JPS6140360A - Electrically conductive resin composition, and current limiting element using said composition - Google Patents

Electrically conductive resin composition, and current limiting element using said composition

Info

Publication number
JPS6140360A
JPS6140360A JP16216084A JP16216084A JPS6140360A JP S6140360 A JPS6140360 A JP S6140360A JP 16216084 A JP16216084 A JP 16216084A JP 16216084 A JP16216084 A JP 16216084A JP S6140360 A JPS6140360 A JP S6140360A
Authority
JP
Japan
Prior art keywords
graphite
current limiting
limiting element
composition
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16216084A
Other languages
Japanese (ja)
Inventor
Akio Yamaguchi
山口 章夫
Koji Suzuki
弘二 鈴木
Yozo Nagai
陽三 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP16216084A priority Critical patent/JPS6140360A/en
Publication of JPS6140360A publication Critical patent/JPS6140360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Abstract

PURPOSE:To obtain an electrically conductive resin composition having remarkable PTC characteristics and suitable for a current limiting element, by compounding a thermoplastic resin with a carbon black having a specific range of surface area and a graphite having an average particle diameter smaller than a specific level. CONSTITUTION:The objective composition can be prepared by mixing (A) a thermoplastic resin, practically preferably a polyetheylene, an ethylene-vinyl acetate copolymer, etc. with (B) carbon black having a specific surface area of 20-100m<2>/g and (C) graphite having an average particle diameter of <=10mum. The sum of the components B and C is 40-100pts.(wt.) per 100pts. of the component A, and the graphite ratio C/(B+C) is 0.1-0.6. The composition is kneaded homogeneously with a mixing roll, and formed in the form of a sheet. The objective current limiting element having remarkable PTC characteristics can be manufactured by attaching two or more mutually separated electrodes on the surface of the sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は正の抵抗温度係数を有する(所謂「PTC特性
」)導電性樹脂組成物および該組成物の有するPTC特
性を利用する電流制限素子に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a conductive resin composition having a positive temperature coefficient of resistance (so-called "PTC characteristics") and a current limiting element that utilizes the PTC characteristics of the composition. Regarding.

(従来の技術) 従来、電気回路の保護には過電流による溶断作用を利用
する電流ヒユーズが多用されているが、このヒユーズは
再度使用することができない欠点がある。
(Prior Art) Conventionally, current fuses that utilize the fusing effect caused by overcurrent have been frequently used to protect electric circuits, but these fuses have the disadvantage that they cannot be used again.

又、近年、チタン酸バリウムを主成分とする磁気系PT
Cサーミスタが市販されるようになったが、この磁気系
サーミスタは初期抵抗値が高く(通常、20℃の抵抗値
が10000Ω−mより高い)、また小型のものが得ら
れないため、小型化を指向している電子回路の保護用と
しては不向きである。
In addition, in recent years, magnetic PT whose main component is barium titanate has been developed.
C thermistors have become commercially available, but this magnetic thermistor has a high initial resistance value (usually the resistance value at 20°C is higher than 10,000 Ω-m) and cannot be made small, so there is a need for miniaturization. It is unsuitable for protection of electronic circuits intended for

一方、s可m性樹脂にニッケル、タングステン、モリブ
デンのような金属粒子gよびカーボンプラツクを配合し
た組成物が特開昭156−161464号公報に開示さ
れている。この組成物によシ得られるサーミスタは実用
温度範囲における抵抗上昇が大きく、電気回路、電子回
路の電流制限素子として用いた場合、雰囲気温度や自己
発熱によシ抵抗値が変動し易いので、回路設計に支障が
あった。
On the other hand, Japanese Patent Laid-Open No. 156-161464 discloses a composition in which metal particles such as nickel, tungsten, and molybdenum and carbon plaque are blended with an S-flexible resin. The thermistor obtained with this composition has a large resistance increase in the practical temperature range, and when used as a current limiting element in electric or electronic circuits, the resistance value tends to fluctuate due to ambient temperature or self-heating, so There was a problem with the design.

(発明が解決しようとする問題点) 電気・電子回路保護用の電流制限素子は、被保護回路と
直列に接続され、通常状態では、被保護回路の抵抗に応
じた電流(1)が該素子にも流れ、素子(抵抗値R)に
I”Hのジーール熱が発生する。
(Problem to be Solved by the Invention) A current limiting element for protecting an electric/electronic circuit is connected in series with the protected circuit, and in a normal state, a current (1) corresponding to the resistance of the protected circuit flows through the element. The current also flows, and Geel heat of I''H is generated in the element (resistance value R).

素子の温度は雰囲気温度等の環境条件と放熱条件とこの
ジーール熱とが平衡し、一定温度に保たれる。
The temperature of the element is maintained at a constant temperature as environmental conditions such as ambient temperature, heat dissipation conditions, and this Geel heat are in equilibrium.

−1、素子は正の抵抗温度特性を有しているため、平衡
温度時の固有抵抗値は、初期抵抗値に比して増加してい
るが、平衡温度時の抵抗値が初期抵抗値に比べて大きく
なりすぎると被保護回路への電流値が減少してしまい通
常状態で限流状態におちいることがしばしばあった。
-1. Since the element has a positive resistance-temperature characteristic, the specific resistance value at equilibrium temperature increases compared to the initial resistance value, but the resistance value at equilibrium temperature is equal to the initial resistance value. In comparison, if it becomes too large, the current value to the protected circuit decreases, often resulting in a current-limited state in normal conditions.

他方、初期抵抗値を低くした場合には上記の欠点は無く
なるが、被保護回路の電流値(即ち素子の電流)が限流
しない範囲が存在する。しかし、短絡等で異常電流が流
れた場合電流制限素子がジーール熱を利用する以上、抵
抗値の大きさに発熱量が依存するため、被保護回路に適
した抵抗温度特性を有する組成物が必要であった。しか
るに、一方で実際の被保護回路の抵抗値、電流制限素子
に作用する電圧はまちまちであ如、かような種々の条件
に適応し得る電流制限素子の出現が待望されている。
On the other hand, if the initial resistance value is lowered, the above-mentioned drawbacks are eliminated, but there is a range in which the current value of the protected circuit (ie, the current of the element) is not limited. However, if an abnormal current flows due to a short circuit, etc., the current limiting element uses Zeel heat, and the amount of heat generated depends on the resistance value, so a composition with resistance-temperature characteristics suitable for the circuit to be protected is required. Met. However, the actual resistance value of the circuit to be protected and the voltage acting on the current limiting element vary, and there is a long-awaited development of a current limiting element that can adapt to such various conditions.

(問題点を解決するための手段) 本発明者達は上記現状に鑑み鋭意検討の結果、熱可塑性
樹脂に対し特定量の導電性粒子を混合するに際し、導電
性粒子として特定範囲の表面積を有するカーボンブラッ
クと特定数値以下の平均粒子径を有するグラフ1イトを
用いること、および導電性粒子合計量中に占めるグラフ
ァイトの割合を特定範囲とすることによシ、初期抵抗値
が低く且つ所定温度において抵抗値が急速に増加し得る
ことを見出し、本発明を完成するに至ったものである。
(Means for Solving the Problems) In view of the above-mentioned current situation, the inventors of the present invention have conducted intensive studies and found that when mixing a specific amount of conductive particles into a thermoplastic resin, the conductive particles have a surface area within a specific range. By using carbon black and graphite having an average particle diameter below a specific value, and by setting the proportion of graphite in the total amount of conductive particles within a specific range, the initial resistance value is low and at a specified temperature. It was discovered that the resistance value can be rapidly increased, and this led to the completion of the present invention.

即ち、本発明は熱可塑性樹脂100重量部に対し導電性
粒子40〜100重量部が配合されており、前記導電性
粒子は表面Wt20〜100m”、#のカーボンブラッ
クおよび平均粒子径10μ想以下のグラファイトであり
、該グラファイトは導電性粒子合計量に占める存在比が
0.1〜0.6とされていることを特徴とする導電性樹
脂組成物に係るものである。
That is, in the present invention, 40 to 100 parts by weight of conductive particles are blended to 100 parts by weight of thermoplastic resin, and the conductive particles have a surface Wt of 20 to 100 m'', # carbon black, and an average particle diameter of 10 μm or less. The present invention relates to a conductive resin composition characterized in that the present invention is graphite, and the graphite has an abundance ratio of 0.1 to 0.6 in the total amount of conductive particles.

また、本発明の他の態様は上記導電性樹脂組成物から成
る成形物の表面に互い隔離された2個以上の電極が設け
られて成るPTC電流制限素子に係るものである。
Another aspect of the present invention relates to a PTC current limiting element in which two or more electrodes separated from each other are provided on the surface of a molded product made of the above-mentioned conductive resin composition.

本発明に係る電流制限素子は、例えば熱可塑性樹脂、カ
ーボンブラックおよびグラファイトの所定量をミキシン
グロールで均一に混練し、この混合物をシート状、フィ
ルム状、板状等の所定形状に成形し、この成形物の表面
に互い隔離された2個以上の電極を設ける方法等によル
得ることができる。
The current limiting element according to the present invention can be produced by uniformly kneading a predetermined amount of thermoplastic resin, carbon black, and graphite using a mixing roll, forming the mixture into a predetermined shape such as a sheet, film, or plate. This can be achieved by, for example, providing two or more electrodes separated from each other on the surface of the molded product.

この電流制限素子は初期抵抗値、即ち20℃における固
有抵抗値(Rや)が1〜10000Ω−口と低く、また
R(TP−20) /R,が1〜10で、且つRTp 
/R。
This current limiting element has a low initial resistance value, that is, a specific resistance value (R) at 20°C of 1 to 10,000 Ω, and a low R(TP-20)/R of 1 to 10, and RTp
/R.

が少なくとも1000を示すものである。なお、TPは
電流制限素子が最大抵抗値即ち、ピーク抵抗値(RTP
 )を示す温度(℃)を、R(TP−2゜)は温度TP
(℃)よりも20℃低い温度における固有抵抗値を各々
示している。
is at least 1000. Note that TP is the maximum resistance value of the current limiting element, that is, the peak resistance value (RTP
), R(TP-2°) is the temperature TP
The specific resistance values at a temperature 20° C. lower than (° C.) are shown.

本発明の如き、PTC特性を有する電流制限素が理想的
であるが、現実には、TPよシ低い温度から抵抗の上昇
が始まるのが通常である。PTC電流制限素子の良否を
判定する上で、TPよル低い温度(T、)での抵抗値と
、R,の比即ち、抵抗温度特性に於て20℃から(TP
−T、)の温度範囲の抵抗上昇勾配と、R,とTPO温
度時での抵抗値(RTP)の比、即ち抵抗変化倍数を示
すのか最も通常用いられる手段である。ここでLが10
℃以下では、現実的に急峻に抵抗上昇が始まる領域に入
つてしまい良否判定の基礎とするには不都合であり、ま
たT、が30℃以上では、TPで急峻に抵抗値が上昇す
る事を示す道標としては、余りにもTPと差が1>すぎ
るため、Lを20℃とした。
A current limiting element having PTC characteristics as in the present invention is ideal, but in reality, the resistance usually starts to rise at a temperature lower than the TP. In determining the quality of the PTC current limiting element, the ratio of the resistance value at a temperature (T, ) lower than TP and R, that is, the resistance temperature characteristic, from 20°C to (TP
This is the most commonly used means of indicating the resistance increase slope in the temperature range of -T, ) and the ratio of R, to the resistance value (RTP) at TPO temperature, that is, the resistance change multiple. Here L is 10
If the temperature is below 30°C, the resistance will realistically start to rise steeply, making it inconvenient to use as a basis for pass/fail judgment.If T is 30°C or higher, the resistance value will rise sharply at TP. As a guidepost, L was set at 20°C because the difference from TP was too large by 1>.

従って、R(TP−20)/亀は、20℃〜(TP−2
0)℃間の抵抗上昇の勾配を示し、RTP/R#は、2
0℃時の抵抗値とTP時の抵抗値の比即ち、抵抗の変化
倍数を示すものである。
Therefore, R(TP-20)/tortoise is 20°C~(TP-2
0) °C, and RTP/R# is 2
It shows the ratio of the resistance value at 0° C. and the resistance value at TP, that is, the multiple of change in resistance.

R(TP−20)/I−の値が1未満の場合は、温度上
昇で抵抗値がR9に比較して小さくなり、負の抵抗温度
係数を示すことになり、PTC素子に課電した場合、#
ン賑に伴って抵抗値が下がり、電流が増加するという甚
だ不都合な結果となる。さらに10を超える場合、実用
時の素子の温度変化によシ、著るしく抵抗値が変化する
ことになシ、素子を応用した電気回路の設計が非常に困
難になる。場合によっては、素子温度を一定に保つ付滞
装置が必要になることもある。
If the value of R(TP-20)/I- is less than 1, the resistance value will become smaller compared to R9 due to temperature rise, and it will show a negative temperature coefficient of resistance, and when a voltage is applied to the PTC element. ,#
As the current increases, the resistance value decreases and the current increases, which is a very inconvenient result. Furthermore, if it exceeds 10, the resistance value will change significantly due to temperature changes of the element during practical use, making it extremely difficult to design an electric circuit using the element. In some cases, a holdup device may be required to keep the element temperature constant.

又、RTP/R4oは出来るだけ大きい方がよいが、1
000未満では実用特電流を流した場合、自己発熱によ
シ温度域昇が生じて素子の許容温度を超えることがらシ
、また素子自体は抵抗の温度変化を利用するものであり
、抵抗変化倍数の小さいものが長くなfi、100^(
1える場合は電極が大きくなる。
Also, it is better for RTP/R4o to be as large as possible, but 1
If it is less than 000, when a practical special current is applied, the temperature range will rise due to self-heating and the allowable temperature of the element will be exceeded.Furthermore, the element itself uses the temperature change of the resistance, so the resistance change multiple The smaller one is the longer fi, 100^(
When increasing by 1, the electrode becomes larger.

次に、図面により本発明に係る電流制限素子の実例を説
明する。第1図〜第4図は電流制限素子の実例を示して
おり、第1図においては導電性樹脂組成物から成るシー
ト状の成形物1(電流制限素子本体)の表面および裏面
の全面を覆うように銅箔のような金属箔電極2.3が熱
融着、導電性接着剤による接着等の手段によシ設けられ
ている。
Next, an example of the current limiting element according to the present invention will be explained with reference to the drawings. Figures 1 to 4 show examples of current limiting elements, and in Figure 1, the entire surface and back surface of a sheet-like molded product 1 (current limiting element main body) made of a conductive resin composition is covered. A metal foil electrode 2.3, such as a copper foil, is provided by means of heat fusion, adhesion with a conductive adhesive, or the like.

第2図および第3図は他の実例を示しており、第2図は
成形物1の表面の両側端に沿って帯状の電極2.3が設
けられ、第3図においては成形物1の表面および裏面に
各々帯状の電極2.3が設けられている。
2 and 3 show other examples, in which strip-shaped electrodes 2.3 are provided along both sides of the surface of the molded product 1, and in FIG. Strip-shaped electrodes 2.3 are provided on each of the front and back surfaces.

第4図は更に他の実例を示しており、成形物lの表面の
両側端に沿って帯状の電極2.3が設けられると共に裏
面にはその全面を覆う電極4が設けられている。
FIG. 4 shows yet another example, in which band-shaped electrodes 2.3 are provided along both sides of the front surface of the molded product 1, and an electrode 4 is provided on the back surface to cover the entire surface thereof.

本発明において、熱可塑性樹脂は特に制限されることな
く種々のものが使用できるが、実用上ポリエチレン、エ
チレン−酢酸ビニル共重合体、エチレン−アクリル酸エ
チル共重合体等が好ましいものである。この熱可塑性樹
脂は電子線照射等によシ架橋することができる。
In the present invention, various thermoplastic resins can be used without particular limitation, but polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, etc. are practically preferred. This thermoplastic resin can be crosslinked by electron beam irradiation or the like.

この熱可塑性樹脂には導電性粒子としてカーボンブラッ
クおよびグラファイト両者の合計量が、樹脂100重量
部に対し40〜100重量部になるよう配合される。導
電性粒子の配合量が少なすぎると初期抵抗値が高くなシ
、また配合量が多過ぎると樹脂組成物をシート状等の所
定形状に成形した場合、該成形物の機械的強度が小さく
なるので、いずれも好ましくない。
This thermoplastic resin contains carbon black and graphite as conductive particles in a total amount of 40 to 100 parts by weight based on 100 parts by weight of the resin. If the amount of conductive particles blended is too small, the initial resistance value will not be high, and if the blended amount is too large, when the resin composition is molded into a predetermined shape such as a sheet, the mechanical strength of the molded product will be reduced. Therefore, neither is preferable.

本発明においては、上記のように導電性粒子として、カ
ーボンブラックおよびグラファイトの両者が併用される
が、グラファイトは導電性粒子合計量中に占める存在比
が0.1〜0.6とされる。グラファイトの存在比が0
.1に満たない場合には、R。
In the present invention, both carbon black and graphite are used together as conductive particles as described above, and the abundance ratio of graphite in the total amount of conductive particles is 0.1 to 0.6. The abundance ratio of graphite is 0
.. If less than 1, R.

およびR(TP−2゜)/R3が大きく、存在比が0゜
6を超えるとRTP/R,が小さくなるのでいずれも好
ましくない。なお、グラファイトの存在比は下記式によ
り算出する。
and R(TP-2°)/R3 are large, and if the abundance ratio exceeds 0°6, RTP/R becomes small, which is not preferable. Note that the abundance ratio of graphite is calculated using the following formula.

また、本発明において用いるカーボンブラックは表面積
が20〜100m/P (BET法による測定値)であ
り、グラファイトは平均粒子径が10μm以下である。
Further, the carbon black used in the present invention has a surface area of 20 to 100 m/P (measured value by BET method), and the average particle diameter of graphite is 10 μm or less.

カーボンブラックの表面積が20flI/fよシも小さ
い場合には、該カーボンブラックの容量がかさばシ、樹
脂およびグラファイトとの均一混合が困難になるばか夛
でなく、この゛混合物を成形しても実用的な機械的強度
を有する成形物が得られず、100ne/lを超えると
RTP/R,が小さくなるのでいずれも好ましく外い。
When the surface area of carbon black is as small as 20flI/f, the capacity of the carbon black becomes bulky, which makes it difficult to mix uniformly with resin and graphite, and even when this mixture is molded. A molded product having practical mechanical strength cannot be obtained, and if it exceeds 100 ne/l, the RTP/R becomes small, so neither is preferable.

また、グラファイトの平均粒子径が10μmよりも大き
いと、R(TP−20)/R2oが大きくなるので好ま
しくない。
Moreover, if the average particle diameter of graphite is larger than 10 μm, R(TP-20)/R2o becomes large, which is not preferable.

(実施例) 以下、実施例によシ本発明を更に詳細に説明する。なお
、実施例中の[部]は「重量部]である。
(Examples) Hereinafter, the present invention will be explained in more detail using examples. In addition, [parts] in the examples are "parts by weight".

実施例 高密度ポリエチレンペレット(三片石油化学社製、商品
名H2−5300B)100部に対し、i面m45d/
fのカーボンブラック40部および平均粒子径4μmの
グラファイト30部を温度165℃のミキシングロール
によシ30分間混練する(ポリエチレンを溶融せしめる
と共に王者を均一に混合する)。
Example For 100 parts of high-density polyethylene pellets (manufactured by Mikata Petrochemical Co., Ltd., trade name H2-5300B), i-side m45d/
40 parts of the carbon black of No. f and 30 parts of graphite having an average particle size of 4 μm are kneaded for 30 minutes using a mixing roll at a temperature of 165° C. (melting the polyethylene and uniformly mixing the polyethylene).

の後、圧力51w/dに保持したまま室温まで冷却し、
厚さ0.5鶏、縦および横が各々20c+y+のシート
状成形物を得る。
After that, cool to room temperature while maintaining the pressure at 51 w/d,
A sheet-like molded product with a thickness of 0.5 mm and a length and width of 20 c+y+ is obtained.

このシート状物に10 Mradの電子線を照射してポ
リエチレンを架橋した後、表裏両面に厚さ0.5sm+
After crosslinking the polyethylene by irradiating this sheet-like material with an electron beam of 10 Mrad, a thickness of 0.5 sm +
.

縦および横が各々20tMの銅箔を配置し、温度165
℃、圧力5kg/dの条件で熱融着せしめた後冷却し、
第1図と同構造の電流制限素子(試料番号1)を得た。
Copper foils of 20 tM in length and width are arranged, and the temperature is 165
℃ and a pressure of 5 kg/d, and then cooled.
A current limiting element (sample number 1) having the same structure as in FIG. 1 was obtained.

更に、カーボンブラックおよびグラファイトの配合量、
カーボンブラックの表面積、グラファイトの平均粒子径
を第1表に示すように設定する以外は全て試料番号lの
場合と同様に作業して、試料番号2〜7の電流制限素子
を得た。
Furthermore, the blending amount of carbon black and graphite,
Current limiting elements of sample numbers 2 to 7 were obtained by carrying out the same operations as for sample number 1 except that the surface area of carbon black and the average particle diameter of graphite were set as shown in Table 1.

なお、カーボンブラックおよびグラファイトは各々下記
のものを用いた。
The following carbon black and graphite were used.

(カーボンブラック) 平均粒子径4μm・・東洋カーボン社製、商品名  A
T宛30 平均粒子径25μm・・・東洋カーボン社製、商品名 
 AT  總lO 平均粒子径45μm・・・東洋カーボン社製、商品名 
 ATffi5 (グラファイト) 表面積 8d/l・・・コロンビアカーボン社製、商品
名 RAVEN MT−P 表面積30d/l・・・東海カーボン社製、商品名5E
AST−5 表”面積、45d/l・・・コロンビアカーボン社製、
商品名 RAVEN 14 表面積85dl?・・・東海カーボン社製、商品名5E
AST−3 表面積I40m”/f・・・キャボット社製、商品名V
ULCAN 9 表面積1400dl ?・・・キャボノト社製、商品名
BP−2000 これら電流制限素子におけるR20% R(TP−20
)、R7pgよびTPの測定データ、これらデータに基
いて算出したR(TP−2゜)/Rゎ、RTP/R21
1の値を第1表に示す。なお、島、R(TP−20)お
よびR丁PIlはディジタルマルチメーターにて測定し
た。
(Carbon black) Average particle size 4μm...manufactured by Toyo Carbon Co., Ltd., product name A
Addressed to T 30 Average particle size 25 μm...manufactured by Toyo Carbon Co., Ltd., product name
AT Solo Average particle size 45 μm...manufactured by Toyo Carbon Co., Ltd., trade name
ATffi5 (graphite) Surface area 8 d/l...manufactured by Columbia Carbon Co., Ltd., product name RAVEN MT-P Surface area 30 d/l...manufactured by Tokai Carbon Co., Ltd., product name 5E
AST-5 Surface area, 45 d/l...manufactured by Columbia Carbon Co., Ltd.
Product name RAVEN 14 Surface area 85dl? ...Manufactured by Tokai Carbon Co., Ltd., product name 5E
AST-3 Surface area I40m"/f...manufactured by Cabot, product name V
ULCAN 9 surface area 1400dl? ...manufactured by Kabonoto Co., Ltd., product name BP-2000 R20% R in these current limiting elements (TP-20
), R7pg and TP measurement data, R(TP-2゜)/Rゎ, RTP/R21 calculated based on these data
The values of 1 are shown in Table 1. Incidentally, the island, R (TP-20) and R-PII were measured using a digital multimeter.

比較のため、カーボンブラックの平均粒子径、グラファ
イトの表面積および両者の配合量を第1表に示すように
設定する以外は、全て試料番号1と同様に作業して得た
試料番号8〜16の電流制限素子のデータを同時に示す
For comparison, Samples Nos. 8 to 16 were prepared in the same manner as Sample No. 1, except that the average particle diameter of carbon black, the surface area of graphite, and the amount of both were set as shown in Table 1. Data for the current limiting element is also shown.

(発明の効果) 本発明は上記実施例からも判るように、初期抵抗値(R
ゎ)が低いばかりでなく、R(TP−2o)/ちが小さ
く且つRTP/R,が大きく、顕著なPTC特性を示す
特徴を有する。
(Effects of the Invention) As can be seen from the above embodiments, the present invention has an initial resistance value (R
ゎ) is not only low, but R(TP-2o)/difference is small and RTP/R, is large, and it has the characteristics of exhibiting remarkable PTC characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はいずれも本発明に係る電流制限素子の
実例を示す側面図である。
1 to 4 are side views showing examples of the current limiting element according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂100重量部に対し導電性粒子40
〜100重量部が配合されており、前記導電性粒子は表
面積20〜100m^2/gのカーボンブラックおよび
平均粒子径10μm以下のグラファイトであり、該グラ
ファイトは導電性粒子合計量に占める存在比が0.1〜
0.6とされていることを特徴とする導電性樹脂組成物
(1) 40 parts by weight of conductive particles per 100 parts by weight of thermoplastic resin
~100 parts by weight are blended, and the conductive particles are carbon black with a surface area of 20 to 100 m^2/g and graphite with an average particle size of 10 μm or less, and the graphite has an abundance ratio in the total amount of conductive particles. 0.1~
0.6.
(2)熱可塑性樹脂100重量部に対し導電性粒子40
〜100重量部が配合されており、前記導電性粒子は表
面積20〜100m^2/gのカーボンブラックおよび
平均粒子径10μm以下のグラファイトであル、該グラ
ファイトは導電性粒子合計量に占める存在比が0.1〜
0.6とされた導電性樹脂組成物が所定形状に成形され
ており、該成形物表面に互い隔離された2個以上の電極
が設けられていることを特徴とする電流制限素子。
(2) 40 parts by weight of conductive particles per 100 parts by weight of thermoplastic resin
~100 parts by weight is blended, and the conductive particles are carbon black with a surface area of 20 to 100 m^2/g and graphite with an average particle size of 10 μm or less, and the graphite has an abundance ratio in the total amount of conductive particles. is 0.1~
1. A current limiting element, characterized in that a conductive resin composition having a conductivity of 0.6 is molded into a predetermined shape, and two or more electrodes separated from each other are provided on the surface of the molded product.
JP16216084A 1984-07-31 1984-07-31 Electrically conductive resin composition, and current limiting element using said composition Pending JPS6140360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16216084A JPS6140360A (en) 1984-07-31 1984-07-31 Electrically conductive resin composition, and current limiting element using said composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16216084A JPS6140360A (en) 1984-07-31 1984-07-31 Electrically conductive resin composition, and current limiting element using said composition

Publications (1)

Publication Number Publication Date
JPS6140360A true JPS6140360A (en) 1986-02-26

Family

ID=15749168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16216084A Pending JPS6140360A (en) 1984-07-31 1984-07-31 Electrically conductive resin composition, and current limiting element using said composition

Country Status (1)

Country Link
JP (1) JPS6140360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513685A (en) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductive polymer composition for preparing wires and cables
JP2017535964A (en) * 2014-11-17 2017-11-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Positive temperature coefficient composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568443A (en) * 1979-07-03 1981-01-28 Hitachi Cable Ltd Electrically conductive polymer composition having positive temperature coefficient characteristic and heater employing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568443A (en) * 1979-07-03 1981-01-28 Hitachi Cable Ltd Electrically conductive polymer composition having positive temperature coefficient characteristic and heater employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513685A (en) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductive polymer composition for preparing wires and cables
JP2017535964A (en) * 2014-11-17 2017-11-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Positive temperature coefficient composition

Similar Documents

Publication Publication Date Title
JP3333913B2 (en) Conductive polymer composition and PTC device
JP3930905B2 (en) Conductive polymer composition and device
JP3692141B2 (en) Conductive polymer composition
KR100308445B1 (en) Conductive polymer composition
JP3930904B2 (en) Electrical device
JP4666760B2 (en) Electrical device using conductive polymer
US4545926A (en) Conductive polymer compositions and devices
EP0952590B1 (en) Electrical devices containing conductive polymers
JP2788968B2 (en) Circuit protection device
EP0454422A2 (en) PTC device
JPS63107104A (en) Ptc compound, manufacture of the same and ptc device
JP2000188206A (en) Polymer ptc composition and ptc device
US6828362B1 (en) PTC composition and PTC device comprising it
JP4318923B2 (en) Circuit protection arrangement
US5817423A (en) PTC element and process for producing the same
JPS6140360A (en) Electrically conductive resin composition, and current limiting element using said composition
JP3191825B2 (en) PTC composition
JP4536830B2 (en) Resettable automatic circuit protection device
US20020128333A1 (en) Low switching temperature polymer positive temperature coefficient device
JP2001167905A (en) Organic ptc composition
JPS63224103A (en) Manufacture of current collector film
JPS6242402A (en) Current limiting element
CN111029066B (en) Overcurrent protection device
JP2004172181A (en) Polymer positive characteristic thermistor element
JPH09161952A (en) Sheet-form heating body