JPH097802A - Ptc resistance - Google Patents

Ptc resistance

Info

Publication number
JPH097802A
JPH097802A JP8133793A JP13379396A JPH097802A JP H097802 A JPH097802 A JP H097802A JP 8133793 A JP8133793 A JP 8133793A JP 13379396 A JP13379396 A JP 13379396A JP H097802 A JPH097802 A JP H097802A
Authority
JP
Japan
Prior art keywords
particles
ptc
ptc resistor
resistance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8133793A
Other languages
Japanese (ja)
Inventor
Gerd Maidorn
ゲルト・マイドルン
Ralf Dr Struempler
ラルフ・シユトリュムプラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB RES Ltd
ABB Research Ltd Sweden
Original Assignee
ABB RES Ltd
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB RES Ltd, ABB Research Ltd Sweden filed Critical ABB RES Ltd
Publication of JPH097802A publication Critical patent/JPH097802A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly suppress the shortcircuit current or overcurrent flowing in an electric circuit by specifying the main volume percent of a filler to be the percentage of particles with the mean diameter within a specific range. SOLUTION: Within the PTC resistor made of a compound material having high molecular mother material and a powdery filler of a conductive material buried in the mother material having electric resistor main body arranged between two contact terminals, the main volume percentage of the filler is the percentage of particles with less than 100μm and more than 5μm in the mean diameter. Since this PTC resistor extremely rapidly responds to shortcircuit or overcurrent, the current can be suppressed in the early time. Furthermore, this PTC resistor receives a relatively low energy thereby enabling the occurrence of overheated local region to be avoided without being affected by high thermal load or electric load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高分子の母材と
この母材中に埋め込まれた導電性材料の粉末状充填物と
を有する複合材料からなり、二つの接触端子の間に配置
された電気抵抗本体を有するPTC抵抗に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a composite material having a polymer base material and a powdery filler of a conductive material embedded in the base material, the composite material being disposed between two contact terminals. And a PTC resistor having an electric resistance body.

【0002】[0002]

【従来の技術】高分子の母材とこの中に埋め込まれたP
TC(正温度係数)特性を有する導電材料の粉末充填物
とをベースにする抵抗は、電力産業において限流素子と
して使用され、回路中に発生する短絡電流あるいは過電
流を制限する働きをする。その場合、PTC抵抗は短絡
電流あるいは過電流により臨界温度に加熱される。この
温度では、充填粒子を埋め込んだPTC抵抗の高分子が
例えば溶融してその相を変え、その時、充填粒子で形成
された電流を流すPTC抵抗の浸透通路を遮断する。
2. Description of the Related Art Polymer base material and P embedded in the base material
Resistors based on powder fillings of conductive materials with TC (Positive Temperature Coefficient) properties are used as current limiting devices in the power industry and serve to limit short circuit or overcurrents that occur in the circuit. In that case, the PTC resistor is heated to a critical temperature by a short circuit current or an overcurrent. At this temperature, the PTC-resistive polymer in which the filling particles are embedded melts, for example, to change its phase, and at that time, the PTC-resisting permeation path for flowing an electric current formed by the filling particles is blocked.

【0003】高分子の母材とこの母材中に埋め込まれた
導電材料の粉末充填物とをベースにするPTC抵抗は W
O-A-91 19 297 号明細書に開示されている。この抵抗の
母材は、特にポリエチレンのような熱可塑性高分子で形
成されている。充填物としては、0.1 μm までの粒径を
有するカーボンブラックと、100 μm までの粒径を有す
る、ニッケル、タングステン、真鍮あるいはアルミニウ
ムのような金属と、 TiB2 のような硼化物、ZrN のよう
な窒化物、TiO のような酸化物、TaC のような炭化物が
使用されている。材料組成と適当な製造方法により、こ
の周知のPTC抵抗は冷間導電状態で 30 〜 50 m Ω・
cmの比抵抗を有するので、比較的高い定格電流を流せ
る。
The PTC resistance based on a polymeric matrix and a powder filling of conductive material embedded in the matrix is W
OA-91 19 297. The base material of this resistor is made of a thermoplastic polymer such as polyethylene. Fillers include carbon black with particle sizes up to 0.1 μm, metals with particle sizes up to 100 μm, such as nickel, tungsten, brass or aluminium, borides such as TiB 2 and ZrN. Various nitrides, oxides such as TiO 2 and carbides such as TaC are used. Depending on the material composition and suitable manufacturing method, this well-known PTC resistor has a resistance of 30 to 50 mΩ ・ in the cold conductive state.
Since it has a specific resistance of cm, it can carry a relatively high rated current.

【0004】電力産業の電気回路中で電流を制限するた
めに重要な抵抗のPTC特性に付いては、冷間導電状態
の比抵抗だけが重要でなく、抵抗を流れる電流が或る限
界値を越えて上昇した時、電流を急激に制限し、この抵
抗が許されないほど高く加熱されない材料固有な特性も
重要である。これは、特にスイチング過程がPTC抵抗
中で不均一に行われる場合にそうであって、その時、P
TC抵抗がほぼ接触端子間で局部的な過加熱領域、所謂
「ホットスポット」を形成する。過加熱領域では、PT
C抵抗は加熱されていないところより早めに高抵抗状態
に切り替わる。この時、PTC抵抗に印加する全電圧が
最も高い抵抗値のところで比較的短い距離にわたり低下
する。これに関連する高い電界がPTC抵抗の焼き切れ
や損傷を与える。
Regarding the PTC characteristic of the resistor, which is important for limiting the current in the electric circuit of the electric power industry, only the specific resistance in the cold conductive state is not important, and the current flowing through the resistor has a certain limit value. Also important is the material's inherent property of sharply limiting the current when raised above this resistance and not heating unacceptably high. This is especially the case when the switching process is carried out non-uniformly in the PTC resistor, where P
The TC resistance forms a local overheating region, a so-called "hot spot", between the contact terminals. In the overheating area, PT
The C resistance switches to the high resistance state earlier than in the unheated area. At this time, the total voltage applied to the PTC resistor drops over a relatively short distance at the highest resistance value. The high electric field associated therewith causes burnout and damage to the PTC resistor.

【0005】[0005]

【発明が解決しようとする課題】この発明の課題は、電
気回路中を流れる短絡電流あるいは過電流を特に急激に
制限できる、冒頭に述べた種類のPTC抵抗を提供する
ことにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a PTC resistor of the kind mentioned at the outset, which is capable of limiting the short-circuit or overcurrent flowing in an electrical circuit particularly rapidly.

【0006】[0006]

【課題を解決するための手段】上記の課題は、この発明
により、冒頭に述べた種類のPTC抵抗にあって、充填
物の主な容積比率は平均直径が 100μm より小さく、5
μm より大きい粒子の比率であることにより解決されて
いる。この発明による他の有利な構成は、特許請求の範
囲の従属請求項に記載されている。
SUMMARY OF THE INVENTION According to the invention, the above problem resides in a PTC resistor of the kind mentioned at the outset, in which the main volume fraction of the filling is such that the mean diameter is less than 100 μm.
It is solved by the proportion of particles larger than μm. Other advantageous configurations according to the invention are described in the dependent claims.

【0007】[0007]

【発明の実施の形態】この発明によるPTC抵抗は短絡
電流あるいは過電流に極度に早く応答するので、早い時
点でこの電流を制限できることで優れている。この発明
によるPTC抵抗は比較的小さいエネルギを受け入れる
ので、許されないほど高い熱負荷や電気負荷を受けるこ
とはない。それ故、過加熱された局部領域が一般的に防
止される。これ等の好ましい特性は充填物を適当に選択
して設計することにより得られる。
Since the PTC resistor according to the present invention responds extremely quickly to a short circuit current or an overcurrent, it is advantageous that this current can be limited at an early point. Since the PTC resistor according to the present invention accepts relatively little energy, it does not experience unacceptably high thermal and electrical loads. Therefore, overheated local areas are generally prevented. These favorable properties are obtained by appropriate selection and design of the packing.

【0008】短絡電流あるいは過電流 I(t) により、P
TC抵抗はPTC遷移が生じ、電流が制限される臨界温
度 Tc に加熱される。短絡電流あるいは過電流を制限す
るため一様な材料に必要な時間δt はPTC抵抗の比抵
抗 r, 相対厚さ dmassと比熱cp および断面 Aと接続電
極の間の長さ lに依存する。次の不等式、 r・(1/A)・I(t)2・δt ≧ A・l・cp・dmass・δT, が成り立つ。ここで、δT = Tc − Tで、T は周囲温度
である。
Due to the short circuit current or overcurrent I (t), P
TC resistance occurs PTC transition, is heated to a critical temperature T c of the current is limited. The time δt required for a uniform material to limit the short circuit current or overcurrent depends on the specific resistance r of the PTC resistance, the relative thickness d mass and the specific heat c p, and the length l between the cross section A and the connecting electrode. . Following inequality, r · (1 / A) · I (t) 2 · δt ≧ A · l · c p · d mass · δT, is established. Where δT = T c − T and T is the ambient temperature.

【0009】これは、応答期間δt の間にPTC抵抗中
で変換されるエネルギが抵抗の材料を周囲温度 Tから遷
移温度 Tc に加熱するために必要なエネルギに少なくと
も等しくなることを意味する。しかし、PTC抵抗中で
は短絡電流あるいは過電流により導入されるエネルギは
一様に変換されない。この抵抗は導電性粒子で形成され
る浸透電流通路を有する。最大の電気抵抗値、従って電
気エネルギを熱エネルギに最大に変換することは個々の
充填粒子の間の電気接触部で行われる。接触個所で発生
する熱エネルギは充填粒子を埋め込んでいる高分子材料
を加熱する。充填粒子が比較的大きい、例えば 100μm
以上であれば、個々の粒子の間に高分子を満たした比較
的大きい隙間が生じる。これに反して、充填粒子が比較
的小さいなら、個々の粒子の間に高分子を満たした比較
的小さい隙間が生じる。接触個所で変換されるエネルギ
は大きな隙間にある高分子より小さな隙間にある高分子
を非常に早く加熱する。それ故、PTC遷移を行うため
に必要な温度 TC はより小さい充填粒子の場合に早く達
成される。しかし、大部分の充填粒子は 10 μm 以下で
あるべきではない。何故なら、そうでなければ、比抵抗
が余りにも大きくなるからである。
This means that the energy converted in the PTC resistor during the response period δt is at least equal to the energy required to heat the material of the resistor from the ambient temperature T to the transition temperature Tc . However, the energy introduced by the short circuit current or overcurrent is not uniformly converted in the PTC resistor. This resistor has an osmotic current path formed of conductive particles. The maximum electrical resistance, and thus the maximum conversion of electrical energy into thermal energy, takes place at the electrical contact between the individual packing particles. The heat energy generated at the contact point heats the polymer material in which the filling particles are embedded. Relatively large packing particles, eg 100 μm
If it is above, a relatively large gap filled with the polymer will be generated between the individual particles. On the other hand, if the packed particles are relatively small, there will be relatively small polymer filled gaps between the individual particles. The energy converted at the point of contact heats the polymer in the smaller gaps much faster than the polymer in the larger gaps. Therefore, the temperature T C required to make the PTC transition is reached faster for smaller packed particles. However, most packed particles should not be smaller than 10 μm. This is because otherwise the resistivity will be too large.

【0010】[0010]

【実施例】以下、この発明の好適実施例を図面に基づき
より詳しく説明する。PTC抵抗の作製で通常の方法に
より、特にポリエチレンのような熱可塑性PTC高分子
材料に導電性充填粒子を混合し、得られた混合物から高
温、高圧でプレスで直方体状の抵抗体にし、ラッピング
あるいは研磨により平滑にされた端面を与える。これ等
の端面に接触端子をハンダ付けする。抵抗体の長さ lは
センチメートルの範囲内にあり、断面 Aは平方センチメ
ートルの範囲内にある。l と Aの典型的な値は約 0.5〜
2 cm と 0.3 cm2であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in more detail with reference to the drawings. In a conventional method for producing a PTC resistor, conductive filling particles are mixed with a thermoplastic PTC polymer material such as polyethylene, and the resulting mixture is pressed at a high temperature and a high pressure to form a rectangular parallelepiped resistor, which is then wrapped or wrapped. It gives an end surface that is smoothed by polishing. Solder the contact terminals to these end faces. The length of the resistor l is in the range of centimeters and the cross section A is in the range of square centimeters. Typical values of l and A are about 0.5 ~
It was 2 cm and 0.3 cm 2 .

【0011】高分子の初期材料としてはポリエチレンを
使用した。ポリエチレンの代わりに、応用例に応じてエ
ポキシあるいは何か他の熱可塑性または熱硬化性の高分
子材料も使用できる。充填材料としては、種々の粒径、
特に平均粒径が 100〜 200μm, 71 〜 90 μm, 63 〜 7
1 μm, 50 〜 63 μm, 32 〜 50 μm, 32 〜 45 μm,10
〜 30 μm, 1〜 5μm,および 45 μm 以下の平均粒径
の粉末状の TiB2 を使用した。最後の粒子では、 10 重
量パーセントが 4μm 以下で、 20 重量パーセントが 8
μm 以下で、 50 重量パーセントが 15 μm 以下で、 9
0 重量パーセントが 20 μm 以下であった。 TiB2 の代
わりに、充填物は、例えば ZrB2 のような他の導電性硼
化物、例えば TiC, VCあるいは SiCのような導電性炭化
物、例えば ZrNのような導電性窒化物、RuO2あるいは V
O のような導電性酸化物、あるいは例えば MoSi2または
WSi2 のような導電性珪化物、および/または例えばニ
ッケル、銀、タングステン、コバルト、銅、アルミニウ
ム、亜鉛、錫またはモリブデンをベースにする金属また
は金属を含む合金も使用できる。
Polyethylene was used as the initial polymer material. Instead of polyethylene, epoxy or some other thermoplastic or thermosetting polymeric material can be used, depending on the application. As the filling material, various particle sizes,
In particular, the average particle size is 100 to 200 μm, 71 to 90 μm, 63 to 7
1 μm, 50 to 63 μm, 32 to 50 μm, 32 to 45 μm, 10
Powdered TiB 2 with an average particle size of -30 μm, 1-5 μm, and 45 μm or less was used. For the last particles, 10 weight percent is less than 4 μm and 20 weight percent is 8
below 50 μm, 50% by weight below 9 μm, 9
0 weight percent was 20 μm or less. Instead of TiB 2 , the filling may also be other conductive borides such as ZrB 2 , conductive carbides such as TiC, VC or SiC, conductive nitrides such as ZrN, RuO 2 or V 2.
Conductive oxides such as O 2 or MoSi 2 or
Conductive silicides such as WSi 2 and / or metals or metal-containing alloys based on, for example, nickel, silver, tungsten, cobalt, copper, aluminum, zinc, tin or molybdenum can also be used.

【0012】比較できる結果を得るため、高分子と充填
物の化学組成を等しくし、同じ断面を有するが、長さ
l、ことに粉末状の充填物の大きさが互いに変わるよう
に個々のPTC抵抗を作製した。次の表に示す充填物の
平均粒径、充填物の量および幾何学寸法を有するPTC
抵抗の試料A〜Nを作製した。
In order to obtain comparable results, the chemical compositions of the polymer and the packing are made equal and have the same cross section, but the length
The individual PTC resistors were produced in such a way that the size of the powder filling, in particular of the powder, varied from one another. PTC with average particle size of packing, amount of packing and geometrical dimensions shown in the following table
Resistor samples A to N were prepared.

【0013】試料A〜Dの充填物の量の相違は、比熱に
ただ僅かな変化しか与えないので、以下に説明する比較
試験でPTC抵抗の応答特性に関して顕著な影響を与え
ない。試料E〜Nでは同じ充填物の量を選んだ。
The difference in the amount of the fillers of Samples A to D causes only a slight change in the specific heat, and therefore does not significantly affect the response characteristics of the PTC resistance in the comparative test described below. For samples E-N the same amount of packing was chosen.

【0014】[0014]

【表1】 [Table 1]

【0015】これ等の抵抗から、室温で冷間抵抗 R [m
Ω],比抵抗 r[mΩ・cm] が、また短絡電流試験により抵
抗試料中に発生する最大短絡電流 Imax [A] および短絡
電流の作用で抵抗の受け取るエネルギ [ジュール] を測
定した。短絡電流試験では、検査すべき抵抗試料A〜N
の各々を回路に組み込み、短絡電流源として、試料A〜
Dで 200 Vに、また試料E−Nで 400 Vに充電した容量
が 7.5 mF のコンデンサバンクを使用した。回路のイン
ダクタンスはμH であり、これはイグナイトロンを用い
て回路を短絡させると約 800 Hz の共振周波数となっ
た。抵抗試料A〜Nをそれぞれ並列に接続されたバリス
ターにより過電圧に対して保護した。外部スパークに対
して、変圧器の油に浸して試料E,F,H,JおよびL
〜Nを、またシリコーン被覆を塗布して試料GとKをそ
れぞれ保護をした。
From these resistances, the cold resistance R [m
Ω], specific resistance r [mΩ · cm], and the maximum short-circuit current I max [A] generated in the resistance sample by the short-circuit current test and the energy [joule] received by the resistance due to the action of the short-circuit current were measured. In the short-circuit current test, resistance samples A to N to be inspected
Each of the above is incorporated into a circuit, and the sample A to
A capacitor bank with a capacity of 7.5 mF charged to 200 V at D and 400 V at samples E-N was used. The circuit inductance was μH, which resulted in a resonant frequency of about 800 Hz when the circuit was shorted with an ignitron. Each of the resistance samples A to N was protected against overvoltage by a varistor connected in parallel. Samples E, F, H, J and L immersed in transformer oil against external sparks
˜N and a silicone coating were applied to protect samples G and K, respectively.

【0016】短絡試験の結果を図面に、および抵抗測定
と共に以下の表にまとめる。
The results of the short circuit test are summarized in the drawing and in the table below along with the resistance measurements.

【0017】[0017]

【表2】 [Table 2]

【0018】電流 Imax は、短絡試験で各試験抵抗を流
れた最大測定電流である。この値が高ければ、それだけ
PTC遷移が遅れ、電流制限が遅れる。ジュールのエネ
ルギは、短絡電流の発生( tA = 0) とその消失(試験
抵抗に応じて tE = 0.4〜 2ms )の時間間隔内で各試
験抵抗により主に熱の形、
The current I max is the maximum measured current flowing through each test resistor in the short circuit test. If this value is high, the PTC transition is delayed and the current limit is delayed accordingly. The energy of Joules is mainly in the form of heat due to each test resistance within the time interval of the occurrence of short-circuit current (t A = 0) and its disappearance (t E = 0.4-2 ms depending on the test resistance),

【0019】[0019]

【外1】 [Outside 1]

【0020】で吸収されるエネルギを意味する。このエ
ネルギ吸収はPTC抵抗のスイッチング特性に対する目
安である。PTC抵抗のスイッチング能力は、同じ条件
の場合、エネルギ吸収が小さければ、それだけより良く
なる。測定結果から明らかなことは、比較的大きな充填
粒子を含むPTC抵抗(粒径が 100〜 200μm の粒径を
有する試料A)で短絡電流は比較的遅れて制限され、短
絡電流は同時に相当大きな値( Imax = 1350 [A] )と
なる。この場合に抵抗により吸収されるエネルギも 107
[J]で比較的大きい。
Means the energy absorbed by. This energy absorption is a measure for the switching characteristics of the PTC resistor. The switching capacity of the PTC resistor is better the less the energy absorption under the same conditions. What is clear from the measurement results is that the PTC resistance (sample A having a particle size of 100 to 200 μm) containing relatively large packing particles limits the short circuit current with a relatively long delay, and at the same time, the short circuit current has a considerably large value. (I max = 1350 [A]). In this case, the energy absorbed by the resistor is also 107
[J] is relatively large.

【0021】充填粒子が小さいPTC抵抗(粒径が 63
〜 71 μm と 32 〜 45 μm の試料BとC)では、短絡
電流は一部かなり早く制限される(試料Cでは約 50 μ
s,つまり試料Aより約 25 %早い)。更に、短絡電流は
試料Aの場合のような大きな値にならない(試料Cでは
1200 A で試料Aの値の約 90 %に過ぎない)。更に、
電流制限時に抵抗により吸収されるエネルギは少ない。
試料Bのエネルギは試料Aの約 15 %で、試料Cのエネ
ルギは試料Aのエネルギより約 45 %小さい。これから
分かる傾向、つまり充填粒子の大きさが小さくなると、
PTC抵抗の電流制限能力とスイッチング特性の改善が
大きくなることは、個々の試料の比抵抗や冷間抵抗の小
さな差に帰するものでなく、主として充填粒子を適当に
選択することに帰する。
PTC resistance (particle size 63
〜 71 μm and 32 〜 45 μm of samples B and C), the short-circuit current is partially limited much faster (about 50 μm for sample C).
s, that is, about 25% faster than sample A). Furthermore, the short-circuit current does not have a large value as in the case of sample A (in sample C,
At 1200 A it is only about 90% of the value of sample A). Furthermore,
Less energy is absorbed by the resistor when current is limited.
The energy of sample B is about 15% that of sample A, and the energy of sample C is about 45% less than that of sample A. The tendency that can be seen from this, that is, when the size of the filling particles becomes smaller,
The large improvement in the current limiting ability and switching characteristics of the PTC resistor is not attributable to the small difference in the specific resistance or cold resistance of the individual samples, but mainly to the proper selection of the packed particles.

【0022】この様子は、試料E〜Nに関する測定か
ら、特に顕著に推察できる(第2〜4図および表)。こ
れ等の場合、試料A〜Dに関する測定と異なり、コンデ
サバンクの充電電圧は 400 Vであり、それに応じて検査
電流が試料A〜Dに関する測定の場合より強く増大し
た。良好な冷間導電特性と共に極度に急激で効果的な電
流制限は試料E〜Hで得られた。つまり、試料GとHの
場合のように、充填粒子の粒径が 10 〜 30 μm ,ある
いは試料EとFの場合のように、充填粒子の粒径が20
あるいは 15 μm より十分小さいPTC抵抗で得られ
た。
This situation can be inferred particularly remarkably from the measurement of the samples E to N (FIGS. 2 to 4 and table). In these cases, unlike the measurements for samples A-D, the charging voltage of the capacitor bank was 400 V, and the test current was correspondingly increased more than for the measurements for samples A-D. Extremely abrupt and effective current limiting with good cold conductivity properties was obtained with samples EH. That is, as in the case of samples G and H, the particle size of the packed particles is 10 to 30 μm, or as in the case of samples E and F, the particle size of the packed particles is 20 μm.
Alternatively, it was obtained with a PTC resistance sufficiently smaller than 15 μm.

【0023】主に平均粒径が 100μm の充填粒子を含む
PTC抵抗に比べて、主に充填物の容積比率が約 100μ
m より小さいあるいは約 70 μm より小さい平均粒径の
粒子を有するPTC抵抗は著しく改善されたスイッチン
グ特性を有する。エネルギ吸収度が小さく、応答時間が
短く、抵抗を流れる電流 Imax の先尖値が小さい特に好
ましいスイッチング特性は、充填物の主な容積比率が 3
0 μm あるいは 20 μm より小さい粒径の粒子を有する
時に得られる。
Compared with the PTC resistance which mainly contains filler particles with an average particle size of 100 μm, the volume ratio of the filler is mainly about 100 μm.
PTC resistors with particles of average size less than m or less than about 70 μm have significantly improved switching characteristics. A particularly favorable switching characteristic is that the energy absorption is low, the response time is short, and the peak value of the current I max flowing through the resistor is small.
Obtained when having particles with a size smaller than 0 μm or 20 μm.

【0024】しかし、主要な容積比率の粒子の平均寸法
を余り小さく選ぶことはできない。何故なら、その時に
特にそのような材料で作製されたPTC抵抗の比抵抗と
冷間抵抗が余りにも強く上昇するからである。これは、
充填粒子が 1〜 5μm の平均粒径を有する試料Dで見受
けられる。少なくとも試料A〜Cで近似的に比較できる
冷間抵抗(ずれは約 50 〜 60 %)を達成するため、約
60 %、実際には 50%の容積比の試料Dでは、他の試
料より多い充填物を高分子材料に混合させる必要があ
る。PTC遷移による電流制限は、このような抵抗を用
いて 200 Vの試験電圧で達成することができない。前記
の表に示す限界電流 Imax は 226 mΩの高い冷間抵抗だ
けで決まり、しかもPTC遷移で決まるものではない。
However, the average size of the major volume fraction particles cannot be chosen too small. This is because at that time, the resistivity and cold resistance of the PTC resistor made of such a material rises too strongly. this is,
Filled particles are found in sample D having an average particle size of 1-5 μm. In order to achieve cold resistance (deviation of about 50-60%) that can be approximately compared with at least Samples A to C,
For sample D at a volume ratio of 60%, actually 50%, more packing than the other samples needs to be mixed with the polymeric material. Current limiting by PTC transitions cannot be achieved with a test voltage of 200 V using such resistors. The limiting current I max shown in the above table is determined only by the high cold resistance of 226 mΩ and not by the PTC transition.

【0025】充填粒子を中空に形成するか、あるいは小
さな質量を有すれば、この発明によるPTC抵抗の応答
特性が更に改善される。何故なら、その時には比熱が比
較的小さいので、高分子材料を特に急激に昇温できるか
らである。
If the filling particles are formed hollow or have a small mass, the response characteristics of the PTC resistor according to the present invention are further improved. This is because the specific heat at that time is relatively small, and therefore the temperature of the polymer material can be raised particularly rapidly.

【0026】[0026]

【発明の効果】以上、説明したように、この発明による
PTC抵抗を用いると、電気回路中を流れる短絡電流あ
るいは過電流を特に急激に制限できる。
As described above, when the PTC resistor according to the present invention is used, the short-circuit current or overcurrent flowing through the electric circuit can be particularly sharply limited.

【図面の簡単な説明】[Brief description of drawings]

【図1】 200 V に充電されたコンデンサバンクを放電
させて回路中に発生し、PTC抵抗を流れ、これ等のP
TC抵抗により種々に制限される短絡電流 I[A] の大き
さをそれぞれ時間 t [ms] に対して示す、3つのPTC
抵抗の特性曲線、
FIG. 1 Discharges a capacitor bank charged to 200 V, generates it in the circuit, flows through a PTC resistor, and
Three PTCs showing the magnitude of the short circuit current I [A], which is variously limited by the TC resistance, with respect to time t [ms].
Resistance characteristic curve,

【図2】 図1の特性曲線に合わせて、電流 I [A]の大
きさを時間 t [ms]に対して示すが、回路のコンデンサ
バンクは 400 Vに充電した、他の5つのPTC抵抗の特
性曲線、
FIG. 2 shows the magnitude of the current I [A] against time t [ms] according to the characteristic curve of FIG. 1, but the capacitor bank of the circuit was charged to 400 V, and the other 5 PTC resistors were connected. Characteristic curve of

【図3】 電流 I(t) の流れるPTC抵抗のエネルギ吸
収 W [J]を時間 t [ms] に対して示す、図2に述べた5
つのPTC抵抗の特性曲線、
FIG. 3 shows the energy absorption W [J] of the PTC resistor through which the current I (t) flows, with respect to the time t [ms].
Characteristic curve of two PTC resistors,

【図4】 図2の特性曲線に合わせて、電流 I[A] の大
きさを時間 t [ms]に対して示す、他の二つのPTC抵
抗および図2で述べた5つのPTC抵抗の一つの特性曲
線である。
FIG. 4 shows another two PTC resistors and one of the five PTC resistors described in FIG. 2, which show the magnitude of the current I [A] with respect to the time t [ms] according to the characteristic curve of FIG. There are two characteristic curves.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月28日[Submission date] June 28, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 [Fig. 2]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高分子の母材とこの母材中に埋め込まれ
た導電性材料の粉末状充填物とを有する複合材料からな
り、二つの接触端子の間に配置された電気抵抗本体を有
するPTC抵抗において、充填物の主な容積比率は平均
直径が 100μm より小さく、5 μm より大きい粒子の比
率であることを特徴とするPTC抵抗。
1. A composite material comprising a polymeric matrix and a powdery filling of a conductive material embedded in the matrix, and having an electrical resistance body disposed between two contact terminals. In the PTC resistance, the main volume ratio of the packing is the ratio of particles having an average diameter smaller than 100 μm and larger than 5 μm.
【請求項2】 充填物の主な容積比率は、平均直径が 7
0 μm より小さい粒子の比率であることを特徴とする請
求項1に記載のPTC抵抗。
2. The main volume ratio of the packing is such that the average diameter is 7
A PTC resistor according to claim 1, characterized in that the proportion of particles is smaller than 0 μm.
【請求項3】 充填物の主な容積比率は、平均直径が 3
0 μm より小さい粒子の比率であることを特徴とする請
求項2に記載のPTC抵抗。
3. The main volume ratio of the packing is such that the average diameter is 3
3. PTC resistor according to claim 2, characterized in that the proportion of particles is smaller than 0 μm.
【請求項4】 充填物の主な容積比率は、平均直径が 2
0 μm より小さい粒子の比率であることを特徴とする請
求項3に記載のPTC抵抗。
4. The main volume ratio of the packing is such that the average diameter is 2
4. PTC resistor according to claim 3, characterized in that the proportion of particles is smaller than 0 μm.
【請求項5】 充填物の主な容積比率は、平均直径が 1
0 μm より大きい粒子の比率であることを特徴とする請
求項1〜4のいずれか1項に記載のPTC抵抗。
5. The main volume ratio of the packing is such that the average diameter is 1
5. PTC resistor according to any one of claims 1 to 4, characterized in that the proportion of particles is greater than 0 μm.
【請求項6】 充填物としては、少なくとも金属の硼化
物、炭化物、窒化物、酸化物、および/または、金属の
珪化物、および/または、金属、および/または金属を
ベースにする合金の形の導電性粒子が使用されることを
特徴とする請求項1〜5のいずれか1項に記載のPTC
抵抗。
6. Filling in the form of at least metal borides, carbides, nitrides, oxides and / or metal suicides and / or metals and / or metal-based alloys. 6. The PTC according to any one of claims 1 to 5, wherein the conductive particles are used.
resistance.
【請求項7】 充填物は主に中空粒子を有することを特
徴とする請求項1〜6のいずれか1項に記載のPTC抵
抗。
7. The PTC resistor according to claim 1, wherein the filler mainly contains hollow particles.
JP8133793A 1995-06-08 1996-05-28 Ptc resistance Withdrawn JPH097802A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19520869:2 1995-06-08
DE1995120869 DE19520869A1 (en) 1995-06-08 1995-06-08 PTC resistor

Publications (1)

Publication Number Publication Date
JPH097802A true JPH097802A (en) 1997-01-10

Family

ID=7763881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8133793A Withdrawn JPH097802A (en) 1995-06-08 1996-05-28 Ptc resistance

Country Status (4)

Country Link
EP (1) EP0747910A3 (en)
JP (1) JPH097802A (en)
CN (1) CN1140318A (en)
DE (1) DE19520869A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929744A (en) * 1997-02-18 1999-07-27 General Electric Company Current limiting device with at least one flexible electrode
US6535103B1 (en) 1997-03-04 2003-03-18 General Electric Company Current limiting arrangement and method
US5977861A (en) * 1997-03-05 1999-11-02 General Electric Company Current limiting device with grooved electrode structure
US6191681B1 (en) 1997-07-21 2001-02-20 General Electric Company Current limiting device with electrically conductive composite and method of manufacturing the electrically conductive composite
US6373372B1 (en) 1997-11-24 2002-04-16 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
DE19800470A1 (en) * 1998-01-09 1999-07-15 Abb Research Ltd Resistor element for current limiting purposes especially during short-circuits
US6128168A (en) 1998-01-14 2000-10-03 General Electric Company Circuit breaker with improved arc interruption function
US6124780A (en) * 1998-05-20 2000-09-26 General Electric Company Current limiting device and materials for a current limiting device
US6290879B1 (en) 1998-05-20 2001-09-18 General Electric Company Current limiting device and materials for a current limiting device
US6133820A (en) * 1998-08-12 2000-10-17 General Electric Company Current limiting device having a web structure
US6144540A (en) 1999-03-09 2000-11-07 General Electric Company Current suppressing circuit breaker unit for inductive motor protection
US6157286A (en) 1999-04-05 2000-12-05 General Electric Company High voltage current limiting device
US6323751B1 (en) 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
CN101935418B (en) * 2009-06-30 2013-05-29 比亚迪股份有限公司 Positive temperature coefficient material and preparation method thereof, and material-containing thermosensitive resistor and preparation method thereof
CN109416965B (en) 2016-10-25 2022-05-10 惠普发展公司,有限责任合伙企业 Temperature sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1604735A (en) * 1978-04-14 1981-12-16 Raychem Corp Ptc compositions and devices comprising them
US4616125A (en) * 1984-02-03 1986-10-07 Eltac Nogler & Daum Kg Heating element
JPH0777161B2 (en) * 1986-10-24 1995-08-16 日本メクトロン株式会社 PTC composition, method for producing the same and PTC element
EP0373633B1 (en) * 1988-12-14 1996-02-28 Idemitsu Kosan Company Limited Polyetheric copolymers, process for preparing the same, compositions containing the same, their molded products, and their use
SE468026B (en) * 1990-06-05 1992-10-19 Asea Brown Boveri SET TO MAKE AN ELECTRIC DEVICE
DE4221309A1 (en) * 1992-06-29 1994-01-05 Abb Research Ltd Current limiting element
DE4232969A1 (en) * 1992-10-01 1994-04-07 Abb Research Ltd Electrical resistance element

Also Published As

Publication number Publication date
EP0747910A2 (en) 1996-12-11
EP0747910A3 (en) 1997-09-10
CN1140318A (en) 1997-01-15
DE19520869A1 (en) 1996-12-12

Similar Documents

Publication Publication Date Title
JPH097802A (en) Ptc resistance
US4555358A (en) Electrically conductive sintered ceramics and ceramic heaters
US4238812A (en) Circuit protection devices comprising PTC elements
TWI281677B (en) Electrically conductive polymer composition
US11127554B2 (en) Method of forming a fuse device
US20060000823A1 (en) Polymer compositions exhibiting a PTC property and methods of fabrication
Yi et al. Properties and applications of filled conductive polymer composites
JPH06178444A (en) Current-limiting element
JPS6025873B2 (en) self-regulating electrical device
WO2012003661A1 (en) Conductive composite material with positive temperature coefficient of resistance and over-current protection component
JPH07153604A (en) Electric resistance element and use of this resistance element in current limiter
JPS59502161A (en) self-control electric heating device
US20190096621A1 (en) Pptc device having low melting temperature polymer body
JP3813611B2 (en) Conductive polymer having PTC characteristics, method for controlling PTC characteristics of the polymer, and electronic device using the polymer
JPS6028195A (en) Heater
JP2000331804A (en) Ptc composition
JP3841238B2 (en) Method for manufacturing positive thermistor material
TW202011424A (en) PPTC device and PPTC material
JP2001085203A (en) Ptc composition
JPH115915A (en) Conductive composition
JPH11329675A (en) Ptc composition
Struempler Polymer composites for temperature and current sensors
Horibe et al. Electrical conductivity of polymer composites filled with metal
Ueno et al. Development of a surface mount overcurrent protector fabricated from improved polymeric PTC material
JPH08286537A (en) Heat generating resistor and heater for fixing device of electrophotographic printer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805