JP2638862B2 - Positive low temperature coefficient heating element - Google Patents

Positive low temperature coefficient heating element

Info

Publication number
JP2638862B2
JP2638862B2 JP62324610A JP32461087A JP2638862B2 JP 2638862 B2 JP2638862 B2 JP 2638862B2 JP 62324610 A JP62324610 A JP 62324610A JP 32461087 A JP32461087 A JP 32461087A JP 2638862 B2 JP2638862 B2 JP 2638862B2
Authority
JP
Japan
Prior art keywords
heating element
temperature coefficient
composition
positive
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62324610A
Other languages
Japanese (ja)
Other versions
JPH01166479A (en
Inventor
誠之 寺門
和典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62324610A priority Critical patent/JP2638862B2/en
Publication of JPH01166479A publication Critical patent/JPH01166479A/en
Application granted granted Critical
Publication of JP2638862B2 publication Critical patent/JP2638862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房器具や一般加熱器具に用いられる正抵
抗温度係数発熱体に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive resistance temperature coefficient heating element used for a heating appliance or a general heating appliance.

従来の技術 ポリエチレン、エチレン酢酸ビニル共重合体、アノオ
イマー、ポリプロピレン、ポリフッ化ビニリデン等の結
晶性重合体に、カーボンブラック等の導電性微粉末を分
散した組成物は、その融点近傍において、結晶部分が無
定形化するさいの急激な物性変化によって抵抗値が急激
に増大することが知られている。そして、その特性を応
用して、所定の温度に達すると電力が急激に低下し、温
度の暴走を抵抗体自信が防止すると共に、熱負荷の変動
に応じて、温度を一定に保つ方向に電力が自動的に制御
される、いをゆる自己制御発熱体として応用されてき
た。
2. Related Art A composition in which conductive fine powder such as carbon black is dispersed in a crystalline polymer such as polyethylene, ethylene-vinyl acetate copolymer, anoimer, polypropylene, and polyvinylidene fluoride has a crystalline portion near its melting point. It is known that the resistance value sharply increases due to a sudden change in physical properties during amorphousization. Applying its characteristics, when the temperature reaches a predetermined temperature, the power drops rapidly, and the resistor itself prevents the temperature runaway, and the power is kept in a direction to keep the temperature constant according to the fluctuation of the thermal load. Has been applied as a so-called self-controlled heating element that is automatically controlled.

第2図は、特公昭55−40161号公報に代表される、従
来技術に基づく正抵抗温度係数発熱体の例を示すもので
あり、図ちおいて1は電気絶縁性と熱伝導性に優れたセ
ラミックス基板であり、2a及び2bは電極である。そして
3は結晶性重合体とカーボンブラックを主成分とする正
抵抗温度係数抵抗体である。一般に、セラミック系の焼
結体は電気絶縁体でありながら極めて良好な熱伝導特性
を示すため、正抵抗温度係数抵抗体のほぼ全面において
一様な温度分布を維持する能力が高く、それに伴って正
常な抵抗値分布と電位分布による安定な発熱状態を保持
する事が可能であり、高出力の正抵抗温度係数発熱体を
構成する場合に非常に有利であった。しかし、大面積の
発熱体や長尺の発熱体を構成する場合には、アルミナ焼
結体等のセラミック系の材料は製造技術的にも、強度的
にも実用に供し得るものではなかった。
FIG. 2 shows an example of a heating element having a positive resistance temperature coefficient based on the prior art, as represented by Japanese Patent Publication No. 55-40161. 2a and 2b are electrodes. Reference numeral 3 denotes a positive resistance temperature coefficient resistor mainly composed of a crystalline polymer and carbon black. In general, a ceramic-based sintered body exhibits extremely good heat conduction characteristics while being an electrical insulator, and therefore has a high ability to maintain a uniform temperature distribution over almost the entire surface of the positive resistance temperature coefficient resistor. It is possible to maintain a stable heat generation state due to normal resistance value distribution and potential distribution, which is very advantageous when a high-output positive resistance temperature coefficient heating element is formed. However, when a heating element having a large area or a long heating element is formed, a ceramic-based material such as an alumina sintered body cannot be practically used in terms of manufacturing technology and strength.

そこでセラミックス系の基板材料に代わるものとし
て、特公昭57−43995号公報あるいは、第3図に示した
ような電気絶縁フイルム4と金属均熱板5から成る複合
材料基板が用いられてきたが、樹脂の熱伝導率はセラミ
ックに比べて約2桁程低く、複合材料の熱伝導率がセラ
ミックを上回ることはなかった。したがってこれらの発
熱体の電力密度は極めて低水準にあった。その結果、多
くの用途において発熱体の出力が不充分であるか、もし
くは発熱体の装架面積が必要以上に大きくなり、誘導に
よる漏れ電流が危険な水準に達したり、材料コストが代
替え手段を大幅に上回ったりして、用途が極めて限定さ
れていた。
Therefore, as a substitute for a ceramic substrate material, Japanese Patent Publication No. 57-43995 or a composite material substrate composed of an electrically insulating film 4 and a metal heat equalizing plate 5 as shown in FIG. 3 has been used. The thermal conductivity of the resin was about two orders of magnitude lower than ceramic, and the thermal conductivity of the composite did not exceed that of ceramic. Therefore, the power density of these heating elements was at an extremely low level. As a result, in many applications, the output of the heating element is insufficient or the mounting area of the heating element becomes unnecessarily large, leakage current due to induction reaches dangerous levels, and material cost becomes an alternative. The use was extremely limited, and the use was extremely limited.

そこで、正抵抗温度係数発熱体の構造に着目して、特
開昭60−28195号公報や第4図に示すように、一対の電
極間2a,2bの距離を互いに接近させることにより、基板
の均熱効果に依存しないで、抵抗体3自信の熱の拡散能
力を大幅に高める方法が検討されるようになり、応用範
囲の広い、高出力の正抵抗温度係数発熱体を実現する道
が開かれてきた。
Therefore, paying attention to the structure of the positive temperature coefficient heating element, as shown in JP-A-60-28195 and FIG. 4, the distance between the pair of electrodes 2a and 2b is made closer to each other, so that Rather than relying on the soaking effect, a method to greatly increase the heat diffusion capability of the resistor 3 itself has been studied, and a way to realize a high output positive resistance temperature coefficient heating element with a wide range of applications has been opened. I've been killed.

発明が解決しようとする問題点 しかしながら第4図に示したような正抵抗温度係数発
熱体は、高出力を発生するための構造としては非常に優
れていたが、カーボンブラック等の比較的低抵抗の導電
性微粉末を分散することによって構成される正抵抗温度
係数抵抗体の耐電圧破壊特性や、非常に高抵抗が要求さ
れる体積固有抵抗値の領域を考慮すると、解決しなけれ
ばならない課題が山積していた。
However, the positive resistance temperature coefficient heating element as shown in FIG. 4 is very excellent as a structure for generating high output, but has a relatively low resistance such as carbon black. The problem that must be solved in view of the withstand voltage breakdown characteristics of the positive temperature coefficient resistor formed by dispersing the conductive fine powder and the volume resistivity range where extremely high resistance is required Was piled up.

まず、電極間隔が非常に接近した正抵抗温度係数発熱
体を構成するためには耐電圧破壊特性に優れた導電性微
粉末を選定するだけでなく、充分な抵抗温度特性を得る
ことによって、正抵抗温度特性のピーク抵抗地を越えて
暴走することのないように配慮することが非常に重要な
課題となった。また、体積固有抵抗値も従来の100〜102
Ωcmに対して、103〜105Ωcmの半導体領域が必要とな
り、導電性微粉末の組成比を大幅に低滅しなければなら
なくなった。その結果、導電性微粉末同志の接触点の数
も激減し、抵抗温度特性が結晶性重合体の融点のみによ
って制御されるだけではなく、より低温域の線膨張係数
によると思われる不安定な成分をより多く含むようにな
った。さらに、経時変化において、結晶性重合体の結晶
成長や導電性微粉末の凝集によって、抵抗値や抵抗温度
係数な大幅な変化が生じるようになった。
First, in order to construct a positive resistance temperature coefficient heating element in which the electrode spacing is very close, not only is it necessary to select a conductive fine powder having excellent withstand voltage breakdown characteristics, but also by obtaining sufficient resistance temperature characteristics. It was very important to take care not to runaway beyond the peak resistance area of the resistance temperature characteristic. The volume specific resistance value of the conventional 10 0 - 10 2
A semiconductor region of 103 to 105 Ωcm is required for Ωcm, and the composition ratio of the conductive fine powder must be greatly reduced. As a result, the number of contact points between the conductive fine powders is drastically reduced, and the resistance temperature characteristic is not only controlled by the melting point of the crystalline polymer, but also unstable due to the linear expansion coefficient at a lower temperature range. It now contains more components. Furthermore, in the course of aging, the resistance value and the temperature coefficient of resistance change significantly due to the crystal growth of the crystalline polymer and the aggregation of the conductive fine powder.

発熱体に使用する場合には、例えば、室温における抵
抗値とピーク抵抗値との比が4〜6桁となるような優れ
た正抵抗温度特性を示す材料組成を選択すると、室温に
おける抵抗値と安定温度域における抵抗値との比が不必
要に高まり、大電力を要する機器においては突入電力が
許容値を大幅に上まわって、電流ブレーカが誤作動する
可能性が避けられなかった。また、経時変化において、
温度と電力の安定性に欠け、実用に耐えるものではなか
った。さらに、これに加えて、電極と抵抗体との安定し
た電気的結合をいかに確保せれかという非常に困難な課
題があった。導電性微粉末同志の接触点が極めて少な
く、体積固有抵抗値が103Ωcmを越える均一な導電性組
成物と金属材料が接合する界面においては、導電性に乏
しい表面スキン層が形成されやすく、物理的は結合可能
であっても電気的な結合を確保することは容易ではなか
った。もちろん、物理的は結合がなければ安定した電気
的結合は実現不可能であり、その双方を満足する技術手
段が望まれていた。そして、これらの課題は、第4図に
示したような接着構成の正抵抗温度係数発熱体にとって
は宿命的にものであった。以上に述べたように、導電性
微粉末の組成比を調整するだけでは固有抵抗値103Ωcm
以上、ピーク抵抗値/常温抵抗値104以上の正抵抗温度
係数抵抗体を用いた有用な正抵抗温度係数発熱体作り出
すことができなかった。
When used for a heating element, for example, when a material composition exhibiting excellent positive resistance temperature characteristics such that the ratio of the resistance value at room temperature to the peak resistance value is 4 to 6 digits is selected, the resistance value at room temperature and The ratio to the resistance value in the stable temperature range is unnecessarily increased, and in a device requiring a large amount of power, the rush power greatly exceeds the allowable value, and the possibility that the current breaker malfunctions cannot be avoided. Also, in the change over time,
It lacked stability in temperature and power, and was not practical. Furthermore, in addition to this, there is a very difficult subject of how to secure stable electrical connection between the electrode and the resistor. At the interface where the conductive material and the metallic material have a very small number of contact points between the conductive fine powder and a uniform conductive composition having a volume resistivity exceeding 10 3 Ωcm, a surface skin layer with poor conductivity is easily formed, It was not easy to secure electrical connection even though it could be physically connected. Of course, if there is no physical connection, stable electrical connection cannot be realized, and technical means satisfying both are desired. These problems have been fatal for a positive resistance temperature coefficient heating element having an adhesive structure as shown in FIG. As described above, by simply adjusting the composition ratio of the conductive fine powder, the specific resistance value is 10 3 Ωcm
Above, it was not possible to produce useful positive resistance temperature coefficient heating element using peak resistance / cold resistance of 10 4 or more positive resistance temperature coefficient resistor.

本発明は前記問題点を解消し、電極間距離を接近させ
て高出力化の可能な正抵抗温度係数発熱体を提供するも
のである。
An object of the present invention is to solve the above problems and to provide a positive resistance temperature coefficient heating element capable of increasing the output by shortening the distance between the electrodes.

問題点を解決するための手段 上記課題を解決するため、本発明の正抵抗温度係数発
熱体は、結晶性重合体組成物に導電性微粉末を分散して
なる低体積固有抵抗値の未架橋導電性組成物を電子線あ
るいは有機過酸化物等で架橋した後、微粉末状に細分化
し、カルボキシル基を含有する金属接着性重合体組成物
中に分散して高体積固有抵抗値化するとともに薄肉状に
成形してなる正抵抗温度係数抵抗体組成物と、前記組成
物の厚さ方向に電圧を印加すべく設けられた一対の電極
からなり、前記組成物と前記電極を一体に形成してなる
ものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the positive resistance temperature coefficient heating element of the present invention is a non-crosslinked low-volume specific resistance value obtained by dispersing a conductive fine powder in a crystalline polymer composition. After cross-linking the conductive composition with an electron beam or an organic peroxide, etc., it is finely divided into fine powders and dispersed in a metal-adhesive polymer composition containing a carboxyl group to have a high volume resistivity. A positive resistance temperature coefficient resistor composition formed in a thin shape, and a pair of electrodes provided to apply a voltage in the thickness direction of the composition, the composition and the electrodes are integrally formed. It is.

作用 上記構成において、導電材性微粉末が凝集したような
構造で、しかも、その導電材性微粉末が凝集した部分
が、金属接着性重合体組成物の助けをかりて電極に接す
ることの可能な接着性正抵抗温度係数抵抗体組成物を形
成することができる。このような組成物は、100Ωcmレ
ベルの体積固有抵抗値と接着性を合わせ持つ部分の集合
と考えることができ、組成物全体としては、非常に高抵
抗ながら低抵抗の組成物の優れた物性を有するものとな
る。薄肉状の抵抗体の厚さ方向に電圧を印加する発熱体
を構成する場合には所定の抵抗値を得るためには両幅方
向の発熱体に比べ、大幅に高い体積固有抵抗値の抵抗体
が必要となるが、上記抵抗体はそのような目的を達成す
るのに不可欠のものである。また、この薄肉構成の発熱
体は薄肉で熱の拡散能力が大幅に改善されるために高出
力化が可能であり、高出力かつ高信頼性の正抵抗温度係
数発熱体が得られる。また、架橋された導電性組成物は
一旦、微粉末にまで粉砕された後に金属接着性重合体組
成物に分散されるために、熱による成形が容易であり、
電極と一体に形成することができる。
In the above configuration, the conductive material fine powder has a structure in which the conductive material fine powder is agglomerated, and the portion where the conductive material fine powder is agglomerated can contact the electrode with the help of the metal adhesive polymer composition. It is possible to form an adhesive positive resistance temperature coefficient resistor composition. Such compositions can be considered 10 0 volume resistivity of Ωcm level a set of parts having both adhesion, as a whole composition, excellent very high resistance while low resistance compositions It has physical properties. When forming a heating element that applies a voltage in the thickness direction of a thin-walled resistance element, a resistor with a significantly higher volume resistivity than a heating element in both width directions is required to obtain a predetermined resistance value. However, the above resistor is indispensable for achieving such an object. Further, since the heating element having the thin structure is thin and the heat diffusion ability is greatly improved, it is possible to increase the output, and a high-output and highly reliable positive-resistance temperature coefficient heating element can be obtained. Further, since the crosslinked conductive composition is once dispersed into the metal adhesive polymer composition after being pulverized to a fine powder, molding by heat is easy,
It can be formed integrally with the electrode.

実 施 例 以下、実施例を添付図面にもとずいて説明する。第1
図において、6は厚さ1mmの正抵抗温度係数抵抗体で、
7および8は正抵抗温度係数抵抗体に接合された一対の
金属箔電極である。正抵抗温度係数抵抗体6は、高密度
ポリエチレンとファーネスブラックを基本材料とするこ
とにより、ピーク抵抗値と常温抵抗値の比が、3桁を上
回る正抵抗温度特性を得たものを用いている。第1図の
ような構成の発熱体において100Vを印加し、発熱を維持
するためには、固有抵抗値が104Ωcmレベルの非常に高
抵抗値と金属箔電極との電気的および物理的結合が不可
欠である。結晶性重合体組成物に導電性微粉末を104Ωc
mの固有抵抗値になるように調整しつつ添加するだけで
はこれらの目的は達成できない。そこで、正抵抗温度係
数抵抗体6は次の手順により作製した。
Embodiments Hereinafter, embodiments will be described with reference to the accompanying drawings. First
In the drawing, 6 is a positive resistance temperature coefficient resistor having a thickness of 1 mm,
Reference numerals 7 and 8 denote a pair of metal foil electrodes joined to the positive temperature coefficient resistor. The positive resistance temperature coefficient resistor 6 has a positive resistance temperature characteristic in which the ratio of the peak resistance value to the normal temperature resistance value exceeds three digits by using high density polyethylene and furnace black as basic materials. . In order to apply 100 V to the heating element having the structure shown in FIG. 1 and maintain the heat generation, it is necessary to connect the extremely high resistance value having a specific resistance of 10 4 Ωcm to the electrical and physical connection with the metal foil electrode. Is essential. Conductive fine powder was added to the crystalline polymer composition at 10 4 Ωc.
These objects cannot be achieved only by adding while adjusting the specific resistance value to m. Therefore, the positive temperature coefficient resistor 6 was manufactured by the following procedure.

まず、高密度ポリエチレンとファーネスブラックを1
対1.2の比率で混練しつつ、架橋剤としてジクミールパ
ーオキサイドをポリエチレンに対して3.5%添加し、熱
処理を施すことによって架橋反応を完了させた後に、冷
凍粉砕によって平均子径100μmな粉砕物を得た。その
後、この粉砕物をマレイン酸グラフト高密度ポリエチレ
ン中にカーボンブラック組成比30%の比率で混練した
後、200℃の熱プレスで銅箔/抵抗体/銅箔の積層構造
体を作製した。さらに、190℃の窒素雰囲気中で3時間
のアニールを施すことによって体積固有抵抗値104Ωcm
の抵抗体組成物を得た。
First, add high density polyethylene and furnace black
While kneading at a ratio of 1.2, dicumyl peroxide was added as a cross-linking agent to the polyethylene at 3.5%, and the heat treatment was performed to complete the cross-linking reaction. Obtained. Thereafter, the pulverized product was kneaded in maleic acid-grafted high-density polyethylene at a composition ratio of carbon black of 30%, and a copper foil / resistor / copper foil laminated structure was prepared by hot pressing at 200 ° C. Furthermore, a volume resistivity value of 10 4 Ωcm is obtained by performing annealing for 3 hours in a nitrogen atmosphere at 190 ° C.
Was obtained.

一方、従来例として、マレイン酸グラフト高密度ポリ
エチレンの代わりに、変性していない高密度ポリエチレ
ンを用いて、実施例と同様な手順で、104Ωcm正抵抗温
度係数組成物を作製し、比較サンプルを得た。
On the other hand, as a conventional example, instead of maleic acid-grafted high-density polyethylene, a non-modified high-density polyethylene was used to prepare a 10 4 Ωcm positive resistance temperature coefficient composition in the same procedure as in the example, and a comparative sample was prepared. I got

次に、本発明に基づく抵抗体組成物サンプルについ
て、従来例のサンプルを比較しつつ評価試験を行った。
その結果を表1に示した。
Next, an evaluation test was performed on the resistor composition sample based on the present invention while comparing the sample of the conventional example.
The results are shown in Table 1.

表1から明らかなように、本発明に基づく実施例で
は、耐熱特性において、抵抗値の変化が少なく、ほぼ安
定であると考えられる。一方、従来例では剥離強度が不
充分であり、抵抗値の変動が激しく、一旦、わずかに低
下した後、上昇に転じている。これは、抵抗体内部の抵
抗値がカーボンブラックの凝集現象により低下する一
方、電極との界面において電気的な結合状態が不安定と
なり、抵抗値が増大しているものと思われる。
As is evident from Table 1, in the examples according to the present invention, in the heat resistance, the change in the resistance value is small, and it is considered that it is almost stable. On the other hand, in the conventional example, the peel strength is insufficient, the resistance value fluctuates drastically, and once decreases slightly, then starts to increase. This is presumably because the resistance inside the resistor decreases due to the aggregation phenomenon of carbon black, while the electrical coupling state at the interface with the electrode becomes unstable, and the resistance increases.

次に、本発明の方式に基づく抵抗体組成物の、マレイ
ン酸グラフト高密度ポリエチレンの組成の一部を高密度
ポリエチレンに置き代えて、剥離強度と耐熱特性との関
係データを調べた結果を表2に示す。
Next, the results obtained by examining the relationship data between the peel strength and the heat resistance of the resistor composition based on the method of the present invention by replacing part of the composition of the maleic acid-grafted high-density polyethylene with high-density polyethylene. It is shown in FIG.

表2から明らかにように、マレイン酸グラフト高密度
ポリエチレンの組成比率が高い程、電極との界面の剥離
強度が増大し、耐熱試験における抵抗値の安定性が改善
される傾向にある。この結果から電気的結合を確保し得
る剥離強度は500g/25mm幅以上にあるものと結論づける
ことができる。
As is clear from Table 2, as the composition ratio of the maleic acid-grafted high-density polyethylene increases, the peel strength at the interface with the electrode increases, and the stability of the resistance value in the heat resistance test tends to be improved. From this result, it can be concluded that the peel strength capable of securing the electrical connection is at least 500 g / 25 mm width.

次に、体積固有抵抗値と耐熱特性との関連について検
討を行った。結果を表3に示す。
Next, the relationship between the volume resistivity and the heat resistance was examined. Table 3 shows the results.

表3から明らかなように、本発明は固有抵抗値が104
Ωcmを越える高抵抗領域においても、抵抗体のみなら
ず、電極との界面抵抗値の安定性を保つことが可能であ
る。
As is clear from Table 3, the present invention has a specific resistance of 10 4
Even in a high resistance region exceeding Ωcm, it is possible to maintain the stability of not only the resistor but also the interface resistance value with the electrode.

以上に述べたように、本発明は高抵抗領域において、
導電性微粉末同志あるいは導電性微粉末と電極との接触
状態を良好に保つことが可能な手段を提供するものであ
り、異極の電極間隔が近接した正抵抗温度係数抵抗体組
成物に対して特に有効なものである。なお、材料は実施
例に限定されるものでなく、結晶性重合体としては低密
度ポリエチレン、リニア低密度ポリエチレン、ポリプロ
ピレン等、そして、これらの共重合体あるいは誘導体全
て利用可能である。また、導電性微粉末としてはチャン
ネルブラック、サーマルブラック、アセチレンブラッ
ク、ランプブラック等のカーボンブラックの中で顕著な
正抵抗温度特性を示すものが利用可能である。カルボキ
シ基を含有する金属接着性重合体としては、アノオイ
マ、エチレン酢酸ビニル共重合体、エチレン・エチルア
クリレート、アクリル等をグラフトしたポリエチレンや
ポリプロピレン等、カルボキシル基を含む全ての重合
体、さらに、これらの重合体との他の重合体との複合重
合体等、多くの材料が利用可能である。複合する場合の
相手の重合体に関しては、接着性は特に必要でなく、耐
熱性、加工性、相溶性、機械物性等を考慮して、多くの
材料が選定可能である。特に好ましいものとしては、ポ
リプロピレン、エチレン、プロピレン熱可塑エラスト
マ、スチレン・イソブチレン熱可塑エラストマ、ポリエ
ステル系熱可塑エラストマ等があげられる。熱可塑エラ
ストマは架橋が不要であり、抵抗体組成物として最も好
ましい物性を付与できる重合体である。
As described above, in the present invention, in the high resistance region,
It is intended to provide a means capable of maintaining good contact between conductive fine powders or conductive fine powders and electrodes. It is particularly effective. The material is not limited to the examples, and as the crystalline polymer, low-density polyethylene, linear low-density polyethylene, polypropylene, or the like, and any copolymer or derivative thereof can be used. In addition, as the conductive fine powder, carbon black, thermal black, acetylene black, carbon black, and other carbon blacks exhibiting a remarkable positive resistance temperature characteristic can be used. Examples of the metal-adhesive polymer containing a carboxy group include anoima, ethylene-vinyl acetate copolymer, ethylene / ethyl acrylate, polyethylene and polypropylene grafted with acrylic, etc., all polymers containing a carboxyl group, and furthermore, Many materials are available, such as a composite of a polymer with another polymer. Adhesion is not particularly required for the polymer of the partner in the case of compounding, and many materials can be selected in consideration of heat resistance, workability, compatibility, mechanical properties, and the like. Particularly preferred are polypropylene, ethylene, propylene thermoplastic elastomer, styrene / isobutylene thermoplastic elastomer, polyester-based thermoplastic elastomer, and the like. The thermoplastic elastomer does not require crosslinking and is a polymer that can provide the most preferable physical properties as a resistor composition.

発明の効果 以上の実施例の説明より明らかなように正抵抗温度係
数抵抗体組成物を結晶性重合体組成物中に導電性微粉末
を分散してなる未架橋導電性組成物を電子線あるいは有
機過酸化物等で架橋した後、細分化し、カルボキシ基を
含有する金属接着性重合体組成物中に分散して形成する
ことにより、電極間距離を接近させて、高出力化を目差
す正抵抗温度係数発熱体等の用途に対応した、高抵抗か
つ高安定性の接着性正抵抗温度係数抵抗体組成物を製造
することが実現できた。この組成物は、抵抗体内部の抵
抗値の安定性だけでなく、電極体との電気的結合部分の
抵抗値の安定性を維持できるだけの接着力を保有してお
り、これを用いた正抵抗温度係数発熱体は発熱温度並び
に電力の長期安定性の問題を解決することができ、多く
の用途に展開が可能である。
Effect of the Invention As is clear from the description of the above examples, an uncrosslinked conductive composition obtained by dispersing a conductive fine powder in a crystalline polymer composition and a positive resistance temperature coefficient resistor composition is formed by an electron beam or After cross-linking with an organic peroxide or the like, the mixture is finely divided and dispersed in a metal-adhesive polymer composition containing a carboxy group to form a thin film, thereby shortening the distance between the electrodes and increasing the positive resistance. It was possible to produce a high-resistance and high-stability adhesive positive resistance temperature coefficient resistor composition suitable for applications such as a temperature coefficient heating element. This composition has not only the stability of the resistance value inside the resistor but also the adhesive strength enough to maintain the stability of the resistance value of the electrical coupling part with the electrode body. The temperature coefficient heating element can solve the problem of heat generation temperature and long-term stability of electric power, and can be developed for many uses.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す正抵抗温度係数発熱体
の一部を切り出した斜視図である。第2図、第3図、第
4図は従来技術に基づく正抵抗温度係数発熱体の斜視図
である。 6……正抵抗温度係数抵抗体、7,8……金属板電極。
FIG. 1 is a perspective view of a part of a positive resistance temperature coefficient heating element showing one embodiment of the present invention. FIGS. 2, 3 and 4 are perspective views of a positive resistance temperature coefficient heating element based on the prior art. 6 Positive temperature coefficient resistor, 7, 8 Metal plate electrode.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶性重合体組成物中に導電性微粉末を分
散してなる低体積固有抵抗値の未架橋導電性組成物を電
子線あるいは有機過酸化物で架橋した後、微粉末状に細
分化し、カルボキシル基を含有する金属接着性重合体組
成物中に分散して高体積固有抵抗値化するとともに薄肉
状に成形してなる正抵抗温度係数抵抗体組成物と、前記
組成物の厚さ方向に電圧を印加すべく設けられた一対の
電極からなり、前記組成物と前記電極を一体に形成して
なる正抵抗温度係数発熱体。
An uncrosslinked conductive composition having a low volume resistivity, which is obtained by dispersing a conductive fine powder in a crystalline polymer composition, is crosslinked with an electron beam or an organic peroxide, and then the fine powder is formed. Positive resistance temperature coefficient resistor composition formed by dispersing in a metal-adhesive polymer composition containing a carboxyl group to have a high volume specific resistance value and forming into a thin shape, and A positive resistance temperature coefficient heating element comprising a pair of electrodes provided to apply a voltage in a thickness direction, wherein the composition and the electrodes are integrally formed.
【請求項2】正抵抗温度係数抵抗体組成物の電極に対す
る接着剥離強度が500(g/25mm幅)以上である特許請求
の範囲第1項記載の正抵抗温度係数発熱体。
2. The positive temperature coefficient heating element according to claim 1, wherein an adhesive peel strength of the positive temperature coefficient coefficient resistor composition to the electrode is 500 (g / 25 mm width) or more.
【請求項3】正抵抗温度係数抵抗体の体積固有抵抗値が
103Ωcmよりも高抵抗値である特許請求の範囲第1項ま
たは第2項記載の正抵抗温度係数発熱体。
3. The positive resistance temperature coefficient resistor has a volume specific resistance value of
3. The heating element according to claim 1, wherein said heating element has a resistance value higher than 10 3 Ωcm.
【請求項4】金属接着性重合体組成物が熱可塑エラスト
マ組成物との複合組成物である特許請求の範囲第1項か
ら第3項のうちいづれかの項に記載の正抵抗温度係数発
熱体。
4. The heating element according to claim 1, wherein said metal-adhesive polymer composition is a composite composition with a thermoplastic elastomer composition. .
JP62324610A 1987-12-22 1987-12-22 Positive low temperature coefficient heating element Expired - Lifetime JP2638862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324610A JP2638862B2 (en) 1987-12-22 1987-12-22 Positive low temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324610A JP2638862B2 (en) 1987-12-22 1987-12-22 Positive low temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPH01166479A JPH01166479A (en) 1989-06-30
JP2638862B2 true JP2638862B2 (en) 1997-08-06

Family

ID=18167740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324610A Expired - Lifetime JP2638862B2 (en) 1987-12-22 1987-12-22 Positive low temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JP2638862B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439884A (en) * 1990-06-06 1992-02-10 Matsushita Electric Ind Co Ltd Heating body having positive resistance temperature coefficient
JPH0439885A (en) * 1990-06-06 1992-02-10 Matsushita Electric Ind Co Ltd Heating body having positive resistance temperature coefficient
JPH0443587A (en) * 1990-06-06 1992-02-13 Matsushita Electric Ind Co Ltd Heater having positive resistance temperature coefficient

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667192A (en) * 1979-11-07 1981-06-06 Hitachi Cable Self temperature controllable heater
JPS6028195A (en) * 1983-07-27 1985-02-13 松下電器産業株式会社 Heater

Also Published As

Publication number Publication date
JPH01166479A (en) 1989-06-30

Similar Documents

Publication Publication Date Title
JP3692141B2 (en) Conductive polymer composition
US5174924A (en) Ptc conductive polymer composition containing carbon black having large particle size and high dbp absorption
JP2638862B2 (en) Positive low temperature coefficient heating element
JP2004522299A (en) PTC conductive polymer composition
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JPS6028195A (en) Heater
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JPH0217609A (en) Positive resistance temperature coefficient heating element
JPH0218902A (en) Positive temperature coefficient heater
JP2730062B2 (en) Positive resistance temperature coefficient heating element
WO2021168656A1 (en) Pptc heater and material having stable power and self-limiting behavior
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2010020990A (en) Planar heating element
JPS61198590A (en) Self-temperature controlling heater
JPH0329162B2 (en)
JPH03269982A (en) Positive resistance temperature coefficient heating body
JPS63146379A (en) Positive resistane-temperature coefficient heater
JPH01186783A (en) Manufacture of heater element of positive temperature characteristic
JPH03176980A (en) Heating element with positive resistance temperature coefficient
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH02304892A (en) Exothermal body with positive temperature coefficient of resistance
JP2688061B2 (en) Positive resistance temperature coefficient heating element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11