on mechanical and dynamic mechanical properties and electrical conductivity of carbon black‐filled ethylene–vinyl acetate copolymer composites
US10790074B1 (en) PTC circuit protection device
US10147525B1 (en) PTC circuit protection device
US20160105016A1 (en) Positive temperature coefficient circuit protection device
US9455075B1 (en) Over-current protection device
CN1655291A (en) Macromolecular thermosensitive resistor and method for making same
CN105590710B (en) Positive temperature coefficient overcurrent protection element
TWI598893B (en) Positive temperature coefficient overcurrent protection device
US9502163B2 (en) PTC circuit protection device
TWI632563B (en) Positive temperature coefficient circuit protection component
CN111834072B (en) PTC circuit protection device
JP2005508073A (en) PTC conductive polymer composition
US2299184A (en) Lightning arrester
TWI634569B (en) Over-current protection device
TWI636467B (en) Positive temperature coefficient circuit protection device
TWI779155B (en) Overcurrent protection device