JPS6259415B2 - - Google Patents

Info

Publication number
JPS6259415B2
JPS6259415B2 JP58138406A JP13840683A JPS6259415B2 JP S6259415 B2 JPS6259415 B2 JP S6259415B2 JP 58138406 A JP58138406 A JP 58138406A JP 13840683 A JP13840683 A JP 13840683A JP S6259415 B2 JPS6259415 B2 JP S6259415B2
Authority
JP
Japan
Prior art keywords
resistance
heater according
ptc
resistor composition
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58138406A
Other languages
Japanese (ja)
Other versions
JPS6028195A (en
Inventor
Masayuki Terakado
Takeshi Nagai
Nobuyuki Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13840683A priority Critical patent/JPS6028195A/en
Publication of JPS6028195A publication Critical patent/JPS6028195A/en
Publication of JPS6259415B2 publication Critical patent/JPS6259415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正の抵抗温度係数(以下PTCと略
す)を有するヒータないし安全素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heater or safety element having a positive temperature coefficient of resistance (hereinafter abbreviated as PTC).

従来例の構成とその問題点 従来からPTC特性を有する抵抗体組成物とし
てポリエチレン等の結晶性重合体中にカーボンブ
ラツク等の導電性微粉末を分散させたものが知ら
れている。そのPTC特性を生み出すメカニズム
は結晶性重合体がその結晶融点近傍において無定
形状態へ移る際の急激な膨張係数の増大によつ
て、分散されているカーボンブラツクの連鎖が断
ち切られるために抵抗値が増大するものと考えら
れる。したがつて、顕著なPTC特性が得られる
温度域は結晶性重合体の結晶融点によつて定ま
り、温度係数の大小は結晶化度の大小によつて定
まると言える。この組成物のPTC特性は熱サイ
クル等によつて若干のヒステリシス現象を併うも
のの、比較的安定かつ再現性のあるものであり、
PTCヒータの素材としての価値が認められてい
る。このようなPTC組成物を用いたPTCヒータ
の従来例を第1図に示す。第1図において1はポ
リエチレンとカーボンブラツクとの混練物から成
るPTC組成物、2および2′はPTC組成物の表面
に設けられた一対の銀ペースト焼付電極である。
この構成は断面積が大きく、厚さが薄いのでカー
ボンブラツクの重量組成比を少なめにしても充分
な低抵抗値を得ることができることと、PTC組
成物の発熱に対する放熱熱抵抗が小さく、熱の取
り出しが容易である点に特長がある。したがつ
て、低抵抗値で高出力のPTCヒータを構成する
目的に対して理想的な形状構造である。しかし、
ポリエチレンに代表される結晶化度の高い重合体
は極性基を殆ど持たないものが多く、接着力が乏
しいために電極との電気的ないし機械的結合に問
題があつた。例えば、接着性の特に良好なエポキ
シ系の樹脂を結合剤とした銀ペースト焼付電極を
用いた場合であつても、塗膜自身の強度不足も加
わり、実用性に乏しい電極構成しか得られなかつ
た。望ましい電極材料としては銅箔やニツケル箔
等の抵抵抗で強度の大きい金属箔であるが、エポ
キシ系樹脂を用いた銀ペーストを上まわる接着強
度を得ることは困難であり、いずれにせよ、用途
を限定して使用せざるを得ないというのが現状で
あつた。
Structures of Conventional Examples and Their Problems Conventionally, as resistor compositions having PTC characteristics, there have been known resistor compositions in which conductive fine powder such as carbon black is dispersed in a crystalline polymer such as polyethylene. The mechanism that produces the PTC property is that when the crystalline polymer transitions to an amorphous state near its crystalline melting point, the coefficient of expansion rapidly increases, and the chain of dispersed carbon black is broken, resulting in a decrease in resistance. This is expected to increase. Therefore, it can be said that the temperature range in which remarkable PTC characteristics are obtained is determined by the crystal melting point of the crystalline polymer, and the magnitude of the temperature coefficient is determined by the magnitude of the crystallinity. The PTC characteristics of this composition are relatively stable and reproducible, although there is some hysteresis due to thermal cycling, etc.
Its value as a material for PTC heaters has been recognized. A conventional example of a PTC heater using such a PTC composition is shown in FIG. In FIG. 1, 1 is a PTC composition made of a mixture of polyethylene and carbon black, and 2 and 2' are a pair of silver paste baked electrodes provided on the surface of the PTC composition.
This structure has a large cross-sectional area and a small thickness, so it is possible to obtain a sufficiently low resistance value even if the weight composition ratio of carbon black is small. The feature is that it is easy to take out. Therefore, it has an ideal shape and structure for the purpose of constructing a PTC heater with low resistance and high output. but,
Many polymers with a high degree of crystallinity, such as polyethylene, have almost no polar groups and have poor adhesive strength, causing problems in electrical or mechanical bonding with electrodes. For example, even when using a baked silver paste electrode using an epoxy resin with particularly good adhesion as a binder, the lack of strength of the coating film itself resulted in an impractical electrode structure. . The preferred electrode material is a metal foil with high resistance and strength, such as copper foil or nickel foil, but it is difficult to obtain an adhesive strength that exceeds that of silver paste using epoxy resin, and in any case, the application The current situation was that it had no choice but to be used in a limited manner.

発明の目的 本発明は電極材料として優れた物性値を有する
銅箔やニツケル箔等の金属箔に対して、良好な接
着性と抵抗温度特性を示すPTC組成物を得る手
段を示すもので、抵抗値調整範囲が広く高出力の
PTCヒータを提供することを目的としている。
Purpose of the Invention The present invention provides a means for obtaining a PTC composition that exhibits good adhesion and resistance temperature characteristics to metal foils such as copper foil and nickel foil that have excellent physical properties as electrode materials. High output with wide value adjustment range
The purpose is to provide PTC heaters.

発明の構成 本発明は互いに接近して設けられた一対の平行
平板電極と、前記一対の平行平板電極との間に設
けられた金属に対する接着性の良好な官能基を含
む結晶性重合体と導電性微粉末とを主成分とする
抵抗体組成物とから成るPTC特性を有するヒー
タを基本構成とするものである。
Structure of the Invention The present invention comprises a pair of parallel plate electrodes provided close to each other, a crystalline polymer containing a functional group having good adhesion to metal and a conductive material provided between the pair of parallel plate electrodes. The basic structure of the heater is a heater having PTC characteristics, which is composed of a resistor composition mainly composed of a magnetic fine powder and a resistor composition mainly composed of the resistor composition.

実施例の説明 以下、本発明の実施例を第2図、第3図に基づ
いて説明する。3および3′は板厚35μmの電解
銅箔電極であり、4は低密度ポリエチレンの分子
の末端にカルボキシル基を導入した結晶性重合体
とオイルフアーネス系カーボンブラツクとの混練
物シートから成るPTC抵抗体組成物である。こ
のカルボキシル基導入抵密度ポリエチレンは各分
子の主に末端にカルボキシル基が導入されたもの
で、共重合体とは異なり、低密度ポリエチレンの
結晶化度、結晶融点等の物性値にほとんど影響を
与えず、カルボキシル基特有の強力な対金属接着
性が得られるものである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on FIGS. 2 and 3. 3 and 3' are electrolytic copper foil electrodes with a plate thickness of 35 μm, and 4 is a PTC sheet made of a mixture of a crystalline polymer in which a carboxyl group is introduced at the end of a low-density polyethylene molecule and oil furnace carbon black. It is a resistor composition. This carboxyl group-introduced low-density polyethylene has carboxyl groups introduced mainly at the ends of each molecule, and unlike copolymers, it has little effect on the physical properties such as crystallinity and crystal melting point of low-density polyethylene. First, strong adhesion to metals, which is unique to carboxyl groups, can be obtained.

第1の実施例としてPTC抵抗体組成物4に占
めるカーボンブラツクの添加量は60重量%であ
り、カーボンブラツクは電子顕微鏡で観測し得る
平均粒子径が500Åで、同じく電子顕微鏡で観測
し得る形状がほぼ球形のものを用いている。
PTC抵抗体組成物4のシート厚さは約300μm
で、第3図の曲線Aに示すように20℃における抵
抗値は平方センチメートル当り20mΩと極めて低
抵抗であり、80℃を越える温度域において抵抗値
が急激に増加を開始し、結晶融点である110℃に
おいては約2kΩに達し、約5桁に及ぶ極めて優
れたPTCの抵抗温度特性を得ている。このよう
に室温における抵抗値が低く、PTCの抵抗温度
特性の優れた抵抗体は、電池等を電源とする低電
圧電源で用いられる小型の速熱性の優れたヒータ
として、あるいは、過剰な電流が流れたり、温度
が加わつた場合の負荷に直列に接続された安全素
子として用いることができる。カルボキシル基を
導入しない低密度ポリエチレンを用いて同一組成
比で同一構成材料の抵抗体を作成した場合には、
外見的には同一の抵抗体を作成することはできた
が、20℃における抵抗値が30〜60mΩと高く、抵
抗値のばらつきも大きく、電極と抵抗体組成物と
の間の接触抵抗が存在していることを示してい
る。また、剥離強度も小さく、外力が熱サイクル
に対しても接触状態が不安定で、実用に耐え得る
ものは得られなかつた。この場合、特殊な接着処
理を見出すか、電極を圧着したま使用するか、カ
ーボンブラツクの配合比率を50%以下に低下させ
て、多少とも接着性を改善するかの対策しかな
く、これらはいずれも大きな制約条件であり、低
抵抗で高信頼性のPTCヒータを得ることはでき
なかつた。
As a first example, the amount of carbon black added to the PTC resistor composition 4 is 60% by weight, and the carbon black has an average particle diameter of 500 Å that can be observed with an electron microscope, and a shape that can also be observed with an electron microscope. uses an almost spherical shape.
The sheet thickness of PTC resistor composition 4 is approximately 300 μm
As shown in curve A in Figure 3, the resistance value at 20°C is extremely low, 20 mΩ per square centimeter, and in the temperature range exceeding 80°C, the resistance value begins to increase rapidly, reaching the crystal melting point of 110°C. At ℃, it reaches approximately 2 kΩ, achieving an extremely excellent PTC resistance temperature characteristic of approximately 5 orders of magnitude. In this way, resistors with low resistance at room temperature and excellent resistance-temperature characteristics of PTC can be used as compact heaters with excellent quick heating properties used in low-voltage power supplies such as batteries, or when excessive current is generated. It can be used as a safety element connected in series with a load in case of current or temperature. When creating resistors with the same constituent materials at the same composition ratio using low-density polyethylene without introducing carboxyl groups,
Although it was possible to create a resistor that looked identical in appearance, the resistance value at 20°C was as high as 30 to 60 mΩ, and the variation in resistance was large, and there was contact resistance between the electrode and the resistor composition. It shows that you are doing it. In addition, the peel strength was low, and the contact state was unstable even when subjected to external forces and thermal cycles, so that it was not possible to obtain a product that could withstand practical use. In this case, the only options are to find a special adhesive treatment, use the electrodes after they are crimped, or reduce the carbon black blending ratio to 50% or less to improve the adhesion to some extent. This was also a major constraint, making it impossible to obtain a PTC heater with low resistance and high reliability.

結晶性重合体に導入する官能基としてはカルボ
キシル基が最良であるが、導入の方法としてはカ
ルボキシル基を有するアクリル酸等との共重合に
よる方法が最も一般的であり、金属イオン架橋の
エチレン・アクリル酸共重合体等は容易に入手で
きる。しかしながら、共重合体を作り得る官能基
の導入方法においては、確かに金属に対する接着
性は改善されるが、結晶化度や結晶融点等の物性
値も低下する傾向がある。このため、PTC特性
はより低温側で低抗値が増大を開始するようにな
り、低抗値の変化率も減少傾向となる。したがつ
て、低密度ポリエチレンや高密度ポリエチレン等
の特性値を生かして接着性のみを付与したい場合
には都合が悪くなる。このような目的に対しては
官能基をコモノマーとして添加して重合させるの
ではなく、既に重合の完了したポリエチレン等の
重合体に、例えば酸無水物等のカルボキシル基を
含有し、ポリオレフインに反応し得る材料を用い
て、ポリエチレンの各分子の主に末端に選択的に
反応させた後、未反応物を除去することにより、
物性的にはほとんどポリエチレンであるが、カル
ボキシル基の効果的な存在によつて対金属接着性
の優れた結晶性重合体を得ることができる。同じ
ような考え方のもとに官能基を導したポリオレフ
インとして、三井石油化学工業(株)のアドマーシリ
ーズ等があり、これらの材料はベースのポリオレ
フインとほとんど区別のつかないPTC特性を示
す反面、銅箔等の金属に対する極めて優れた接着
性を得ることができる。カルボキシル基以外の官
能基としては水酸基、アミノ基、エポキシ基およ
びそれらを複合した基等が考えられ、カルボキシ
ル基の場合と同様な考えで適用することができ
る。
A carboxyl group is the best functional group to introduce into a crystalline polymer, but the most common method of introduction is through copolymerization with acrylic acid, etc., which has a carboxyl group. Acrylic acid copolymers and the like are easily available. However, in the method of introducing a functional group that can produce a copolymer, although adhesion to metals is certainly improved, physical properties such as crystallinity and crystal melting point also tend to decrease. Therefore, in the PTC characteristics, the low resistance value starts to increase at a lower temperature, and the rate of change in the low resistance value also tends to decrease. Therefore, it is not convenient when it is desired to make use of the characteristic values of low-density polyethylene, high-density polyethylene, etc. to impart only adhesive properties. For such purposes, instead of adding a functional group as a comonomer and polymerizing it, a polymer such as polyethylene that has already been polymerized contains a carboxyl group such as an acid anhydride and reacts with the polyolefin. By selectively reacting mainly at the ends of each polyethylene molecule using the obtained material, and then removing unreacted substances,
Physically, it is mostly polyethylene, but due to the effective presence of carboxyl groups, a crystalline polymer with excellent adhesion to metals can be obtained. Polyolefins with functional groups based on a similar concept include the Admar series by Mitsui Petrochemical Industries, Ltd., and while these materials exhibit PTC properties that are almost indistinguishable from those of the base polyolefin, they do not contain copper. Extremely excellent adhesion to metals such as foil can be obtained. Examples of functional groups other than carboxyl groups include hydroxyl groups, amino groups, epoxy groups, and composite groups thereof, which can be applied in the same manner as in the case of carboxyl groups.

次に、カーボンブラツクの粒径、形状、組成比
による影響と、より好ましい範囲について述べ
る。PTC抵抗体組成物に分散させるカーボンブ
ラツクは、第4図に示すように、電子顕微鏡で観
測し得る平均粒子径と形状がそれぞれ400Å以上
でほぼ球形の材料が特に良く、平均粒子径が100
〜300Å程度の材料、あるいは表面積が大きく非
球形の材料は十分な抵抗値の変化倍率を併つた
PTC特性が得られにくいばかりでなく、結晶融
点以上の温度域において抵抗温度特性が負特性と
なる傾向があり、高電圧を印加した時や高温の雰
囲気で使用された時に、温度の増大に併つて電力
が増大する、いわゆる暴走現象が生ずる可能性が
ある。また、平均粒径が400Å以上の球形のカー
ボンブラツクであつてもPTC抵抗体組成物に占
める重量比率を減らしていくと、PTCの抵抗温
度係数は増大するが、結晶融点以上での抵抗温度
係数が負特性となり、長時間その温度に放置して
おくと時間とともに抵抗値が低下する現象が見ら
れるようになる。これらの現象は平均粒径の小さ
いカーボンブラツクまたは非球形のカーボンブラ
ツクでは表面積が大きく、結晶性樹脂に対する充
填効果も大きいために樹脂の温度の増大に併う膨
張を阻害し、大きなPTCの抵抗温度特性の変化
率が得られなくなり、また、凝集力も大きいため
に結晶融点以上における無定形な状態における分
散状態においてカーボンブラツク同志の連鎖をつ
くる方向での再分散が行なわれ、負の抵抗温度特
性ならびに抵抗値の低下現象が生ずるものと思わ
れる。球形で平均粒径の大きなカーボンブラツク
では互いの接触点が一点しかなく、わずかの移動
があつても非接触となるために非球状の複雑な複
数の接触点を持つカーボンブラツクに比べれば、
より抵抗値の変化が得られやすいのは当然である
し、凝集力も小さく、結晶融点以上の温度域にお
いても、樹脂の膨張傾向を明確に反映した抵抗値
の増大を続けると考えられる。また、カーボンブ
ラツクの重量組成比率の影響については、比率が
小さい程、樹脂に対する充填効果も小さくなるの
で膨張を阻害しなくなり、PTCの抵抗温度特性
の変化率が大きくなるが、逆に、結晶融点以上の
温度域における無定形状態においては充填効果が
不十分なために内部応力による歪が生じ、カーボ
ンブラツクの移動によつて当初の均一分散状態に
対して配向や再分散現象が発生し、抵抗値が低下
するものと考えられる。この傾向が見られる組成
比率は第5図に示すように平均粒径500Åで球形
のカーボンブラツクと低密度ポリエチレンとの
PTC抵抗体組成物においては、カーボンブラツ
クの重量組成比が40%を下まわる範囲で顕著にな
り、導電性が確認できた最小組成比10%で最大に
なるものと思われる。
Next, the influence of the particle size, shape, and composition ratio of carbon black and the more preferable range will be described. As shown in Fig. 4, the carbon black to be dispersed in the PTC resistor composition is particularly preferably a nearly spherical material with an average particle diameter and shape of 400 Å or more that can be observed with an electron microscope;
Materials with a thickness of ~300 Å or non-spherical materials with a large surface area have a sufficient resistance change factor.
Not only is it difficult to obtain PTC characteristics, but the resistance-temperature characteristics tend to become negative in the temperature range above the crystal melting point, and when high voltage is applied or used in a high temperature atmosphere, as the temperature increases, There is a possibility that a so-called runaway phenomenon, in which the power increases as a result, occurs. Furthermore, even if spherical carbon black has an average particle size of 400 Å or more, the temperature coefficient of resistance of PTC will increase as the weight ratio in the PTC resistor composition is reduced, but the temperature coefficient of resistance above the crystal melting point will increase. becomes a negative characteristic, and if left at that temperature for a long time, the resistance value will decrease over time. These phenomena occur because carbon black with a small average particle size or non-spherical carbon black has a large surface area and has a large filling effect on the crystalline resin, which inhibits the expansion of the resin as the temperature increases, resulting in a large PTC resistance temperature. The rate of change in properties cannot be obtained, and since the cohesive force is large, redispersion occurs in the direction of forming chains of carbon blacks in the amorphous dispersion state above the crystal melting point, resulting in negative resistance-temperature properties and It is thought that a phenomenon in which the resistance value decreases occurs. Carbon black, which is spherical and has a large average particle size, has only one point of contact with each other, and even the slightest movement causes non-contact, compared to carbon black that is non-spherical and has multiple complex contact points.
Naturally, it is easier to obtain a change in resistance value, and the cohesive force is also small, so even in a temperature range above the crystal melting point, it is thought that the resistance value continues to increase, clearly reflecting the expansion tendency of the resin. In addition, regarding the influence of the weight composition ratio of carbon black, the smaller the ratio, the smaller the filling effect on the resin, so it does not inhibit expansion, and the rate of change in the resistance temperature characteristics of PTC increases, but conversely, the crystal melting point In the amorphous state in the above temperature range, distortion occurs due to internal stress due to insufficient filling effect, and due to the movement of carbon black, orientation and redispersion phenomena occur with respect to the initial uniformly dispersed state, resulting in resistance. It is thought that the value will decrease. As shown in Figure 5, this tendency is observed in the composition ratio of spherical carbon black with an average particle size of 500 Å and low-density polyethylene.
In the PTC resistor composition, it is thought that this becomes noticeable when the weight composition ratio of carbon black is less than 40%, and reaches its maximum at the minimum composition ratio of 10% where conductivity can be confirmed.

以上に述べた結晶融点以上における負の抵抗温
度特性や抵抗値の低下現象は用途によつては余り
問題とはならないかも知れない。しかし、万一の
異常電圧印加が予想される場合や、長時間高温で
使われる用途、最終安全機構として用いられる場
合においては十分に安全とは言いきれない。本実
施例のPTCヒータは異極の電極が接近してい
て、しかも、面積が広いのでPTC抵抗体組成物
に印加される電圧勾配は相当急峻なものであり、
極く一部に欠陥があつてもその部分が異常発熱し
得る構造となつている。このような観点から、
PTC特性は十分に余裕をもつたものでなくては
ならないし、負特性領域や抵抗値低下現象を示す
ものは使用条件をよく吟味して適用する必要があ
る。
The above-mentioned negative resistance-temperature characteristics and decrease in resistance above the crystal melting point may not be much of a problem depending on the application. However, it cannot be said that it is sufficiently safe in cases where abnormal voltage application is expected, in applications where it is used at high temperatures for long periods of time, or in cases where it is used as a final safety mechanism. Since the PTC heater of this example has electrodes of different polarities close to each other and has a large area, the voltage gradient applied to the PTC resistor composition is quite steep.
The structure is such that even if there is a defect in a very small part, that part can generate abnormal heat. From this perspective,
The PTC characteristics must have sufficient margin, and the use conditions must be carefully examined before applying a device that exhibits a negative characteristic region or a resistance value drop phenomenon.

次に、第2の実施例として比較的高抵抗の
PTCヒータを作製する方法について述べる。高
抵抗のPTCヒータを作製するためにはカーボン
ブラツクの配合比率を50重量%以下にする必要が
あり、この場合、結晶融点以上の温度域において
負の抵抗温度特性と抵抗値の低下現象が発生す
る。これを防止するためにはカーボンブラツクの
重量組成比40〜70%に相当する充填効果を得られ
るような高抵抗ないし電気絶縁性のフイラーを添
加すると良い。カーボンブラツクの重量組成比は
70%が一応の限度であり、これを越えると曲げに
対してもろくなるだけでなく、PTCの変化率が
低減し、混練も不可能となる。充填効果はこの機
械的な物性値、PTC特性、混練性で判断すべき
で、フイラーの材質や粒度によつて最適組成比が
異つてくる。フイラーを添加することによつて結
晶融点以上での負の抵抗温度特性はほとんど見ら
れなくなるが、この効果はカーボンブラツクも一
種の充填効果を有するフイラーと考えられ、組成
比率40%以上で結晶性樹脂のミクロな部分に及び
充填効果が得られるものと考えられ、カーボンブ
ラツク以外のフイラーであつても多少の差異はあ
るにせよ、同様の効果が得られるものである。
Next, as a second example, a relatively high resistance
We will describe the method for manufacturing a PTC heater. In order to create a high-resistance PTC heater, the blending ratio of carbon black must be 50% by weight or less, and in this case, negative resistance temperature characteristics and a decrease in resistance occur in the temperature range above the crystal melting point. do. In order to prevent this, it is recommended to add a high resistance or electrically insulating filler that can provide a filling effect corresponding to a weight composition ratio of 40 to 70% of carbon black. The weight composition ratio of carbon black is
70% is a tentative limit, and if it exceeds this, not only will it become brittle against bending, but the rate of change in PTC will decrease, making kneading impossible. The filling effect should be judged based on the mechanical properties, PTC properties, and kneading properties, and the optimal composition ratio will vary depending on the filler material and particle size. By adding a filler, the negative resistance-temperature characteristics above the crystal melting point are hardly observed, but this effect is due to the fact that carbon black is also considered to be a filler with a type of filling effect, and when the composition ratio is 40% or more, crystallinity It is thought that the filling effect can be obtained even in the microscopic parts of the resin, and the same effect can be obtained even with fillers other than carbon black, although there are some differences.

第2図に示した第1の実施例のPTCヒータに
おいて、PTC抵抗体組成物4における樹脂とカ
ーボンブラツクの総量に占めるカーボンブラツク
の添加量を35重量%に減らし、さらに、その総量
に対して粒子径1μmのアルミナ粉末を40重量%
の比率でもつて添加した結果、第3図の曲線Bに
示すように1平方センチメートル当りの20℃にお
ける抵抗値が120Ω、110℃における抵抗値が
800kΩと約4桁弱の優れた抵抗温度特性が得ら
れ、アルミナ粉末を添加しない場合の曲線Cと比
較して、110℃以上における負特性の傾向と抵抗
値低下現象がほとんど見られなかつた。この
PTC抵抗温度特性はカーボンブラツクのみを60
重量%添加した第1の実施例の場合に比べ、温度
係数は若干小さくなつているが、約4桁弱高抵抗
側へ平行移動したような特性であり、抵抗値が違
う以外に何の遜色もみられない。さらに、カーボ
ンブラツクとフイラーを組成比を調整することに
より、任意の抵抗温度特性を有するPTCヒータ
を作成することができる。フイラーとしては粒
状、繊維状、リーフ状等の形状、さらに、有機
系、無機系の区分に関係なく用いることが可能
で、高抵抗ないし電気絶縁物であれば効果が認め
られる。特に効果的な材料としては、粒度分布の
広い材料または2種以上の粒度径を有する材料を
混合したものがあげられる。結晶融点以上の温度
域における負特性の温度係数を防止するために
は、ミクロな範囲での充填効果に優れた粒度の小
さいものが望ましいが、PTC特性を阻害する傾
向も強いのでこれに加えてマクロな範囲での充填
効果に優れ、PTC特性を阻害しない粒度の大き
な材料を併用して、両者の相剰効果を得る方法が
最も望ましい。
In the PTC heater of the first embodiment shown in FIG. 2, the amount of carbon black added to the total amount of resin and carbon black in PTC resistor composition 4 was reduced to 35% by weight, and 40% by weight of alumina powder with a particle size of 1 μm
As a result, as shown in curve B in Figure 3, the resistance value per square centimeter at 20°C is 120Ω, and the resistance value at 110°C is 120Ω.
Excellent resistance-temperature characteristics of 800 kΩ, about four orders of magnitude less, were obtained, and compared to curve C in which no alumina powder was added, there was almost no tendency for negative characteristics or a decrease in resistance at temperatures above 110°C. this
PTC resistance temperature characteristics are 60 for carbon black only.
The temperature coefficient is slightly smaller than that of the first example in which % by weight was added, but the characteristics are as if they were shifted in parallel to the high resistance side by about 4 orders of magnitude, so there is no other difference other than the difference in resistance value. I can't even see it. Furthermore, by adjusting the composition ratio of carbon black and filler, it is possible to create a PTC heater with arbitrary resistance-temperature characteristics. The filler can be used in any shape such as granular, fibrous, or leaf-like, and regardless of whether it is organic or inorganic, and is effective as long as it is a high-resistance or electrically insulating material. Particularly effective materials include materials with a wide particle size distribution or mixtures of materials with two or more types of particle sizes. In order to prevent the temperature coefficient of negative characteristics in the temperature range above the crystal melting point, it is desirable to use particles with a small particle size that has excellent filling effects in the microscopic range, but since they also have a strong tendency to inhibit PTC characteristics, it is necessary to The most desirable method is to use a material with a large particle size that has an excellent filling effect in a macroscopic range and does not inhibit PTC characteristics, and to obtain a mutual effect of both.

抵抗値の調整方法に関してはPTCヒータの抵
抗体組成物の厚みを変える方法も考えられるが、
余り厚くして、例えば1mmを越えると、抵抗体内
部の熱抵抗が大きくなつて、抵抗体を通過する熱
流束に見合う温度勾配が相当必要となつてくる。
また、抵抗体内部の電圧印加方向の温度分布が1
℃であつても、抵抗温度係数が0.21/℃を越える
PTC抵抗体においては、抵抗値分布が20%生
じ、その抵抗値に比例する20%の差の発熱密度分
布があることになる。その温度分布が5℃を越え
ると、1.2の5乗、すなわち2.5倍の発熱密度分布
が生ずることとなり、最高温度部分の抵抗体は限
界を越える発熱量に達して、カーボンブラツクの
再分散が発生し、復帰し得ない抵抗値変化が生ず
るであろう。一般の結晶性重合体の熱伝導率は
0.1〜0.4Kcal/mh℃の範囲にあるから、室温20
℃において80℃で安定し、600Kcal/m2hの発熱
と放熱を行つているPTC抵抗体において、1mm
厚さ当りの温度差は1.5〜6℃となつているはず
である。さらに高温のPTC抵抗体や、負荷が大
きい場合を考えると1000〜10000Kcal/m2を想定
する必要があり、その場合の1mm厚さ当りの温度
差は2.5〜100℃にもなつてしまう。10000Kcal/
m2を発生する場合はPTC温度係数の小さい室温
付近で、温度の立ち上がりにある状態または負荷
が十分に冷えている場合と考えられ、温度係数に
よる発熱密度分布はさほどではないかも知れない
が、それにしても、100℃を越える温度差は有機
系のヒータとして成立する限界に近いものと考え
られる。一例を上げれば、100℃以上の温度域に
おいて急激に抵抗値が増大するPTCヒータを用
いて、20℃の液体を加熱する液中ヒータを構成す
る場合に、ヒータの表面が20℃としても、内部は
120℃にならなくてはならず、その間の抵抗値の
分布は非常に大きなものになるであろう。この場
合、実質的に発熱部として機能している部分は高
抵抗、高電圧勾配、高電力密度の非常に薄い部分
であると考えられる。その他の部分は熱の単なる
伝達経路であり、むしろ、断熱材としての働きし
かない。以上の観点から1mm以上の厚さのPTC
抵抗体は全く意味がないと考えられる。なお、以
上に述べた問題点を緩和する手段として高熱伝導
率のフイラーを添加する方法があり、例えば、熱
伝導率が30Kcal/mh℃の高純度アルミナ粉末
や、同じく、90Kcal/mh℃の炭化硅素粉末を
加えることにより、抵抗体の熱伝導率を0.5〜
1Kcal/mh℃とすることは技術的に容易である
ので、1mm厚さで出力10000Kcal/m2hのヒータ
において、1〜20℃の温度分布とすることが可能
となる。このフイラーは先に述べた高温域におけ
る負の抵抗温度特性を改良するためのフイラーと
兼用することもできるし、独立に加えることもで
きる。熱伝導性を改良するフイラーとしては粒度
が大きいものが比較的有利であり、極端な場合は
一対の電極間にまたがつていてもよい。以上に述
べた結果をまとめると、PTC抵抗体の厚さ方向
の熱抵抗値は平方メートル当り0.01h℃/Kcal以
下と規定できる。
Regarding the method of adjusting the resistance value, it is possible to change the thickness of the resistor composition of the PTC heater, but
If the resistor is made too thick, for example exceeding 1 mm, the thermal resistance inside the resistor increases and a considerable temperature gradient is required to match the heat flux passing through the resistor.
Also, the temperature distribution in the voltage application direction inside the resistor is 1
Even at ℃, the temperature coefficient of resistance exceeds 0.21/℃
In a PTC resistor, a resistance value distribution of 20% occurs, and there is a heat generation density distribution with a difference of 20% proportional to the resistance value. If the temperature distribution exceeds 5℃, a heat generation density distribution of 1.2 to the fifth power, or 2.5 times, will occur, and the resistor at the highest temperature will reach a heat value that exceeds its limit, causing redispersion of carbon black. However, a change in resistance value that cannot be recovered will occur. The thermal conductivity of general crystalline polymers is
Since it is in the range of 0.1 to 0.4 Kcal/mh℃, room temperature 20
In a PTC resistor that is stable at 80℃ and generates and dissipates heat at 600Kcal/m 2 h,
The temperature difference per thickness should be 1.5-6°C. Furthermore, considering a high temperature PTC resistor or a case where the load is large, it is necessary to assume a temperature of 1000 to 10000 Kcal/m 2 , and in that case, the temperature difference per 1 mm thickness will be as high as 2.5 to 100°C. 10000Kcal/
If m 2 is generated, it is considered to be near room temperature, where the PTC temperature coefficient is small, and the temperature is rising or the load is sufficiently cold, and the heat generation density distribution depending on the temperature coefficient may not be that great. Even so, a temperature difference exceeding 100°C is considered to be close to the limit for an organic heater. For example, when constructing a submerged heater that heats a liquid at 20°C using a PTC heater whose resistance value increases rapidly in a temperature range of 100°C or higher, even if the surface of the heater is 20°C, Inside is
It would have to reach 120°C, and the distribution of resistance values would be very large. In this case, the portion that essentially functions as a heat generating portion is considered to be a very thin portion with high resistance, high voltage gradient, and high power density. The other parts are simply heat transfer paths, and rather serve only as heat insulators. From the above point of view, PTC with a thickness of 1 mm or more
It seems that the resistor has no meaning at all. In addition, as a means to alleviate the above-mentioned problems, there is a method of adding a filler with high thermal conductivity.For example, high-purity alumina powder with a thermal conductivity of 30 Kcal/mh°C or carbonized filler with a thermal conductivity of 90 Kcal/mh°C is available. By adding silicon powder, the thermal conductivity of the resistor can be increased from 0.5 to
Since it is technically easy to set the temperature to 1 Kcal/mh°C, it is possible to achieve a temperature distribution of 1 to 20°C in a heater with a thickness of 1 mm and an output of 10000 Kcal/m 2 h. This filler can be used in combination with the filler for improving the negative resistance-temperature characteristics in the high temperature range, or can be added independently. As a filler for improving thermal conductivity, it is relatively advantageous to use a filler with a large particle size, and in extreme cases, it may span between a pair of electrodes. Summarizing the results described above, the thermal resistance value of the PTC resistor in the thickness direction can be defined as 0.01 h°C/Kcal or less per square meter.

次に、このPTC抵抗体の耐熱安定性について
述べる。以上に示したPTC抵抗体はそれ自体安
定性が高く、長期の使用に耐えうるものである
が、樹脂にポリオレフイン系の材料を用いた場合
には電極に用いられる重金属類のイオンによつて
ポリオレフインが著しく酸化劣化を受ける場合が
ある。本発明のPTCヒータは銅箔電極等と非常
に接近して構成されるためにこの点に特に注意を
払う必要がある。また、ポリオレフインの主鎖の
切断やその2次反応として生じる架橋による劣化
過程を防止するために、フエノール系とチオエー
テル系の安定剤を組み合せて用いる最高の効果が
得られるが、チオエーテルの存在によつて銅箔等
の電極が劣化する現象も発生する。このような現
象を防止するために、重金属イオンと結合して金
属錯化合物を作り得る重金属イオン不活性化剤を
添加することが有効であり、長期の信頼性を得る
ために必要である。これらの安定剤の配合比率は
カーボンブラツクの禁止作用に打ち勝つに十分な
量を添加する必要があり、樹脂に対してフエノー
ル系とチオエーテル系の安定剤は1〜10%、重金
属イオン不活性化剤は0.5〜2%と、通常よりも
多量に添加すると効果的である。
Next, we will discuss the heat resistance stability of this PTC resistor. The above-mentioned PTC resistor itself is highly stable and can withstand long-term use, but when polyolefin-based materials are used for the resin, heavy metal ions used in the electrodes can damage the polyolefin. may undergo significant oxidative deterioration. Since the PTC heater of the present invention is constructed very close to copper foil electrodes, etc., special attention must be paid to this point. In addition, in order to prevent the deterioration process caused by the scission of the main chain of polyolefin and the crosslinking that occurs as a secondary reaction, the best effect can be obtained by using a combination of phenol and thioether stabilizers, but the presence of thioether As a result, electrodes such as copper foil may deteriorate. In order to prevent such a phenomenon, it is effective to add a heavy metal ion deactivator that can combine with heavy metal ions to form metal complex compounds, and is necessary to obtain long-term reliability. The blending ratio of these stabilizers must be sufficient to overcome the inhibitory effect of carbon black, with 1 to 10% of phenol and thioether stabilizers based on the resin, and 1 to 10% of heavy metal ion deactivators. It is effective to add 0.5 to 2%, which is a larger amount than usual.

発明の効果 以上のように、本発明のヒータによれば次の効
果が得られる。
Effects of the Invention As described above, the heater of the present invention provides the following effects.

(1) 導電性微粉末を多量に配合した低抵抗PTC
組成物であつても良好な対金属接着性が得られ
るので、平行平板電極間に抵抗体を設けること
により、極めて低抵抗で高信頼性のヒータをつ
くることができる。
(1) Low resistance PTC containing a large amount of conductive fine powder
Since good adhesion to metal can be obtained even with the composition, by providing a resistor between the parallel plate electrodes, a highly reliable heater with extremely low resistance can be produced.

(2) 大きなPTCの抵抗変化率と小さな内部熱抵
抗を有し、抵抗値の調整範囲も広く、ヒータと
して安全素子として応用範囲が広い。
(2) It has a large PTC resistance change rate and small internal thermal resistance, and has a wide resistance value adjustment range, and has a wide range of applications as a heater and safety element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のヒータの斜視図、第2図は本
発明の一実施例であるヒータの斜視図、第3図は
実施例のヒータの抵抗値と温度との関係を示す
図、第4図は低密度ポリエチレンと各種カーボン
ブラツクとの組成物のPTC特性を示す図、第5
図は低密度ポリエチレンと平均粒径500Åのカー
ボンブラツクとの組成比とPTC特性との関係を
示す図である。 3,3′……銅箔電極、4……PTC抵抗体組成
物。
FIG. 1 is a perspective view of a conventional heater, FIG. 2 is a perspective view of a heater that is an embodiment of the present invention, FIG. 3 is a diagram showing the relationship between the resistance value and temperature of the heater of the embodiment, and FIG. Figure 4 shows the PTC characteristics of compositions of low density polyethylene and various carbon blacks.
The figure shows the relationship between the composition ratio of low density polyethylene and carbon black having an average particle size of 500 Å and the PTC characteristics. 3, 3'...Copper foil electrode, 4...PTC resistor composition.

Claims (1)

【特許請求の範囲】 1 互いに接近して設けられた一対の平行平板状
電極と、前記一対の平行平板状電極との間に設け
られた金属に対する接着性の良好な官能基を含む
結晶性重合体と導電性微粉末とを主成分とする抵
抗体組成物とから成る正の抵抗温度係数を有する
ヒータ。 2 金属に対する接着性の良好な官能基が、ベー
スとなる結晶性重合体の分子の主に末端に配置さ
れた官能基導入結晶性重合体から成り、官能基導
入の前後における結晶化度および結晶融点の物性
値の変化が非常に小さい特許請求の範囲第1項記
載のヒータ。 3 導入される官能基がカルボキシル基である特
許請求の範囲第1項または第2項記載のヒータ。 4 導電性微粉末が平均粒子径400Å以上で、形
状が略球径であるカーボンブラツクから成る特許
請求の範囲第1項または第2項記載のヒータ。 5 抵抗体組成物に占めるカーボンブラツクの比
率が10〜70重量%である特許請求の範囲第1項ま
たは第2項記載のヒータ。 6 抵抗体組成物に副成分として電気絶縁性ない
し高抵抗のフイラーが含まれ、前記抵抗体組成物
の引張り、曲げ、せん断における機械強度が、フ
イラーを含まない場合のカーボンブラツク組成比
40〜70%の抵抗体組成物の機械強度の範囲内にあ
る特許請求の範囲第1項または第2項記載のヒー
タ。 7 抵抗体組成物に副成分として電気絶縁性ない
し高抵抗の熱伝導率が20Kcal/mh℃以上のフ
イラーが含まれる特許請求の範囲第1項または第
2項記載のヒータ。 8 一対の電極の間の熱抵抗が平方メートル当り
0.01h℃/Kcal以下である特許請求の範囲第1項
または第2項記載のヒータ。 9 抵抗体組成物の安定剤の一部として重金属イ
オンに対して金属錯化合物を作り得る不活性化剤
を含む特許請求の範囲第1項または第2項記載の
ヒータ。 10 抵抗体組成物の結晶性重合体がポリオレフ
イン系の樹脂であり、フエノール系、チオエーテ
ル系の安定剤と重金属イオンに対して金属錯化合
物を作り得る不活性化剤とを含み、電極が銅を含
む金属から作られている特許請求の範囲第1項ま
たは第2項記載のヒータ。
[Scope of Claims] 1. A pair of parallel plate-like electrodes provided close to each other, and a crystalline polymer containing a functional group with good adhesion to metal provided between the pair of parallel plate-like electrodes. 1. A heater having a positive temperature coefficient of resistance, comprising a resistor composition mainly composed of a conductive powder and a conductive fine powder. 2 The functional group-introduced crystalline polymer is composed of a functional group-introduced crystalline polymer in which functional groups with good adhesion to metals are placed mainly at the ends of the molecules of the base crystalline polymer, and the crystallinity and crystallinity before and after the introduction of functional groups are The heater according to claim 1, wherein the change in physical property value of melting point is very small. 3. The heater according to claim 1 or 2, wherein the functional group introduced is a carboxyl group. 4. The heater according to claim 1 or 2, wherein the conductive fine powder is made of carbon black having an average particle diameter of 400 Å or more and a substantially spherical shape. 5. The heater according to claim 1 or 2, wherein the proportion of carbon black in the resistor composition is 10 to 70% by weight. 6 Carbon black composition ratio when the resistor composition contains an electrically insulating or high-resistance filler as a subcomponent, and the mechanical strength of the resistor composition in tensile, bending, and shearing does not include the filler.
3. The heater according to claim 1 or 2, wherein the mechanical strength is within the range of 40 to 70% of the mechanical strength of the resistor composition. 7. The heater according to claim 1 or 2, wherein the resistor composition contains an electrically insulating or high-resistance filler having a thermal conductivity of 20 Kcal/mh°C or more as a subcomponent. 8 Thermal resistance between a pair of electrodes per square meter
The heater according to claim 1 or 2, which has a temperature of 0.01 h°C/Kcal or less. 9. The heater according to claim 1 or 2, which contains a deactivating agent capable of forming a metal complex with heavy metal ions as part of the stabilizer of the resistor composition. 10 The crystalline polymer of the resistor composition is a polyolefin-based resin, contains a phenol-based or thioether-based stabilizer, and a deactivating agent capable of forming a metal complex compound with respect to heavy metal ions, and the electrode contains copper. 3. A heater according to claim 1 or 2, which is made of a metal containing:
JP13840683A 1983-07-27 1983-07-27 Heater Granted JPS6028195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13840683A JPS6028195A (en) 1983-07-27 1983-07-27 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13840683A JPS6028195A (en) 1983-07-27 1983-07-27 Heater

Publications (2)

Publication Number Publication Date
JPS6028195A JPS6028195A (en) 1985-02-13
JPS6259415B2 true JPS6259415B2 (en) 1987-12-10

Family

ID=15221210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13840683A Granted JPS6028195A (en) 1983-07-27 1983-07-27 Heater

Country Status (1)

Country Link
JP (1) JPS6028195A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740507B2 (en) * 1985-10-18 1995-05-01 松下電器産業株式会社 Heating element
JPH0664929B2 (en) * 1985-04-02 1994-08-22 レイケム・コ−ポレイシヨン Electrical device
JPS61284083A (en) * 1985-06-11 1986-12-15 松下電器産業株式会社 Positive resistance temperature coefficient heat generating body
JPS6229085A (en) * 1985-07-31 1987-02-07 菱和産資株式会社 Surface heat generating body
JPS6373771U (en) * 1986-10-30 1988-05-17
JP2636243B2 (en) * 1987-06-05 1997-07-30 松下電器産業株式会社 Positive resistance temperature coefficient heating element
JP2638862B2 (en) * 1987-12-22 1997-08-06 松下電器産業株式会社 Positive low temperature coefficient heating element
JP2610474B2 (en) * 1988-04-14 1997-05-14 エヌオーケー株式会社 Planar heating element and method of manufacturing the same
JPH03267631A (en) * 1990-03-16 1991-11-28 Idemitsu Kosan Co Ltd Panel for heating
DE102008034748A1 (en) * 2008-07-24 2010-01-28 Tesa Se Flexible heated surface element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834835A (en) * 1971-09-14 1973-05-22
JPS5239636A (en) * 1975-09-22 1977-03-28 Eisai Co Ltd Synthetic process of dihydrocoenzyme q group compound
JPS5578406A (en) * 1978-12-01 1980-06-13 Raychem Corp Conductive polymer composition and method of producing same as well as utility thereof
JPS56161463A (en) * 1980-04-21 1981-12-11 Raychem Corp Filler-containing electroconductive polymer composition
JPS5963688A (en) * 1981-12-16 1984-04-11 株式会社フジクラ Panel heater and method of producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52165337U (en) * 1976-06-08 1977-12-14

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834835A (en) * 1971-09-14 1973-05-22
JPS5239636A (en) * 1975-09-22 1977-03-28 Eisai Co Ltd Synthetic process of dihydrocoenzyme q group compound
JPS5578406A (en) * 1978-12-01 1980-06-13 Raychem Corp Conductive polymer composition and method of producing same as well as utility thereof
JPS56161463A (en) * 1980-04-21 1981-12-11 Raychem Corp Filler-containing electroconductive polymer composition
JPS5963688A (en) * 1981-12-16 1984-04-11 株式会社フジクラ Panel heater and method of producing same

Also Published As

Publication number Publication date
JPS6028195A (en) 1985-02-13

Similar Documents

Publication Publication Date Title
US5582770A (en) Conductive polymer composition
US5057674A (en) Self limiting electric heating element and method for making such an element
US4910389A (en) Conductive polymer compositions
TWI281677B (en) Electrically conductive polymer composition
JP3749504B2 (en) PTC composition, thermistor element, and production method thereof
JPS6025873B2 (en) self-regulating electrical device
JPS6259415B2 (en)
US11037708B2 (en) PPTC device having resistive component
JPH08339904A (en) Positive temperature coefficient composition
US4801785A (en) Electrical devices
NO774259L (en) LEADING POLYMER COMPOSITIONS AND DEVICES INCLUDING THESE
JP2004522299A (en) PTC conductive polymer composition
TWI510537B (en) Polymer thermistor
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
CN113174097B (en) Self-temperature-limiting heating element, manufacturing method thereof and self-temperature-limiting heating sheet
JPH05217711A (en) Ptc composition
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JPH0217609A (en) Positive resistance temperature coefficient heating element
JP2638862B2 (en) Positive low temperature coefficient heating element
CN115244631A (en) PPTC heaters and materials with stable power and self-limiting characteristics
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JP2734253B2 (en) Positive resistance temperature coefficient heating element
KR100470906B1 (en) Very low resistance ptc device and continuous manufacturing method thereof
JPH03149801A (en) Self-temperature limiting conductive composite material
JP2730062B2 (en) Positive resistance temperature coefficient heating element