JPS6028195A - Heater - Google Patents

Heater

Info

Publication number
JPS6028195A
JPS6028195A JP13840683A JP13840683A JPS6028195A JP S6028195 A JPS6028195 A JP S6028195A JP 13840683 A JP13840683 A JP 13840683A JP 13840683 A JP13840683 A JP 13840683A JP S6028195 A JPS6028195 A JP S6028195A
Authority
JP
Japan
Prior art keywords
resistance
heater
ptc
resistor composition
heater according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13840683A
Other languages
Japanese (ja)
Other versions
JPS6259415B2 (en
Inventor
誠之 寺門
彪 長井
伸幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13840683A priority Critical patent/JPS6028195A/en
Publication of JPS6028195A publication Critical patent/JPS6028195A/en
Publication of JPS6259415B2 publication Critical patent/JPS6259415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正の抵抗温度係数(以下PTCと略す)を有す
るヒータないし安全素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heater or safety element having a positive temperature coefficient of resistance (hereinafter abbreviated as PTC).

従来例の構成とその問題点 従来からPTC特性を有する抵抗体組成物としテポリエ
チレン等の結晶性重合体中にカーボンブラック等の導電
性微粉末を分散させたものが知られている。そのPTC
特性を生み出すメカニズムは結晶性重合体がその結晶融
点近傍において無定形状態へ移る際の急激な膨張係数の
増大によって、分散されているカーボンブラックの連鎖
が断チ切られるために抵抗値が増大するものと考えられ
る。
Structures of Conventional Examples and Problems There have been known resistor compositions having PTC characteristics in which conductive fine powder such as carbon black is dispersed in a crystalline polymer such as tepolyethylene. That PTC
The mechanism that produces this property is that when the crystalline polymer transitions to an amorphous state near its crystalline melting point, the coefficient of expansion rapidly increases, and the chains of dispersed carbon black are broken, resulting in an increase in resistance. considered to be a thing.

したがって、顕著なPTC特性かfGられる温度域は結
晶性重合体の結晶融点によって定1す、+11:’t 
I珪係数の大小は結晶化度の大小によ、、て定寸ると包
える。この組成物のPTC特性は熱サイクル等によっ1
て若干のヒステリシス現象を伊うものの、比較rメJ安
定かっ再現性のあるものであり、PTCヒータの素拐と
しての価値が認められている。このようなPTC組成物
を用いたPTCヒーヒー従来例を第1図に示す。第1図
において1d、ポリエチレンとカーボンブラックとの混
練物から成るPTC組成物、2および2′はPTC組成
物の表面に設けられた一対の銀ペースト焼付電極である
。この構成は断面積が大きく、厚さが薄いのでカーボン
シラツクの重111組成比を少なめにしても充分な低抵
抗値を得ることができることと、PTC組成物の発熱に
対する放熱熱抵抗が小さく、熱の収り出しが容易である
点に特長がある。しだがって、低抵抗値で高出力のPT
Cヒータを構成する目的に対して理想的な形状構造であ
る。しかし、ポリエチレンに代表される結晶化度の高い
重合体は極性基を殆ど持たないものが多く、接着力が乏
しいために電極との電気的ないし機構的結合に問題があ
った。例えば、接着性の特に良好なエポキシ系の樹脂を
結合剤とした銀ペースト焼伺電極を用いた場合であって
も、塗膜自身の強度不足も加わり、実用性に乏しい電極
構成しか得られなかった。望ましい電W1.桐判として
は銅箔やニッケル箔等の低抵抗で強度の大きい金属箔で
あるが、エポキシ系樹脂を用いだ銀ペーストを」1捷わ
る接着強度を得ることは困難であり、いずれにせよ、用
途を限定して使用せざるを得−ないというのが現状であ
った。
Therefore, the temperature range in which remarkable PTC characteristics fG is determined by the crystal melting point of the crystalline polymer, +11:'t
The size of the I silicon coefficient depends on the degree of crystallinity and can be determined by sizing. The PTC properties of this composition change due to heat cycles, etc.
Although there is a slight hysteresis phenomenon, it is comparatively stable and reproducible, and its value as a substitute for PTC heaters has been recognized. A conventional example of PTC heating using such a PTC composition is shown in FIG. In FIG. 1, 1d is a PTC composition made of a mixture of polyethylene and carbon black, and 2 and 2' are a pair of silver paste baked electrodes provided on the surface of the PTC composition. Since this structure has a large cross-sectional area and a small thickness, it is possible to obtain a sufficiently low resistance value even if the weight-111 composition ratio of carbon silicon is reduced, and the heat dissipation resistance against heat generation of the PTC composition is small. The feature is that heat can be easily dissipated. Therefore, low resistance and high output PT
It has an ideal shape and structure for the purpose of constructing a C heater. However, many polymers with a high degree of crystallinity, such as polyethylene, have almost no polar groups and have poor adhesive strength, causing problems in electrical or mechanical bonding with electrodes. For example, even when using a silver paste burnt electrode using an epoxy resin as a binder, which has particularly good adhesive properties, the lack of strength of the coating film itself results in an impractical electrode configuration. Ta. Desirable electricity W1. Paulownia paper is made of low-resistance, high-strength metal foil such as copper foil or nickel foil, but it is difficult to obtain adhesive strength that can overcome silver paste by using epoxy resin, and in any case, The current situation was that it had no choice but to be used for limited purposes.

発明の目的 本発明は電極材料として優れた物性値を有する銅箔やニ
ッケル箔等の金属箔に対して、良好な接着性と抵抗温度
特性を示すPTC組成物を得る手段を示すもので、抵抗
値調整範囲が広く高出力のPTCヒーヒー提供すること
を目的としている。
Purpose of the Invention The present invention provides a means for obtaining a PTC composition that exhibits good adhesion and resistance temperature characteristics to metal foils such as copper foil and nickel foil that have excellent physical properties as electrode materials. The purpose is to provide high output PTC heating with a wide value adjustment range.

発明の構成 不発り−1は互いに接近して設けられた一対の平行平板
電極と、前記一対の平行平板電極との間に設けられた金
属に対する接着性の良好な官能基を含む結晶性重合体(
!l:導電性微粉末とを主成分とする抵抗体組成物とか
ら成るPTC特性を有するヒータを基本H11成とする
ものである。
Structure of the invention -1 is a crystalline polymer containing a pair of parallel plate electrodes provided close to each other and a functional group with good adhesion to metal provided between the pair of parallel plate electrodes. (
! 1: This is a heater having a PTC characteristic consisting of a conductive fine powder and a resistor composition mainly composed of H11.

実施例の説明 以下、本発明の実施例を第2図、第3図に基ついて説明
する。3および3′は板厚35μmの電解銅箔電極であ
り、4は低密度ポリエチレンの分子の末端にカルボキシ
ル基を導入した結晶性重合体とオイルファーネス系カー
ボンブランクとの混練物シートから成るPTC抵抗体組
成物である。こ)l) /l/ ホギシル基導入低密度
ポリエチレンハ各分子の主に木端にカルボキシル基が導
入されたもので、共重合体きは異なり、低密度ポリエチ
レンの結晶化度、結晶融点等の物性値にほとんど影響を
与えず、カルボキシル基特有の強力な対金仲1接着性が
得られるものである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 2 and 3. 3 and 3' are electrolytic copper foil electrodes with a plate thickness of 35 μm, and 4 is a PTC resistor made of a kneaded sheet of a crystalline polymer in which a carboxyl group is introduced at the end of a low-density polyethylene molecule and an oil furnace carbon blank. body composition. l) /l/ Hogyyl group-introduced low-density polyethylene is a product in which carboxyl groups are introduced mainly into the wood ends of each molecule, and the copolymers are different, and the crystallinity, crystal melting point, etc. of low-density polyethylene are different. It has almost no effect on the physical properties and provides strong adhesion to Kinzaka 1, which is unique to carboxyl groups.

第1の実施例としてPTC抵抗体組成物4に占めるカー
ボンブラックの添加用は60重弼%であり、カーボンブ
ラックは電子顕微鏡て観測し得る平均粒子径が5ooA
で、同じく電子顕微鏡で観測し了!J1−る形状がほぼ
球形のものを用いている。PTC抵抗体絹成物4のシー
ト厚さは約3001tmで、第3図の曲線Aに示すよう
に20°Cにおける抵抗値は平方センチメートル当り2
0 mΩと極めて低抵抗であり、80“Cを越えるi!
Ili度域において抵抗値が急激に増加を開始し、結晶
融点である110°Cにおいては約2にΩに達し、約5
桁に及ぶ極めて優り、たPTCの抵抗温度4.Y性を1
11でいる。
As a first example, the amount of carbon black added to the PTC resistor composition 4 is 60% by weight, and the average particle diameter of the carbon black that can be observed with an electron microscope is 5ooA.
So, I also observed it using an electron microscope! J1- is used, the shape of which is approximately spherical. The sheet thickness of the PTC resistor silk composition 4 is approximately 3001 tm, and the resistance value at 20°C is 2 per square centimeter, as shown by curve A in Figure 3.
It has an extremely low resistance of 0 mΩ and an i! of over 80"C.
The resistance value begins to increase rapidly in the Ili degree region, reaching approximately 2Ω at 110°C, which is the crystal melting point, and reaching approximately 5Ω.
4. The resistance temperature of PTC is extremely superior by several orders of magnitude. Y gender 1
I'm 11.

このように室温にお′ける抵抗値か低(、PTCの抵抗
温度ね性の優れた抵抗体は、電池等を電源とする低電圧
電源で用いられる小型の速熱性の優れだヒータとして、
あるいは、過剰な電流が流れたり、温度か加わった場合
の負荷に直列に接続された安全素子として用いることが
できる。カルボキシル基を導入しない低密度ポリエチレ
ンを用いて同一組成比で同−構成桐刺の抵抗体を作成し
た場合には、外見的には同一の抵抗体を作成することは
てきだが、20°Cにおける抵抗値か30〜60InΩ
と高く、抵抗値のほらつきも大きく、電)ljlζ占抵
抗体組成物との間の接触抵抗か存在していることを示し
ている。甘だ、剥離強度も小さく、外力や熱ザイクルに
対しても接触状態か不安定で、実用に1硝えイ(するも
のは得ら、れ々かっだ。この場合、特殊な接着処J11
(を見出すか、電極を圧着したまま使用するか、カーボ
ンブランクの配合比率を50%以下に低下させて、多少
とも接着性を改善するかの対策しかなく、これらはいず
れも大きな制約条件であり、低抵抗で高信頼性のPTC
ヒータをfljることはできなかった。
In this way, PTC's resistor, which has a low resistance value at room temperature and has excellent resistance-temperature stability, can be used as a small heater with excellent heat-up properties and is used in low-voltage power sources such as batteries.
Alternatively, it can be used as a safety element in series with a load in case of excessive current flow or temperature. When creating resistors with the same composition and the same composition using low-density polyethylene that does not introduce carboxyl groups, it is possible to create resistors that are visually the same, but the resistance at 20°C Resistance value: 30-60InΩ
The resistance value fluctuates greatly, indicating that there is contact resistance between the resistor composition and the resistor composition. Too bad, the peel strength is low, the contact state is unstable even with external force and thermal cycle, and it is difficult to put it into practical use.
The only countermeasures are to find a solution, use the electrodes with the electrodes crimped, or reduce the carbon blank blending ratio to 50% or less to improve the adhesion to some extent, and these are all major constraints. , low resistance and high reliability PTC
It was not possible to flj the heater.

結晶性重合体に導入する官能基として(dカルボキシル
基が最良であるが、導入の方法としてはカルボキシル基
を有するアクリル酸等との只重合による方法が最も一般
的てあり、金属イオン架橋のエチレン・アクリル酸共重
合体等は容易に入手できる。しかしなから、共重合体を
作り得る官能基の導入方法においては、確かに金属に対
する接着性は改善されるが、結晶化度や結晶融点等の物
性値も低下する傾向がある。このだめ、PTC特性に、
より低Writ側で抵抗イ16:増大を開始するように
なり、抵抗値の変化率も減少傾向となる。したがって、
低密度ポリエチレンや高密度ポリエチレン等の物性饋を
生かして接着性のみをイ」与したい場合には都合が悪く
なる。このよう々1」的に対しては官能基をコモノマー
吉して添加して重合させるので幻なく、既に重合の完了
したポリエチレン等の重合体に、例えば酸無水物等のカ
ルボキシル基を含有し、ポリオレフィンに反応し得る相
別を用いて、ポリエチレンの各分子の主に末端に選択的
に反応させた後、未反応物を除去することにより、物性
的にはほとんどポリエチレンであるが、カルボキシル基
の効果的な存在によって対金属接着性の優れた結晶性重
合体を得ることかできる。同じような考え方のもとに官
能基を導したポリオレフィンとして、三井石油化学工業
(掬のアトマーシリーズ等があり、これらの桐刺はベー
スのポリオレフィンとほとんど区別のつかないPTC特
性を示す反曲、銅箔等の金属に対する極めて優れた接着
性をfllることができる。カルボキシル基以外の官能
基としては水酸基、アミ7基、エポキシ基およびそれら
を複合した基等が考えら八、カルボキシル基の場合と同
様な考えで適用することかてきる。
The best functional group to be introduced into the crystalline polymer is the d-carboxyl group, but the most common method of introduction is simple polymerization with acrylic acid, etc., which has a carboxyl group.・Acrylic acid copolymers, etc. are easily available.However, although the method of introducing functional groups that can create copolymers certainly improves adhesion to metals, it has problems with crystallinity, crystal melting point, etc. The physical property values of the PTC properties also tend to decrease.
Resistance I16: begins to increase on the lower Write side, and the rate of change in resistance value also tends to decrease. therefore,
This is inconvenient when it is desired to utilize the physical properties of low-density polyethylene, high-density polyethylene, etc. to provide only adhesive properties. For such a target, since a functional group is added as a comonomer and polymerized, it is certain that a carboxyl group such as an acid anhydride is added to a polymer such as polyethylene which has already been polymerized. Using a phase separation agent that can react with polyolefins, we selectively react mainly at the terminal ends of each molecule of polyethylene, and then remove unreacted substances. Although it is physically almost polyethylene, it has a carboxyl group. By its effective presence, a crystalline polymer with excellent adhesion to metals can be obtained. Polyolefins with functional groups based on a similar concept include Mitsui Petrochemical Industries'(Kikki's Atmer series); , can exhibit extremely excellent adhesion to metals such as copper foil.Functional groups other than carboxyl groups include hydroxyl groups, amide groups, epoxy groups, and composite groups thereof. You can apply the same idea as in the case.

次に、カーボンブラックの粒径、形状、組成比による影
諷Sと、より好捷しい範囲について述へる。PTC抵抗
体組成物に分散させるカーボンブラックは、第4図に示
すように、電子顕微鏡で観測し得る平均粒子径と形状が
それぞれ400A以」二でほぼ球形の月料か特に良く、
平均粒子径が100〜300A程度の相別、あるいは表
面積が大きくリド球形の(」旧ばI−分な抵抗値の変化
倍率を併ったPTC特性かljlられにくいばかりでな
く、結晶融点以上のn11度域において抵抗温度特性が
負特性となる傾向があり、高電圧を印加した時や高温の
雰囲気で使用された時に、湿度の増大に併って電力が増
大する、いわゆる暴走現象が生ずる可能性がある。寸だ
、平均粒径が4ooA以上の球形のカーボンブラックで
あってもPTC抵抗体組成物に占める重量比率を減らし
ていくと、PTCの抵抗温度係数は増大するが、結晶融
点以上での抵抗温度係数が負特性となり、長時間その温
度に放置しておくと時間とともに抵抗値が低下する現象
が見られるようになる。これらの現象は平均粒径の小さ
いカーボンブランク捷たは非球形のカーボンブラックで
は表面積が大きく、結晶性樹脂に対する充゛填効果も大
きいだめに樹脂の温度の増大に併う膨張を阻害し、大き
なP’TCの抵抗温度特性の変化率が得られなくなり、
寸だ、凝集力も太きいために結晶融点以上における無定
形な状態における分散状聾においてカーボンブランク同
志の連鎖をつくる方向での再分散が行なわれ、負の抵抗
温度特性ならびに抵抗値の低下現象が生ずるものと思わ
れる。
Next, the effects of the particle size, shape, and composition ratio of carbon black, as well as more favorable ranges, will be described. As shown in FIG. 4, the carbon black to be dispersed in the PTC resistor composition preferably has an average particle size and shape that can be observed with an electron microscope of 400 A or more, and is approximately spherical.
PTC characteristics with phase separation with an average particle size of about 100 to 300A, or a large surface area and a spherical shape (formerly known as I-minute), are not only difficult to be affected by, but also particles with a temperature higher than the crystal melting point. The resistance-temperature characteristics tend to be negative in the n11 degree range, and when a high voltage is applied or used in a high temperature atmosphere, a so-called runaway phenomenon may occur where the power increases as the humidity increases. Indeed, even if spherical carbon black has an average particle size of 4ooA or more, as its weight ratio in the PTC resistor composition is reduced, the temperature coefficient of resistance of PTC will increase, but it will exceed the crystal melting point. The temperature coefficient of resistance becomes a negative characteristic, and if left at that temperature for a long time, the resistance value decreases over time.These phenomena occur when the carbon blank has a small average particle size or when it is Spherical carbon black has a large surface area and has a large filling effect on the crystalline resin, which inhibits the expansion of the resin as the temperature increases, making it impossible to obtain a large rate of change in the resistance temperature characteristic of P'TC.
However, since the cohesive force is strong, redispersion occurs in the direction of creating a chain of carbon blanks in the dispersed form in an amorphous state above the crystal melting point, resulting in negative resistance temperature characteristics and a decrease in resistance value. It seems that this will occur.

球形で平均粒径の大きなカーボンブランクでは互いの接
触点が一点しかなく、わずかの移動があっても非接触と
なるために非球形の複雑な復数の接触点を持つカーボン
ブラックに比べれば、より抵抗値の変化が得られやすい
のは当然であるし、凝集力も小さく、結晶融点以−」二
の温度域においても、(M脂の膨張傾向を明確に反映し
た抵抗値の増大を続けると考えられる。また、カーボン
ブラックの重昂組戊比率の影響については、比率が小さ
い程、樹脂に対する充填効果も小さくなるので膨張を阻
害し々くなり、PTCの抵抗温度特性の変化率が大きく
なるが、逆に、結晶融点以」二の温度域における無定形
状態においては充填効果が不十分なだめに内部応力によ
る歪が生じ、カーボンブラックの移動によって当初の均
一分散状態に対して配向や再分散現象が発生し、抵抗値
が低下するものと考えられる梯己の傾向が見られる組成
比率は第5図に示すように平均粒径500Aて球形のカ
ーボンブランクと低密度ポリエチレンとのPTC抵抗体
組成物においては、カーボンブラックの重用組成比が4
0%を下捷わる範囲で顕著になり、導電性が確認できた
最小組成比10%で最大になるものと思われる。
Carbon blanks that are spherical and have a large average particle size have only one point of contact with each other, and even the slightest movement causes non-contact, compared to carbon black that is non-spherical and has a complex number of contact points. Naturally, it is easier to obtain a change in resistance value, and the cohesive force is also small, and even in the temperature range above the crystal melting point (if the resistance value continues to increase, which clearly reflects the expansion tendency of M fat). In addition, regarding the effect of carbon black's carbon black ratio, the smaller the ratio, the smaller the filling effect on the resin, which tends to inhibit expansion, and the rate of change in the resistance-temperature characteristics of PTC increases. On the other hand, in an amorphous state in a temperature range above the crystal melting point, the filling effect is insufficient and distortion occurs due to internal stress, and the movement of carbon black causes orientation and redispersion phenomena compared to the initial uniformly dispersed state. As shown in Figure 5, the composition ratio at which there is a tendency for a ladder to occur and the resistance value to decrease is a PTC resistor composition of spherical carbon blank and low-density polyethylene with an average particle diameter of 500A. In this case, the heavy composition ratio of carbon black is 4.
It is thought that it becomes noticeable in the range below 0%, and reaches its maximum at the minimum composition ratio of 10% where conductivity can be confirmed.

以上に述べた結晶融点以」二における負の抵抗温度特性
−や抵抗値の低下現象は用途によっては余り問題とはな
らないかも知れない。しかし、万一の異常電圧印加が予
想される場合や、長時間高温て使われる用途、最終安全
機構として用いられる場合においては十分に安全とは言
いきれない。本実施例のPTCヒータは異極の電極が接
近していて、しかも、面積が広いのでPTC抵抗体組成
物に印加される電圧勾配は相当急峻なものであり、極く
一部に欠陥があってもその部分が異常発熱し得る構造と
なっている。このような観点から、PTC特性は十分に
余裕をもったものでなくてはならないし、負特性領域や
抵抗値低下現象を示すものは使用条件をよく吟味して適
用する必要がある。
The above-mentioned negative resistance-temperature characteristics and decrease in resistance at temperatures above the crystal melting point may not pose much of a problem depending on the application. However, it cannot be said that it is sufficiently safe in cases where abnormal voltage application is expected, in applications where it is used at high temperatures for long periods of time, or in cases where it is used as a final safety mechanism. In the PTC heater of this example, the electrodes of different polarities are close to each other and the area is large, so the voltage gradient applied to the PTC resistor composition is quite steep, and there are defects in a very small portion. However, the structure is such that that part can generate abnormal heat. From this point of view, the PTC characteristics must have a sufficient margin, and it is necessary to carefully examine the usage conditions before applying those exhibiting a negative characteristic region or a resistance value reduction phenomenon.

次に、第2の実施例として比較的高抵抗のPTCヒータ
を作製する方法について述べる。高抵抗のPTCヒータ
を作製するためにはカーボンブラックの配合比率を50
重量%以下にする必要があり、この場合、結晶融点以上
の温度域において旬の抵抗温度特性と抵抗値の低下現象
が発生する。
Next, a method for manufacturing a relatively high resistance PTC heater will be described as a second example. In order to make a high resistance PTC heater, the blending ratio of carbon black should be 50.
% by weight or less, and in this case, the resistance temperature characteristic and the resistance value decrease phenomenon occur in the temperature range above the crystal melting point.

これを防止するためにはカーボンブラックの重量組成比
40〜70%に相当する充填効果を得られるような高抵
抗ないし電気絶縁性のフィラーを添加すると良い。カー
ボンブラックの重量組成比は70%が一応の限度であり
、これを越える古曲げに対してもろくなるだけでなく、
PTCの変化率が低減し、混練も不可能となる。充填効
果はこの機械的な物性値、PTC特性、混練性で判断ず
へきで、フィラーの材質や粒度によって最適組成比が異
ってくる。フィラーを添加することによって結晶融点以
」二での負の抵抗温度特性はほとんど見られなくなるが
、この効果はカーボンブラックも一種の充填効果を有す
るフィラーと考えられ、組成比率40%以上で結晶性樹
脂のミクロな部分に及ぶ充填効果が得られるものと考え
られ、カーボンブラック以外のフィラーであっても多少
の差異はあるにせよ、同様の効果が得られるものである
In order to prevent this, it is preferable to add a high resistance or electrically insulating filler that can provide a filling effect corresponding to a weight composition ratio of 40 to 70% of carbon black. The weight composition ratio of carbon black is at least 70%, and if it exceeds this limit, it will not only become brittle when subjected to old bending, but also
The rate of change in PTC decreases and kneading becomes impossible. The filling effect cannot be determined by the mechanical properties, PTC properties, and kneading properties, and the optimum composition ratio varies depending on the material and particle size of the filler. By adding a filler, the negative resistance-temperature characteristics at temperatures above the crystal melting point are hardly observed, but this effect is due to the fact that carbon black is also considered to be a filler that has a kind of filling effect. It is thought that a filling effect reaching the microscopic portions of the resin can be obtained, and the same effect can be obtained even with fillers other than carbon black, although there are some differences.

第2図に示した第1の実施例のPTCヒーヒーおいて、
PTC抵抗体組成物4における樹脂と力−ボンフ゛ラッ
クの総−小に占めるカーボンブラックの添加…を35重
弔%に減らし、さらに、その総量に対して粒子径1μm
のアルミナ粉末を40重量%の比率でもって添加した結
果、第3図の曲線Bに示すように1平方センチメートル
当りの20°Cにおける抵抗値が120Ω、110’C
における抵抗値が800にΩと約4桁弱の優れた抵抗温
度特性が得られ、アルミナ粉末を添加しない場合の曲線
Cと比較して、110℃以」二における負特性の傾向と
抵抗値低下現象がほとんど見られなかった。このPTC
抵抗温度特性はカーボンブラックのみを60重量%添加
した第1の実施例の場合に比べ、温度係′#、t/i若
干小さくなっているか、約4桁弱高抵抗側へ平行移動し
たような特性であり、抵抗値が述う以外(て何の遜色も
みられない。さらに、カーボンブランクとフィラーの組
成比を調整することにより、任意の抵抗温度特性を有す
るPTCヒータを作成することができる。フィラーとし
ては粒状、繊維状、リーフ状等の形状、さらに、有機系
、無機系の区分に関係々く用いることが可能で、高抵抗
ないし電気絶縁物であれば効果が認めら八る。特に効果
的な拐才゛1としては、粒度分布の広い材料捷たは2種
以−にの粒度径を有する材料を混合したものがあげられ
る。結晶融点以上の温度域における負特性の温度係数を
防止するためには、ミクロな範囲での充填効果に優れた
粒度の小さいものが望ましいが、P、TC特性を阻害す
る傾向も強いのでこれに加えてマクロな範囲で゛の充填
効果に優れ、PTC特性をI泪害しない粒度の大きな桐
判を併用して、両者の相刺効果を得る方法が最も望捷し
い。
In the PTC heehy of the first embodiment shown in FIG.
In PTC resistor composition 4, the addition of carbon black, which accounts for the total amount of resin and carbon black, was reduced to 35% by weight, and the particle size of 1 μm was added to the total amount.
As a result of adding alumina powder at a ratio of 40% by weight, the resistance value at 20°C per square centimeter was 120Ω, 110'C, as shown in curve B of Figure 3.
Excellent resistance-temperature characteristics were obtained with a resistance value of 800 Ω, about four orders of magnitude less, and compared to curve C when no alumina powder was added, there was a tendency for negative characteristics and a decrease in resistance value at temperatures above 110°C. The phenomenon was hardly observed. This PTC
The resistance-temperature characteristics are slightly smaller than the first example in which only carbon black was added at 60% by weight, or the temperature coefficient '#, t/i is slightly smaller, or it seems to have shifted in parallel to the high resistance side by about 4 orders of magnitude. In addition, by adjusting the composition ratio of the carbon blank and filler, it is possible to create a PTC heater with arbitrary resistance-temperature characteristics. The filler can be used in any shape, such as granular, fibrous, or leaf-like, as well as organic or inorganic types, but it will not be effective if it is a high-resistance or electrically insulating material. An effective ablation agent1 is a material with a wide particle size distribution or a mixture of materials with two or more types of particle size.The temperature coefficient of negative characteristics in the temperature range above the crystal melting point In order to prevent this, it is desirable to use particles with a small particle size that have excellent filling effects in the microscopic range, but they also have a strong tendency to inhibit P and TC properties, so in addition to this, they also have excellent filling effects in the macroscopic range. The most desirable method is to use paulownia size, which has a large particle size that does not impair the PTC properties, in order to obtain the mutual benefit of both.

抵抗値の調整方法に関してはPTCヒーヒー抵抗体組成
物の厚みを変える方法も考えられるが、余り厚くして、
例えば」π7nを越えると、抵抗体内部の熱抵抗が大き
くなって、抵抗体を通過する熱流束に見合う温度勾配が
相当必要と々ってくる。
Regarding the method of adjusting the resistance value, it is possible to change the thickness of the PTC Hee Hee resistor composition, but if it is too thick,
For example, when π7n is exceeded, the thermal resistance inside the resistor increases, and a considerable temperature gradient is required to match the heat flux passing through the resistor.

壕だ、抵抗体内部の電圧印加方向の温度分布か1°Cで
あっても、抵抗温度係数が0.21.’Cを越えるPT
C抵抗体においては、抵抗値分布が20%生じ、その抵
抗値に比例する20−の差の発熱密度分布があることに
なる。その温度分布が5°Cを越えると、1.2の5乗
、すなわち2.5倍の発熱密度分布が生ずること脂なり
、最高温度部分の抵抗体は限界を越える発熱部に達して
、カーボンブラックの再分散が発生し、復帰し得なめ抵
抗値変化か生ずるであろう。一般の結晶性重合体の熱伝
導率は0.1〜0.4に、7/ml+°cの範囲にある
から、室温20℃において80°Cで安定し、600K
J7苛りの発熱と放熱を行っているPTC抵抗体におい
て、1 vnη厚さ当りの温度差は1.5〜6°Cとな
っているはずである。さらに高温のPTC抵抗体や、負
荷か大きい場合を考えると1000〜10000W/l
ri!を想定する必要かあり、その場合の1 mm厚さ
当りの温度差は2.5〜100℃にもなってし寸う。
Even if the temperature distribution in the voltage application direction inside the resistor is 1°C, the temperature coefficient of resistance is 0.21. 'PT over C
In the C resistor, the resistance value distribution is 20%, and there is a heat generation density distribution with a difference of 20- in proportion to the resistance value. If the temperature distribution exceeds 5°C, a heat generation density distribution of 1.2 to the fifth power, that is, 2.5 times, will occur, and the resistor at the highest temperature will reach the heat generation part that exceeds the limit, and the carbon Black redispersion will occur and irreversible resistance changes will occur. The thermal conductivity of general crystalline polymers is in the range of 0.1 to 0.4, 7/ml + °C, so it is stable at 80 °C at room temperature 20 °C, and 600K
In a PTC resistor that generates and dissipates heat as much as J7, the temperature difference per 1 vnη thickness should be 1.5 to 6°C. Furthermore, considering high temperature PTC resistors and large loads, it is 1000 to 10000 W/l.
ri! In that case, the temperature difference per 1 mm thickness would be 2.5 to 100°C.

10000 K+i/nfを発生ずる場合はPTC温度
係数の小さい室温伺近で、温度の立ち」二かりにある状
態捷たは負荷が十分に冷えている場合と考えられ、温度
係数による発熱密度分布はさほどて一゛ないかも知れな
いが、それにしても、100°Cを越える洛i度差は有
機系のヒータとして成立する限界に近いものと考えられ
る。−例を上げれば、100°C以−」−のIBM度域
において急激に抵抗値が増大するPTCヒーヒー用いて
、20°Cの液体を加熱する液中ヒータを描成する場合
に、ヒータの表面が2゜Cとしても、内部は120°C
にならなくてはならず、その間の抵抗値の分布は非′j
:【に大きなものになるであろう。この場合、実質的に
発熱部として機能している部分は高抵抗、高電圧勾配、
高電力密度の非常に薄い部分であると考えられる。その
他の部分は熱の141なる伝達経路であり、むしろ、断
熱材としての働きしかない。以上の観点から1mm以」
二の厚さのPTC抵抗体は全く意味がないと考えられる
。なお、以」二に述へた間倣点を緩和する手段として高
熱伝導率のフィラーを添加する方法かあり、例えば、熱
伝導率が30 h/m h ’Cの高純度アルミナ粉末
や、同しく、90 W/m hoCの炭化硅素粉末を加
えることにより、抵抗体の熱伝導率を0.5〜1にJ/
m11°Cとすることは技術的に容易であるので、1朋
厚さで出力10000 kl/nfhのヒータにおいて
、1〜20°Cの温度分布とすることがFiJ’能とな
る。このフィラーは先に述べた高温域における負の抵抗
温度特性を改良するだめのフィラーと兼用すると吉もで
きるし、独立に加えることもできる。熱伝導性を改良す
るフィラーさしては粒度が大きいものが比較的有利てあ
り、極端・な場合は一対の電極間にまたかっていてもよ
い。以」−に述べた結果をまとめると、PTC抵抗体の
厚さ方向の熱抵抗値は平方メートル当り0.01 h°
c/W以下と規定できる。
If 10,000 K+i/nf is generated, it is thought that the temperature is near room temperature with a small PTC temperature coefficient, or the load is sufficiently cold, and the heat generation density distribution according to the temperature coefficient is not very large. However, even so, a temperature difference of more than 100°C is considered to be close to the limit for an organic heater. -For example, when drawing a submerged heater that heats a liquid at 20°C using a PTC heater whose resistance value increases rapidly in the IBM temperature range of 100°C or higher, the temperature of the heater Even if the surface temperature is 2°C, the inside temperature is 120°C.
, and the distribution of resistance values between them is non′j
:【It will become a big thing.】 In this case, the part that essentially functions as a heat generating part has high resistance, high voltage gradient,
It is considered to be a very thin section with high power density. The other parts are 141 heat transfer paths, and rather serve only as heat insulators. From the above point of view, 1mm or more
A PTC resistor with a thickness of two is considered to be completely meaningless. In addition, as a means of alleviating the imitation point mentioned below, there is a method of adding a filler with high thermal conductivity.For example, high purity alumina powder with a thermal conductivity of 30 h/m h'C, By adding silicon carbide powder of 90 W/m hoC, the thermal conductivity of the resistor was increased to 0.5-1 J/m.
Since it is technically easy to set the temperature to m11°C, in a heater with a thickness of 1 mm and an output of 10,000 kl/nfh, it is possible to achieve a temperature distribution of 1 to 20°C. This filler can be used in combination with the aforementioned filler for improving the negative resistance-temperature characteristics in the high temperature range, or it can be added independently. Fillers that improve thermal conductivity are relatively advantageous if they have a large particle size, and in extreme cases, they may straddle a pair of electrodes. To summarize the results described below, the thermal resistance value of the PTC resistor in the thickness direction is 0.01 h° per square meter.
It can be specified as c/W or less.

次に、このPTC抵抗体の耐熱安定性について述へる。Next, the heat resistance stability of this PTC resistor will be described.

以」−に示しだPTC抵抗体はそれ自体安定性が高く、
長期の使用に酬えうるものであるか、樹脂にポリオレフ
ィン系の材料を用いた場合に(/i:電極に用いられる
重金R類のイオンによってポリオレフィンが著しく酸化
劣化を受ける場合がある。
The PTC resistor shown below is highly stable in itself;
If a polyolefin-based material is used for the resin, the polyolefin may undergo significant oxidative deterioration due to ions of heavy metals R used in the electrode.

本発明のPTCヒーヒー銅箔電極等と非常に接近して構
成されるだめにこの点に特に注意を払う必要がある。ま
た、ポリオレフィンの主鎖の9J断やその2次反応とし
て生しる架橋による劣化過程を防IF、するために、フ
ェノール系七チオエーテル系の安定剤を組み合せて用い
る最高の効果が得られるか、チオエーテルの存在によっ
て銅箔等の電極が劣化する現象も発生する。このような
現象を防止するために、重金属イオンと結合して金属鉛
化8・物を作り得る重金属イオン不活性化剤を添加する
ことか有効であり、長期の信q貞性を得るだd)に必要
である。これらの安定剤の配合比率はカーボンブランク
の禁止作用に打ちj摂っに十分なら)を1&加する必要
があり、樹脂(で対して7エ/−ル系吉チオコーーテル
系の安定剤は1〜10%、重金1似フイオン不活性化剤
は0.5〜2%と、涌常よりも多)I)に添加すると効
果的である。
Particular attention must be paid to this point since the PTC heehy copper foil electrode of the present invention is constructed in close proximity. In addition, in order to prevent the deterioration process due to 9J breakage of the main chain of polyolefin and crosslinking that occurs as a secondary reaction, we will also investigate whether the best effect can be obtained by using a phenol-based hepthioether-based stabilizer in combination. The presence of thioether also causes a phenomenon in which electrodes such as copper foil deteriorate. In order to prevent this phenomenon, it is effective to add a heavy metal ion deactivator that can combine with heavy metal ions to form metal lead compounds, and this will ensure long-term reliability. ) is necessary. If the blending ratio of these stabilizers is sufficient to counteract the inhibitory effect of the carbon blank, it is necessary to add 1 to 10% of the resin (7 ether-based Yoshithiocotel-based stabilizers). %, and the heavy metal 1-like ion deactivator is effective when added to I) in an amount of 0.5 to 2%, which is higher than usual.

発明の効果 以上のように、本発明のヒータによれば次の効果か得ら
れる。
Effects of the Invention As described above, the heater of the present invention provides the following effects.

(1)導電性微粉末を多桁に配合した低抵抗PTC組成
物であっても良好な対金属接着性か得られるので、平行
平板電極間に抵抗体を設けることにより、4’9<めで
低抵抗てjα侶頼性のヒータをつくることができる。
(1) Good adhesion to metal can be obtained even with a low-resistance PTC composition containing conductive fine powder in multiple orders of magnitude, so by providing a resistor between parallel plate electrodes, A reliable heater with low resistance can be made.

(2)大きなPTCの抵抗変化率と小さな内部熱抵抗を
有し、抵抗値の調整範囲も広く、ヒータとして安全素子
として応用範囲か広い。
(2) It has a large PTC resistance change rate and small internal thermal resistance, and has a wide adjustment range of resistance value, and has a wide range of applications as a heater and a safety element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のヒータの斜視図、@2図(r」、本発
明の一実施例であるヒータの斜視図、第3図は実施例の
ヒータの抵抗値と温度との関係を示す図、第4図は低密
度ポリエチレンと各種カーボンブラックとの組成物のP
TC特性を示す図、第5図は低密度ポリエチレンと平均
粒径500Aのカーボンブラックとの組成比とPTC特
性との関係を示す図である。 3、び・・・・・銅箔電極、4・・・・・・PTC抵抗
体組成物。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ?
Figure 1 is a perspective view of a conventional heater, Figure 2 (r) is a perspective view of a heater that is an embodiment of the present invention, and Figure 3 is a diagram showing the relationship between the resistance value and temperature of the heater of the embodiment. Figure 4 shows P of a composition of low density polyethylene and various carbon blacks.
FIG. 5 is a diagram showing the relationship between the composition ratio of low density polyethylene and carbon black having an average particle size of 500A and the PTC characteristics. 3. Copper foil electrode, 4. PTC resistor composition. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure?

Claims (1)

【特許請求の範囲】 (1)互いに接近して設けられた一対の平行平板状電極
と、前記一対の平行平板状電極との間に設けられた金属
に対する接着性の良好な官能基を含む結晶性重合体と導
電性微粉末とを主成分とする抵抗体組成物とから成る正
の抵抗温度係数を有するヒータ。 (2)金属に対する接着性の良好な官能基が、ベースと
なる結晶性重合体の分子の主に末端に配置された官能基
導入結晶性重合体から成り、官能基導入の前後における
結晶化度および結晶融点の物性値の変化が非常に小さい
特許請求の範囲第1項記載のヒータ。 (3)導入される官能基がカルボキシル基である特許請
求の範囲第1積重だけ第2項I犯載のヒータ。 4)導電性微粉末が平均粒子径400A以上で、形状が
1洛球径であるカーボンブランクから成る特許請求の範
囲第1積重たは第2項記載のヒータ。 (5)抵抗体組成物に占めるカーボンブラックの比率が
10〜70重昂%である特許請求の範囲第1項または第
2項記載のヒータ。 (6)抵抗体組成物に副成分として電気絶縁性ないし高
抵抗のフィラーが含まれ、前記抵抗体組成物の引張り、
曲げ、せん断における機械強度が、フィラーを含まない
場合のカーボンブラック組成比40〜70%の抵抗体組
成物の機械強度の範囲内にある特許請求の範囲第1項寸
だけ第2項記載のヒータ。 (7)抵抗体組成物に副成分として電気絶縁性ないし高
抵抗の熱伝導率が20 &7/inh°C以」−のフィ
ラーが含捷れる特許請求の範囲第1積重たけ第2項記載
のヒータ。 (8)一対の電極の間の熱抵抗が平方メートル当り0、
01 b’C//6’ 以下である特許請求の範囲第1
項まだは第2項記載のヒータ。 (9)抵抗体組成物の安定剤の一部として重金属イオン
に対して金属錯化合物を作’I f!)る不活性化剤を
含む特許請求の範囲第1項寸たけ第2項記載のヒータ。 (10)抵抗体組成物の結晶性重合体がポリオレフィン
系の樹脂であり、フェノール系、チオエーテル系の安定
剤と重金属イオンに対して金属錯化合物を作り得る不活
性化剤とを含み、電極が銅を含む金属から作られている
特許請求の範囲第1項寸たは第2項記載のヒータ。
[Scope of Claims] (1) A pair of parallel plate-like electrodes provided close to each other, and a crystal containing a functional group with good adhesion to metal provided between the pair of parallel plate-like electrodes. 1. A heater having a positive temperature coefficient of resistance, comprising a resistor composition whose main components are a conductive polymer and a conductive fine powder. (2) It consists of a functional group-introduced crystalline polymer in which functional groups with good adhesion to metals are placed mainly at the ends of the molecules of the base crystalline polymer, and the crystallinity before and after the introduction of functional groups The heater according to claim 1, in which the physical property value of the crystal melting point changes very little. (3) A heater according to claim 2 (I) in which the functional group introduced is a carboxyl group. 4) The heater according to claim 1 or claim 2, comprising a carbon blank in which the conductive fine powder has an average particle diameter of 400 A or more and a shape of 1 square sphere. (5) The heater according to claim 1 or 2, wherein the proportion of carbon black in the resistor composition is 10 to 70% by weight. (6) The resistor composition contains an electrically insulating or high-resistance filler as a subcomponent, and the tensile strength of the resistor composition is
The heater according to claim 2, whose mechanical strength in bending and shearing is within the mechanical strength of a resistor composition with a carbon black composition ratio of 40 to 70% when no filler is included. . (7) The resistor composition contains as an accessory component a filler having electrical insulation or high resistance and a thermal conductivity of 20 &7/inh°C or higher. heater. (8) The thermal resistance between a pair of electrodes is 0 per square meter,
01 b'C//6' or less
Item 2 is the heater described in Item 2. (9) Create a metal complex compound for heavy metal ions as part of the stabilizer in the resistor composition. ) The heater according to claim 1 or 2, further comprising a deactivating agent. (10) The crystalline polymer of the resistor composition is a polyolefin resin, and contains a phenol-based or thioether-based stabilizer and a deactivating agent capable of forming a metal complex compound with respect to heavy metal ions, and the electrode is The heater according to claim 1 or 2, which is made of a metal containing copper.
JP13840683A 1983-07-27 1983-07-27 Heater Granted JPS6028195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13840683A JPS6028195A (en) 1983-07-27 1983-07-27 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13840683A JPS6028195A (en) 1983-07-27 1983-07-27 Heater

Publications (2)

Publication Number Publication Date
JPS6028195A true JPS6028195A (en) 1985-02-13
JPS6259415B2 JPS6259415B2 (en) 1987-12-10

Family

ID=15221210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13840683A Granted JPS6028195A (en) 1983-07-27 1983-07-27 Heater

Country Status (1)

Country Link
JP (1) JPS6028195A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264057A (en) * 1985-04-02 1986-11-21 レイケム・コ−ポレイシヨン Conductive composition and molded article
JPS61284083A (en) * 1985-06-11 1986-12-15 松下電器産業株式会社 Positive resistance temperature coefficient heat generating body
JPS6229085A (en) * 1985-07-31 1987-02-07 菱和産資株式会社 Surface heat generating body
JPS6293883A (en) * 1985-10-18 1987-04-30 松下電器産業株式会社 Heating element
JPS6373771U (en) * 1986-10-30 1988-05-17
JPS63307683A (en) * 1987-06-05 1988-12-15 Matsushita Electric Ind Co Ltd Positive-resistance temperature coefficient heating element
JPH01166479A (en) * 1987-12-22 1989-06-30 Matsushita Electric Ind Co Ltd Exothermic body having positive resistance temperature coefficient
JPH01264189A (en) * 1988-04-14 1989-10-20 Nok Corp Surface heating body and manufacture thereof
JPH03267631A (en) * 1990-03-16 1991-11-28 Idemitsu Kosan Co Ltd Panel for heating
US20100021683A1 (en) * 2008-07-24 2010-01-28 Tesa Se Flexible heated planar element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834835A (en) * 1971-09-14 1973-05-22
JPS5239636A (en) * 1975-09-22 1977-03-28 Eisai Co Ltd Synthetic process of dihydrocoenzyme q group compound
JPS52165337U (en) * 1976-06-08 1977-12-14
JPS5578406A (en) * 1978-12-01 1980-06-13 Raychem Corp Conductive polymer composition and method of producing same as well as utility thereof
JPS56161463A (en) * 1980-04-21 1981-12-11 Raychem Corp Filler-containing electroconductive polymer composition
JPS5963688A (en) * 1981-12-16 1984-04-11 株式会社フジクラ Panel heater and method of producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834835A (en) * 1971-09-14 1973-05-22
JPS5239636A (en) * 1975-09-22 1977-03-28 Eisai Co Ltd Synthetic process of dihydrocoenzyme q group compound
JPS52165337U (en) * 1976-06-08 1977-12-14
JPS5578406A (en) * 1978-12-01 1980-06-13 Raychem Corp Conductive polymer composition and method of producing same as well as utility thereof
JPS56161463A (en) * 1980-04-21 1981-12-11 Raychem Corp Filler-containing electroconductive polymer composition
JPS5963688A (en) * 1981-12-16 1984-04-11 株式会社フジクラ Panel heater and method of producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264057A (en) * 1985-04-02 1986-11-21 レイケム・コ−ポレイシヨン Conductive composition and molded article
JPH08239485A (en) * 1985-04-02 1996-09-17 Raychem Corp Production of conductive polymer element
JPS61284083A (en) * 1985-06-11 1986-12-15 松下電器産業株式会社 Positive resistance temperature coefficient heat generating body
JPS6229085A (en) * 1985-07-31 1987-02-07 菱和産資株式会社 Surface heat generating body
JPS6293883A (en) * 1985-10-18 1987-04-30 松下電器産業株式会社 Heating element
JPS6373771U (en) * 1986-10-30 1988-05-17
JPS63307683A (en) * 1987-06-05 1988-12-15 Matsushita Electric Ind Co Ltd Positive-resistance temperature coefficient heating element
JPH01166479A (en) * 1987-12-22 1989-06-30 Matsushita Electric Ind Co Ltd Exothermic body having positive resistance temperature coefficient
JPH01264189A (en) * 1988-04-14 1989-10-20 Nok Corp Surface heating body and manufacture thereof
JPH03267631A (en) * 1990-03-16 1991-11-28 Idemitsu Kosan Co Ltd Panel for heating
US20100021683A1 (en) * 2008-07-24 2010-01-28 Tesa Se Flexible heated planar element
US9560697B2 (en) * 2008-07-24 2017-01-31 Tesa Se Flexible heated planar element

Also Published As

Publication number Publication date
JPS6259415B2 (en) 1987-12-10

Similar Documents

Publication Publication Date Title
JP5711365B2 (en) Conductive composite material having positive temperature coefficient resistance and overcurrent protection element
JPS6028195A (en) Heater
JPH08339904A (en) Positive temperature coefficient composition
US4801785A (en) Electrical devices
EP3761325B1 (en) Pptc device having resistive component
US10950372B2 (en) Surface mounted fuse device having positive temperature coefficient body
JP2002241554A (en) Semiconductive admixture
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
JPH05217711A (en) Ptc composition
JP2638862B2 (en) Positive low temperature coefficient heating element
CN115244631A (en) PPTC heaters and materials with stable power and self-limiting characteristics
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JPS63110602A (en) Ptc device and manufacture of the same
JPH05135855A (en) Heating unit with positive resistance temperature coefficient
JPH02304892A (en) Exothermal body with positive temperature coefficient of resistance
JPS6140360A (en) Electrically conductive resin composition, and current limiting element using said composition
JPH01304704A (en) Organic high polymer composition of ptc behavior
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JPS63102193A (en) Positive resistance temperature coefficient heating unit
JPS61143984A (en) Positive resistance temperature coefficient heat generating body
JPH0740509B2 (en) Heating element
JPS6226801A (en) Manufacture of resistance element
JPH03269982A (en) Positive resistance temperature coefficient heating body