JP4126454B2 - LED array - Google Patents

LED array Download PDF

Info

Publication number
JP4126454B2
JP4126454B2 JP2002158228A JP2002158228A JP4126454B2 JP 4126454 B2 JP4126454 B2 JP 4126454B2 JP 2002158228 A JP2002158228 A JP 2002158228A JP 2002158228 A JP2002158228 A JP 2002158228A JP 4126454 B2 JP4126454 B2 JP 4126454B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor layer
led array
type semiconductor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002158228A
Other languages
Japanese (ja)
Other versions
JP2003347581A (en
Inventor
勝信 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002158228A priority Critical patent/JP4126454B2/en
Publication of JP2003347581A publication Critical patent/JP2003347581A/en
Application granted granted Critical
Publication of JP4126454B2 publication Critical patent/JP4126454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はLEDアレイに関し、特にページプリンタ用感光ドラムの露光用光源などに用いられるLEDアレイに関するものである。
【0002】
【従来の技術】
LEDアレイの基本的な構成は、一導電型半導体層と逆導電型半導体層と電極とを順次積層してなる発光素子を複数個配列して成り、そして、この逆導電型半導体層の発光領域部分をSiNxなどの光透過性の電気的絶縁膜にて被覆し、さらに、かかる逆導電型半導体層の発光領域以外の部分を光透過性の透明な合成樹脂層にて被覆している。
【0003】
このような基本的な構成のLEDアレイについて、その具体例を述べる。
従来のLEDアレイを図6と図7によって示す。
図6はLEDアレイの平面図であり、図7はその断面図である。
【0004】
21は単結晶基板であり、単結晶基板21上において、22は一導電型半導体層、23は逆導電型半導体層、24は個別電極、25は共通電極、26は窒化シリコン膜などから成る保護膜としての絶縁膜である。
【0005】
単結晶基板21上に、各発光素子ごとに一導電型半導体層22と逆導電型半導体層23とが順次積層して形成され、その積層において、一導電型半導体層22の面積は逆導電型半導体層23の面積に比べて大きくしている。
【0006】
一導電型半導体層22の上に絶縁膜26を被覆しているが、その露出部に共通電極25(25a、25b)を接続して設けている。
【0007】
また、逆導電型半導体層23についても、その上に絶縁膜26を被覆しているが、その露出部に個別電極24を接続して設けている。
【0008】
さらに図6に示すように、共通電極25(25a、25b)は隣接する各発光素子ごとに(島状半導体層22、23ごとに)異なる群に属するように2群に分けて接続して設けられ、隣接する発光素子(島状半導体層22、23)が同じ個別電極24に接続されている。
【0009】
この発光ダイオードアレイ構造では、個別電極24と共通電極25(25a、25b)の組み合わせを選択して電流を流すことによって、各発光素子を選択的に発光させることができる。
【0010】
【発明が解決しようとする課題】
近年、LEDアレイに対し、発光素子の高密度化や、その小型化が市場のニーズであるが、しかしながら、前記のような構成のLEDアレイにおいては、外部接続点である電極パッドの数をさらに減らしたり、外部回路との接続電極サイズをさらに小さくしたり、チップサイズをさらに小さくすることがむずかしくなっていた。
【0011】
したがって、発光素子の高密度化や、LEDアレイの小型化という市場のニーズに十分に応えることができなくなっていた。
【0012】
この課題を解消するために、マトリクス配線電極で層間絶縁膜を介して設ける多層電極構造のLEDアレイが提案されている(特開平9−277592号公報および特開平11−40842号公報参照)。
【0013】
しかしながら、かかる提案のLEDアレイについても、各発光ダイオードの個別電極の形成と、それら発光ダイオードをグループに分け、各グループから重複無く1つずつ選択するためのマトリクス配線の形成を2回行い、しかも、それぞれを絶縁膜等を介することで電気的に分離する工程を経ることで、かかる多層電極構造により製造工程が複雑化し、これによって製造歩留まりが低下し、製造コストが大きくなるという課題がある。
【0014】
かかる課題を解消するために、本発明者は特開2000‐76437号公報のLEDアレイにおいて、マトリクス配線の形成を1回で行って、工程を簡略化する技術を提案した。
【0015】
同公報によれば、各発光素子群ごとに、それら発光素子の各一方電極に対し共通に成した電極パッドを配設し、そして、発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、一方の発光素子群の発光素子電極間隔と他方の発光素子群の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッドを配設している。
【0016】
このように複数の一方電極に対し共通に成した電極パッドを配設し、さらに複数の他方電極に対し共通に成した他の電極パッドを配設したことで、電極パッド数が少なくなり、その配設面積が小さくなり、これにより、発光素子の高密度化ならびにLEDアレイの小型化が達成された。
【0017】
また、上記構成のLEDアレイによれば、特開平9−277592号公報や特開平11−40842号公報において提案されている多層電極構造のLEDアレイと比べても、工程数が少なくなり、層間絶縁膜を介した多層電極構造を用いないことで、製造コストが小さくなり、発光素子の高密度化や小型化を達成したLEDアレイが得られた。
【0018】
しかしながら、特開2000‐76437号公報のLEDアレイによれば、その上に絶縁膜を被覆するに当り、各発光素子の逆導電型半導体の上部に配した絶縁膜と、この以外に配した絶縁膜とを、同一材にて、同時に形成したことで、双方の光透過特性が同じになり、そのために、逆導電型半導体上部から発せられる発光が、迷光として隣接する発光体への反射を招き、その結果、LEDアレイのMTFを低下させ、印画品質を低下させ、LEDヘッドの品質の安定化が図れなかった。
【0019】
また、叙述した各LEDヘッドによれば、逆導電型半導体層の発光領域部分をSiNxなどの光透過性の電気的絶縁膜にて被覆し、さらに、かかる逆導電型半導体層の発光領域以外の部分を光透過性の透明な合成樹脂層にて被覆した構成であることで、光透過性の透明な合成樹脂層の内部に迷光が生じ、これによって発光の品質や信頼性が低下するという課題があった。
【0020】
本発明の目的は、叙上に鑑みて完成されたものであり、その目的はかかる迷光を減少させたり、無くしたLEDアレイを提供することにある。
【0021】
本発明の他の目的は、工程数を増やすこともなく、層間絶縁膜を介した多層電極構造を用いないで、製造コストを下げるとともに、発光素子の高密度化や小型化を達成したLEDアレイを提供することにある。
【0022】
本発明のさらに他の目的はLEDアレイの外部接続工程であるワイヤーボンディングでの電気的ショート不良を発生させず、さらなる縮小化によるコスト低下を達成するとともに、LEDアレイのMTFを改善し、印画品質を向上させたLEDアレイを提供することにある。
【0023】
【課題を解決するための手段】
本発明のLEDアレイは、少なくとも一導電型半導体層と逆導電型半導体層と電極とを順次積層してなる発光素子が基板上に複数個配列され、各発光素子の上面の発光領域から光を照射するLEDアレイであって、前記発光素子は、前記上面の発光領域以外の部分に、少なくとも前記逆導電型半導体層を構成する発光層の端面と、前記一導電型半導体層の少なくとも一部の端面とを含む斜面を有し、前記発光素子は、少なくとも前記斜面を含む領域が光透過性の電気的絶縁膜によって被覆されており、前記電気的絶縁膜の前記斜面を覆う部分には、前記発光層の端面を含む前記斜面の全体を被覆するように遮光性合成樹脂層が設けられていることを特徴とする。
【0024】
本発明のLEDアレイは、前記遮光性合成樹脂層は、染料が合成樹脂材に含有されてなるものであってよい。この場合、前記合成樹脂材はポリイミドであることが好ましい。また、前記電気的絶縁膜は、複数の前記発光素子の前記斜面、および前記逆導電型半導体層の前記基板表面に略平行な上面を被覆していてもよい。また、前記発光領域は、前記逆導電型半導体層の前記基板表面に略平行な上面の範囲内にあり、前記遮光性合成樹脂層は、前記電気的絶縁膜を、前記斜面全体にわたって被覆していることも、また好ましい。
【0025】
【発明の実施の形態】
本発明のLEDアレイの基本構造は、上述したごとく、少なくとも逆導電型半導体層の発光領域の一部分を光透過性の電気的絶縁膜にて被覆し、さらに当該逆導電型半導体層の発光領域以外の部分を遮光性合成樹脂層にて被覆してなるものであって、本発明はこのような構成を含むLEDアレイであり、その一例を以下、添付図面に基づき詳細に説明する。
【0026】
図1〜図5は本発明のLEDアレイの一実施形態を示す。
図1はLEDアレイの要部拡大の平面図であり、図2は図1に示すV−V‘線による断面図、図3は図1に示すh−h’線による断面図、図4は各発光素子の上面図である。図2および図3には、参照符号として、V、V‘、h、h’を明示することでもって、その断面図の方向を示す。また、図5は他のLEDアレイにおける要部平面図である。
【0027】
1は単結晶基板であり、この単結晶基板1上において、2は一導電型半導体層、3は逆導電型半導体層、4は前記一方電極である個別電極、5は前記他方電極である共通電極、6および12は有機樹脂膜などから成る保護膜としての絶縁膜である。
【0028】
また、8および10(10a,10b)は外部接続用の電極パッドである。
【0029】
単結晶基板1上に、各発光素子ごとに一導電型半導体層2と逆導電型半導体層3とが順次積層して形成され、その積層において、一導電型半導体層2の面積は逆導電型半導体層3の面積に比べて大きくして、一導電型半導体層2を引き出すことで、一導電型半導体層2と同一材からなる延在部7を設けている。
【0030】
また、図2に示されるように、一導電型半導体層2の上に前記光透過性の電気的絶縁膜であるポリイミド合成樹脂などの有機材もしくは窒化シリコン(SiNx)や酸化シリコン(SiO2)などの無機材からなる絶縁膜6を被覆しているが、その露出部に共通電極5(5a、5b)を接続して設けることで、絶縁膜6と共通電極5とを延在部7の上で並設している。
【0031】
さらに逆導電型半導体層3の発光領域Aの一部分を絶縁膜6にて被覆し、その露出部に個別電極4を接続して設けている。また、前記遮光性合成樹脂層である保護膜12は逆導電型半導体層3の上ならびに外部接続用の電極パッド8、10を、それぞれ一部露出した形で覆われている。
【0032】
この保護膜12については、逆導電型半導体層3の発光領域A以外の部分を被覆してなる。
【0033】
つぎに各部材を詳述する。
単結晶基板1は半導体基板からなり、高抵抗シリコン単結晶でもって構成した場合には、(100)面を<011>方向に2〜7°オフさせた基板などが好適である。
【0034】
一導電型半導体層2は、バッファ層2a、オーミックコンタクト層2bおよび電子注入層2cで構成される。
【0035】
バッファ層2aとオーミックコンタクト層2bはガリウム砒素などで形成され、電子の注入層2cはアルミニウムガリウム砒素などで形成される。オーミックコンタクト層2bにはシリコンなどの一導電型半導体不純物を1×1017〜1019atoms(原子)/cm3 程度含有し、電子注入層2cにはシリコンなどの一導電型半導体不純物を程度含有する。
【0036】
バッファ層2aは単結晶基板1と半導体層との格子定数の不整合に基づくミスフィット転位を防止するために設けるものであり、半導体不純物を1×1016〜1019atoms/cm3含有させる。
【0037】
バッファ層2aは2〜4μm程度の厚みに形成され、オーミックコンタクト層2bは0.1〜3.0μm程度の厚みに形成され、電子注入層2cは0.2〜0.4μm程度の厚みに形成される。
【0038】
逆導電型半導体層3は、発光層3a、クラッド層3bおよび他のオーミックコンタクト層3cで構成される。
【0039】
発光層3aとクラッド層3bはアルミニウムガリウム砒素などから成り、オーミックコンタクト層3cはガリウム砒素などから成る。
【0040】
発光層3a、クラッド層3bおよびオーミックコンタクト層3cは、電子の閉じ込め効果と光の取り出し効果を考慮して、各層の間にてアルミニウム砒素(AlAs)とガリウム砒素(GaAs)との混晶比を異ならしめる。
【0041】
発光層3aとクラッド層3bは亜鉛(Zn)などの逆導電型半導体不純物を1×1016〜1021atoms/cm3 程度含有し、オーミックコンタクト層3cは亜鉛などの逆導電型半導体不純物を1×1019〜1021atoms/cm3 程度含有する。
【0042】
発光層3aとクラッド層3bは0.2〜0.4μm程度の厚みに形成され、オーミックコンタクト層3cの膜厚dについては、膜厚d>(0.15μm−オーミックコンタクト層膜厚)程度の厚みに形成される。
【0043】
また、絶縁膜6は、たとえば窒化シリコンなどから成り、厚み2000Å程度に形成される。
【0044】
個別電極4と共通電極5(5a、5b、5c、5d)は金/クロム(Au/Cr)などから成り、厚み1μm程度に形成される。
【0045】
各発光素子は、上記のような構成であるが、つぎに図1と図3にて各発光素子に対する電極構造を示す。
【0046】
これら各発光素子の個別電極4に対し共通に成した電極パッド8を配設し、個々の電極パッド8に対応した発光素子群9を設け、さらに前記一方の発光素子群と他方の発光素子群とを交互に配列することで、複数個の発光素子群9をライン状に配列している。
【0047】
また、発光素子群9内における各発光素子の延在部7における共通電極5(5a、5b、5c、5d)に至る電極間隔xが異なるとともに、一方の発光素子群9の発光素子の電極間隔と、他方の発光素子群9の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッド10を配設している。
【0048】
そして、電極間隔xを同じにした各発光素子の共通電極5を通電させるために、延在部7の上の絶縁膜6をまたがるように、接続線11(11a、11b、11c、11d)を発光素子の配列ラインと平行に形成している。
【0049】
さらに一方の発光素子群と他方の発光素子群としての隣接する発光素子群9、9に対し、発光素子群9内にて個々の電極間隔xを配列順に長くするか、もしくは短くして違えることで、対称的な電極間隔パターンにしている。
【0050】
つぎに図5にて、電極間隔xを4とおりに違えて、128bit(ビット)LEDアレイを示す。
【0051】
電極間隔xがもっとも短いものをX11として、そこを端部の発光素子として、順次、X21、X31、X41とし、…X4n、X3n、X2n、X1n、…としている。
【0052】
128bitを4種類で32グループ(32個の発光素子群9)に分けることで、n=1〜32である。
【0053】
各発光素子群9をグループG1、G2、…Gmとすると、グループG1における電極間隔X11の発光素子と、グループG2における電極間隔X12の発光素子とを、接続線11aでもって接続し、グループGmにおける電極間隔X1nの発光素子と接続している。
【0054】
グループG1における電極間隔X21の発光素子と、グループG2における電極間隔X22の発光素子と、…グループGmにおける電極間隔X2nの発光素子とを、接続線11bでもって接続している。
【0055】
同様に、グループG1における電極間隔X31の発光素子と、グループG2における電極間隔X32の発光素子と、…グループGmにおける電極間隔X3nの発光素子とを、接続線11cでもって接続している。
【0056】
グループG1における電極間隔X41の発光素子と、グループG2における電極間隔X42の発光素子と、…グループGmにおける電極間隔X4nの発光素子とを、接続線11dでもって接続している。
【0057】
そして、各発光素子群に設けた電極パッド8と、他のグループされた電極パッド10とに対し、双方間に選択的に電圧を印加することで、所定の発光素子に電流を流すことができ、その素子を発光せしめる。
【0058】
かくして本発明のLEDアレイによれば、各発光素子群9(グループG1、G2、…Gm…)ごとに、共通に成した電極パッド8を配設し、そして、発光素子群9(グループG1、G2、…Gm…)内における各発光素子の電極間隔xが異なるとともに、一方の発光素子群の発光素子の電極間隔xと他方の発光素子群の発光素子の電極間隔xとを同じにして、双方の共通電極5に対し共通に成した電極パッド10を配設したことで、電極パッド数が少なくなり、その配設面積が小さくなり、これにより、発光素子の高密度化、ならびにLEDアレイの小型化が達成される。
【0059】
また、本発明においては、保護膜12を表面に形成すると同時に、少なくとも、外部回路との接続用電極パッド8、12の一部ならびに逆導電型半導体層3の発光領域Aの一部分を絶縁膜6にて被覆し、その露出部に個別電極4を接続して設けている。
【0060】
絶縁膜6については、反射を防止するように膜厚dを設定するとよい。
【0061】
このための条件は、下記のようにするとよい。
【0062】
N1:絶縁膜6の屈折率、d:絶縁膜6の膜厚、m:整数、λ:発光素子の発光波長、N2:一導電型半導体層2と逆導電型半導体層3を成すGaAs材の屈折率において、反射防止の条件は、(N1)d=(1/4+m/2)λ、さらには(N1)=√(N2)にするとよい。
【0063】
また、保護膜12については、遮光性とするために染料をポリイミドなどの合成樹脂材に含有させるとよく、このような染料として、黒色顔料を含有させるとよく、たとえば二硫化モリブデン、黒鉛、およびアセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、マグネタイト酸化コバルト、酸化銅、酸化クロム等の金属酸化物類ならびに酸化銅-酸化クロム−酸化鉄などの複合金属酸化物類、チタンブラツクなどがある。
【0064】
このような絶縁膜6と保護膜12とを被覆し、LEDアレイの波長に応じた最適な光学的透過率に設計するとともに、保護膜12においては、LEDアレイの波長に対して光学的透過率をもっとも低いものに設計することで、迷光を小さくし、その結果、MTFを向上させたLEDアレイを実現できる。
【0065】
たとえば、絶縁膜6をSiNx膜にてなし、保護膜12を有機樹脂膜にて設け、LEDの波長を740nmとした場合、最適な透過率は100%となる。一方、絶縁膜6については、光透過性が100%に近くなるように、その厚みと屈折率を設計する。たとえば、SiNx(屈折率=1.88)からなる絶縁膜6の膜厚を約3100Aにするとよい。
【0066】
また、本例のLEDアレイによれば、上記構成のように各発光素子群ごとに、それら発光素子の各一方電極に対し共通に成した電極パッドを配設し、そして、発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、一方の発光素子群の発光素子の電極間隔と他方の発光素子群の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッドを配設している。
【0067】
このように複数の一方電極に対し共通に成した電極パッドを配設し、さらに複数の他方電極に対し共通に成した他の電極パッドを配設したことで、電極パッド数が少なくなり、その配設面積が小さくなり、これにより、発光素子の高密度化、ならびにLEDアレイの小型化が達成される。
【0068】
また、特開平9−277592号や特開平11−40842号にて提案されているような多層電極構造のLEDアレイと比べても、工程数が少なくなり、層間絶縁膜を介した多層電極構造を用いないことで、製造コストが下がり、発光素子の高密度化や小型化を達成したLEDアレイが得られる。さらに前記電極間隔を同じにした各発光素子の他方電極を通電すべく、一導電型半導体層の延在部に形成した絶縁膜をまたがるように、接続線を発光素子の配列ラインと平行に形成している。したがって、従来のLEDアレイにおいて、周知のとおり形成されていた絶縁膜以外に、配線同士の電気的絶縁の為に不可欠な層間絶縁膜を形成することもなく、これによって製造コストが下がり、低コストなLEDアレイが提供される。さらに一方の発光素子群と他方の発光素子群に対し、発光素子群内にて個々の電極間隔を配列順に違えることで、対称的な電極間隔パターンにしており、そのように規則的なパターンにしたことで、LEDヘッド搭載時の発光順番の信号処理を比較的容易にし、延いては搭載基板の設計をも容易にできる。そして、その規則的パターンをLEDアレイに整然と設けることで、それ以外の領域に電極パッドを設けることが設計上容易になる。対称的な電極間隔の最も短い部分でのスペースが大きく取ることが可能となる。これにより、LEDアレイチップサイズの縮小化、ならびに、LEDアレイを搭載する際のワイヤーボンディングパッドを大きく取ることが可能となる。延いては、LEDアレイのチップ縮小化、ならびにLEDヘッド製造上の歩留りを向上できる。また、上記のLEDアレイでは樹脂膜を表面に形成すると同時に、少なくとも、外部回路との電極接続部および逆導電型半導体層上部以外を覆った構造としているため、絶縁膜をLEDアレイの波長に応じた最適な光学的透過率に設計すると共に、樹脂膜においては、LEDアレイの波長に対して光学的透過率が最も低いのに設計することで、迷光を小さくしMTFを向上させたLEDアレイを実現できた。また、樹脂膜においては、染料を含有した不透明膜とした場合には一層の改善が図れ、MTFの向上した印画品質の高いLEDヘッドを提供できる。
【0069】
つぎに上述のようなLEDアレイの製造方法を説明する。
【0070】
まず、高抵抗シリコン単結晶基板1上に、一導電型半導体層2、逆導電型半導体層3をMOCVD法などで順次積層して形成する。
【0071】
まず、これらの半導体層2、3を形成する場合、基板温度を400〜500℃に設定し、これによって200〜2000Åの厚みでもってアモルファス状のガリウム砒素膜を形成した後、基板温度を700〜900℃に上げて所望とおりの厚みの一導電型半導体層2と逆導電型半導体層3とを形成する。
【0072】
この成膜において、原料ガスとしてはTMG((CH33 Ga)、TEG((C253 Ga)、アルシン(AsH3 )、TMA((CH33 Al)、TEA((C253 Al)などが用いられ、導電型を制御するためのガスとしては、シラン(SiH4 )、セレン化水素(H2 Se)、DMZ((CH32 Zn)などが用いられ、キャリアガスとしては、H2などが用いられる。
【0073】
つぎに、隣接する素子同志が電気的に分離されるように、半導体層2、3が島状にパターニングされる。そのためのエッチングは、硫酸過酸化水素系のエッチング液を用いたウエットエッチングやCCl22 ガスを用いたドライエッチングなどで行われる。
【0074】
しかる後に、一導電型半導体層2の一端部側に延在部7を設け、この延在部7の上にその一部が露出し、かつこの一導電型半導体層2の隣接する領域部分が露出するようにエッチングする。また、逆導電型半導体層3が一導電型半導体層2よりも幅狭に形成されるように逆導電型半導体層3をエッチングする。
【0075】
このようなエッチングも硫酸過酸化水素系のエッチング液を用いたウェットエッチングやCCl2 F2 ガスを用いたドライエッチングなどで行なわれる。
【0076】
つぎに、隣接する発光素子が基板上でも電気的に分離されるように、たとえばアルカリ性水溶液でエッチングする。この時、一導電型半導体層2の延在部7の一部が露出し、かつこの一導電型半導体層2の隣接する領域部分が露出するように、そして、逆導電型半導体層3が一導電型半導体層2よりも幅狭に形成されるように逆導電型半導体層3をエッチングした際に用いたパターンを残したままで行ない、これによって逆導電型半導体層3を一切おかすことなく電気的に分離する。
【0077】
つぎに有機系樹脂をスピンコート法で形成した絶縁膜6を形成する。絶縁膜はプラズマCVD法で、シランガス(SiH4 )とアンモニアガス(NH3 )を用いて窒化シリコンから成る物でも良い。
【0078】
クロムと金を蒸着法やスパッタリング法で形成してパターニングすることで電極パッド9、10および接続線11を形成する。最後に有機系樹脂をスピンコート法で形成した保護膜12を形成する。
【0079】
【発明の効果】
以上のとおり、本発明のLEDアレイによれば、少なくとも逆導電型半導体層の発光領域の一部分を光透過性の電気的絶縁膜にて被覆し、さらに当該逆導電型半導体層の発光領域以外の部分を遮光性合成樹脂層にて被覆してなることで、迷光を減少させたり、無くし、これによってMTFを向上させた高品質かつ高信頼性のLEDアレイが得られた。
【0080】
また、本発明のLEDアレイにおいては、単結晶基板上に一導電型半導体層と逆導電型半導体層と一方電極とを順次積層し、この一導電型半導体層を引き出した延在部の上に他方電極と絶縁膜とを並設して成る発光素子を複数個配列し、さらにこれらの発光素子の各一方電極に対し共通に成した電極パッドを配設して成る発光素子群を、さらに複数個ライン状に配列せしめた構成において、発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、一方の発光素子群の発光素子の電極間隔と他方の発光素子群の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッドを配設して成ることで、電極パッド数が減少し、その配設面積が小さくなり、これにより、発光素子の高密度化、ならびにLEDアレイの小型化が達成された。
【0081】
また、従来の多層電極構造のLEDアレイと比べても、工程数が少なくなり、層間絶縁膜を介した多層電極構造を用いないことで、製造コストが下がり、発光素子の高密度化や小型化を達成したLEDアレイが得られた。
【0082】
また、上記のLEDアレイでは樹脂膜を表面に形成すると同時に、少なくとも、外部回路との電極接続部および逆導電型半導体層上部以外を覆った構造としているため、絶縁膜をLEDアレイの波長に応じた最適な光学的透過率に設計すると共に、樹脂膜においては、LEDアレイの波長に対して光学的透過率が最も低いのに設計することで、迷光を小さくしMTFを向上させたLEDアレイを実現できた。また、樹脂膜においては、染料を含有した不透明膜とした場合には一層の改善が図れ、MTFの向上した印画品質の高いLEDヘッドを提供できた。
【図面の簡単な説明】
【図1】本発明のLEDアレイの一実施形態を示す平面図である。
【図2】図1に示すV−V‘線による断面図である。
【図3】図1に示すh−h’線による断面図である。
【図4】本発明のLEDアレイの一実施形態を示す平面図である。
【図5】従来のLEDアレイの一実施形態を示す平面図である。
【図6】従来のLEDアレイを示す断面図である。
【図7】従来のLEDアレイを一実施形態を示す平面図である。
【符号の説明】
1・・・単結晶基板
2・・・一導電型半導体層
3・・・逆導電型半導体層
4・・・個別電極
5・・・共通電極
6・・・絶縁膜
7・・・延在部
8・・・電極パッド
9・・・発光素子群
10・・・電極パッド
11・・・接続線
x・・・電極間隔
A・・・発光領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LED array, and more particularly to an LED array used for an exposure light source of a photosensitive drum for a page printer.
[0002]
[Prior art]
The basic configuration of the LED array is formed by arranging a plurality of light emitting elements in which one conductive semiconductor layer, a reverse conductive semiconductor layer, and an electrode are sequentially stacked, and a light emitting region of the reverse conductive semiconductor layer. The portion is covered with a light-transmitting electrical insulating film such as SiNx, and further, the portion other than the light emitting region of the reverse conductivity type semiconductor layer is covered with a light-transmitting transparent synthetic resin layer.
[0003]
A specific example of the LED array having such a basic configuration will be described.
A conventional LED array is shown in FIGS.
FIG. 6 is a plan view of the LED array, and FIG. 7 is a sectional view thereof.
[0004]
Reference numeral 21 denotes a single crystal substrate. On the single crystal substrate 21, 22 is a one-conductivity-type semiconductor layer, 23 is a reverse-conductivity-type semiconductor layer, 24 is an individual electrode, 25 is a common electrode, and 26 is a protection made of a silicon nitride film or the like. It is an insulating film as a film.
[0005]
A single-conductivity-type semiconductor layer 22 and a reverse-conductivity-type semiconductor layer 23 are sequentially stacked on the single crystal substrate 21 for each light-emitting element. In the stack, the area of the single-conductivity-type semiconductor layer 22 is the reverse-conductivity type. The area is larger than the area of the semiconductor layer 23.
[0006]
An insulating film 26 is covered on the one-conductivity-type semiconductor layer 22, and the common electrode 25 (25a, 25b) is connected to the exposed portion.
[0007]
Also, the reverse conductivity type semiconductor layer 23 is also covered with an insulating film 26, and an individual electrode 24 is connected to the exposed portion.
[0008]
Further, as shown in FIG. 6, the common electrode 25 (25a, 25b) is provided by being divided into two groups so as to belong to a different group for each adjacent light emitting element (each island-like semiconductor layer 22, 23). Adjacent light emitting elements (island-like semiconductor layers 22, 23) are connected to the same individual electrode 24.
[0009]
In this light emitting diode array structure, each light emitting element can be made to emit light selectively by selecting a combination of the individual electrode 24 and the common electrode 25 (25a, 25b) and passing a current.
[0010]
[Problems to be solved by the invention]
In recent years, with respect to LED arrays, there is a need in the market to increase the density of light-emitting elements and to reduce the size thereof. However, in the LED array having the above-described configuration, the number of electrode pads that are external connection points is further increased. It has been difficult to reduce, to further reduce the size of the connection electrode with the external circuit, or to further reduce the chip size.
[0011]
Therefore, it has been impossible to sufficiently meet the market needs for increasing the density of light emitting elements and reducing the size of LED arrays.
[0012]
In order to solve this problem, an LED array having a multilayer electrode structure in which matrix wiring electrodes are provided via an interlayer insulating film has been proposed (see Japanese Patent Laid-Open Nos. 9-277592 and 11-40842).
[0013]
However, even with this proposed LED array, the formation of individual electrodes for each light emitting diode and the formation of matrix wiring for dividing the light emitting diodes into groups and selecting them one by one from each group are performed twice. However, through the process of electrically separating each through an insulating film or the like, the multilayer electrode structure complicates the manufacturing process, thereby reducing the manufacturing yield and increasing the manufacturing cost.
[0014]
In order to solve such a problem, the present inventor has proposed a technique for simplifying the process by forming the matrix wiring in one time in the LED array disclosed in Japanese Patent Application Laid-Open No. 2000-76437.
[0015]
According to the publication, for each light emitting element group, an electrode pad formed in common for each one electrode of the light emitting elements is disposed, and the other electrode in the extending portion of each light emitting element in the light emitting element group The other electrode pads are formed in common for both the other electrodes with the same electrode interval between the light emitting element electrodes of one light emitting element group and the electrode interval of the light emitting element of the other light emitting element group. Is arranged.
[0016]
Thus, by arranging the electrode pad formed in common for the plurality of one electrode and further arranging the other electrode pad formed in common for the plurality of other electrodes, the number of electrode pads is reduced. The arrangement area is reduced, and as a result, the density of the light emitting elements and the size of the LED array are reduced.
[0017]
Further, according to the LED array having the above configuration, the number of processes is reduced and the interlayer insulation is reduced as compared with the LED array having the multilayer electrode structure proposed in Japanese Patent Laid-Open Nos. 9-277592 and 11-40842. By not using a multilayer electrode structure with a film interposed therebetween, the manufacturing cost was reduced, and an LED array in which the density and size of the light emitting elements were achieved was obtained.
[0018]
However, according to the LED array disclosed in Japanese Patent Application Laid-Open No. 2000-76437, when an insulating film is coated on the LED array, an insulating film disposed on the reverse conductive type semiconductor of each light emitting element and an insulating film disposed on the other side By forming the film with the same material at the same time, the light transmission characteristics of both are the same, so that the light emitted from the upper part of the reverse conductivity type semiconductor is reflected as a stray light to the adjacent light emitter. As a result, the MTF of the LED array was lowered, the printing quality was lowered, and the quality of the LED head could not be stabilized.
[0019]
Further, according to each of the LED heads described, the light emitting region portion of the reverse conductivity type semiconductor layer is covered with a light transmissive electrical insulating film such as SiNx, and further, the light emitting region other than the light emission region of the reverse conductivity type semiconductor layer is covered. The problem is that stray light is generated inside the light-transmitting transparent synthetic resin layer by covering the portion with a light-transmitting transparent synthetic resin layer, thereby reducing the quality and reliability of light emission. was there.
[0020]
An object of the present invention has been completed in view of the above description, and an object of the present invention is to provide an LED array in which such stray light is reduced or eliminated.
[0021]
Another object of the present invention is to provide an LED array that does not increase the number of processes, does not use a multilayer electrode structure with an interlayer insulating film, reduces the manufacturing cost, and achieves higher density and smaller size of light emitting elements. Is to provide.
[0022]
Still another object of the present invention is not to cause an electrical short-circuit failure in wire bonding, which is an external connection process of the LED array, to achieve cost reduction by further downsizing, to improve the MTF of the LED array, and to improve the print quality. It is an object of the present invention to provide an LED array with improved performance.
[0023]
[Means for Solving the Problems]
LED arrays of the present invention is formed by sequentially laminating the at least one conductive type semiconductor layer and the opposite conductivity type semiconductor layer electrode light-emitting elements are a plurality arranged on a substrate, the light from the light-emitting region of the upper surface of the light emitting element The light-emitting element has at least a part of the light-emitting layer constituting the reverse-conductivity-type semiconductor layer and at least a part of the one-conductivity-type semiconductor layer in a portion other than the light-emitting region on the upper surface. The light emitting element has at least a region including the slope covered with a light-transmitting electrical insulating film, and a portion covering the slope of the electrical insulating film includes: A light- shielding synthetic resin layer is provided so as to cover the entire slope including the end face of the light emitting layer .
[0024]
In the LED array of the present invention, the light-shielding synthetic resin layer may be one in which a dye is contained in a synthetic resin material. In this case, the synthetic resin material is preferably polyimide. In addition, the electrical insulating film may cover an upper surface substantially parallel to the inclined surfaces of the plurality of light emitting elements and the substrate surface of the reverse conductivity type semiconductor layer. The light emitting region is in a range of an upper surface substantially parallel to the substrate surface of the reverse conductivity type semiconductor layer, and the light-shielding synthetic resin layer covers the electrical insulating film over the entire slope. It is also preferable.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the basic structure of the LED array of the present invention is such that at least a part of the light emitting region of the reverse conductivity type semiconductor layer is covered with a light-transmitting electrical insulating film, and further, other than the light emission region of the reverse conductivity type semiconductor layer. This part is covered with a light-shielding synthetic resin layer, and the present invention is an LED array including such a configuration, and an example thereof will be described below in detail with reference to the accompanying drawings.
[0026]
1 to 5 show an embodiment of the LED array of the present invention.
1 is a plan view of an enlarged main portion of the LED array, FIG. 2 is a cross-sectional view taken along the line VV ′ shown in FIG. 1, FIG. 3 is a cross-sectional view taken along the line hh ′ shown in FIG. It is a top view of each light emitting element. In FIGS. 2 and 3, V, V ′, h, and h ′ are clearly indicated as reference numerals, and directions of the cross-sectional views are shown. FIG. 5 is a plan view of the main part of another LED array.
[0027]
Reference numeral 1 denotes a single crystal substrate. On this single crystal substrate 1, 2 is a one-conductivity-type semiconductor layer, 3 is a reverse-conductivity-type semiconductor layer, 4 is an individual electrode that is the one electrode, and 5 is a common that is the other electrode. The electrodes 6 and 12 are insulating films as protective films made of an organic resin film or the like.
[0028]
8 and 10 (10a, 10b) are electrode pads for external connection.
[0029]
A single conductive semiconductor layer 2 and a reverse conductive semiconductor layer 3 are sequentially stacked on the single crystal substrate 1 for each light emitting element. In the stack, the area of the single conductive semiconductor layer 2 is a reverse conductive type. The extended portion 7 made of the same material as that of the one-conductivity-type semiconductor layer 2 is provided by pulling out the one-conductivity-type semiconductor layer 2 so as to be larger than the area of the semiconductor layer 3.
[0030]
Further, as shown in FIG. 2, an organic material such as polyimide synthetic resin or silicon nitride (SiNx), silicon oxide (SiO2), or the like, which is the light-transmissive electrical insulating film, is formed on the one conductive type semiconductor layer 2. Insulating film 6 made of an inorganic material is covered, and common electrode 5 (5a, 5b) is connected to the exposed portion to provide insulating film 6 and common electrode 5 on extension portion 7. In parallel.
[0031]
Further, a part of the light emitting region A of the reverse conductivity type semiconductor layer 3 is covered with an insulating film 6, and an individual electrode 4 is connected to the exposed portion. The protective film 12 which is the light-shielding synthetic resin layer covers the reverse conductive semiconductor layer 3 and the electrode pads 8 and 10 for external connection in a partially exposed form.
[0032]
The protective film 12 is formed by covering a portion other than the light emitting region A of the reverse conductivity type semiconductor layer 3.
[0033]
Next, each member will be described in detail.
When the single crystal substrate 1 is made of a semiconductor substrate and is composed of a high resistance silicon single crystal, a substrate with the (100) plane turned off by 2 to 7 degrees in the <011> direction is preferable.
[0034]
The one conductivity type semiconductor layer 2 includes a buffer layer 2a, an ohmic contact layer 2b, and an electron injection layer 2c.
[0035]
The buffer layer 2a and the ohmic contact layer 2b are formed of gallium arsenide or the like, and the electron injection layer 2c is formed of aluminum gallium arsenide or the like. The ohmic contact layer 2b contains about 1 × 10 17 to 10 19 atoms (atom) / cm 3 of one conductivity type semiconductor impurity such as silicon, and the electron injection layer 2c contains about one conductivity type semiconductor impurity such as silicon. To do.
[0036]
The buffer layer 2a is provided in order to prevent misfit dislocation based on mismatch of lattice constants between the single crystal substrate 1 and the semiconductor layer, and contains 1 × 10 16 to 10 19 atoms / cm 3 of semiconductor impurities.
[0037]
The buffer layer 2a is formed to a thickness of about 2 to 4 μm, the ohmic contact layer 2b is formed to a thickness of about 0.1 to 3.0 μm, and the electron injection layer 2c is formed to a thickness of about 0.2 to 0.4 μm. Is done.
[0038]
The reverse conductivity type semiconductor layer 3 includes a light emitting layer 3a, a cladding layer 3b, and another ohmic contact layer 3c.
[0039]
The light emitting layer 3a and the cladding layer 3b are made of aluminum gallium arsenide, and the ohmic contact layer 3c is made of gallium arsenide.
[0040]
The light emitting layer 3a, the clad layer 3b, and the ohmic contact layer 3c have a mixed crystal ratio of aluminum arsenide (AlAs) and gallium arsenide (GaAs) between the layers in consideration of the electron confinement effect and the light extraction effect. Make it different.
[0041]
The light emitting layer 3a and the cladding layer 3b contain about 1 × 10 16 to 10 21 atoms / cm 3 of reverse conductivity type semiconductor impurities such as zinc (Zn), and the ohmic contact layer 3c contains 1 of reverse conductivity type semiconductor impurities such as zinc. × 10 19 to 10 21 atoms / cm 3
[0042]
The light emitting layer 3a and the clad layer 3b are formed to a thickness of about 0.2 to 0.4 μm, and the film thickness d of the ohmic contact layer 3c is about film thickness d> (0.15 μm−ohmic contact layer film thickness). Formed in thickness.
[0043]
The insulating film 6 is made of, for example, silicon nitride and is formed with a thickness of about 2000 mm.
[0044]
The individual electrode 4 and the common electrode 5 (5a, 5b, 5c, 5d) are made of gold / chromium (Au / Cr) or the like and are formed with a thickness of about 1 μm.
[0045]
Each light emitting element is configured as described above. Next, an electrode structure for each light emitting element is shown in FIGS.
[0046]
A common electrode pad 8 is provided for the individual electrode 4 of each light emitting element, a light emitting element group 9 corresponding to each electrode pad 8 is provided, and the one light emitting element group and the other light emitting element group are provided. Are alternately arranged, whereby a plurality of light emitting element groups 9 are arranged in a line.
[0047]
Further, the electrode interval x reaching the common electrode 5 (5a, 5b, 5c, 5d) in the extending portion 7 of each light emitting element in the light emitting element group 9 is different, and the electrode interval of the light emitting elements in one light emitting element group 9 is different. In addition, the other electrode pads 10 formed in common with respect to both other electrodes are disposed with the same electrode spacing of the light emitting elements of the other light emitting element group 9.
[0048]
Then, in order to energize the common electrode 5 of each light emitting element having the same electrode interval x, the connection line 11 (11a, 11b, 11c, 11d) is provided so as to straddle the insulating film 6 on the extending portion 7. The light emitting elements are formed in parallel with the array lines.
[0049]
Further, with respect to one light emitting element group and the adjacent light emitting element groups 9 and 9 as the other light emitting element group, the individual electrode intervals x in the light emitting element group 9 may be increased or decreased in order of arrangement. Thus, a symmetrical electrode spacing pattern is used.
[0050]
Next, in FIG. 5, a 128-bit (bit) LED array is shown by changing the electrode spacing x in four ways.
[0051]
The electrode having the shortest electrode interval x is designated as X11, which is designated as the light emitting element at the end, sequentially designated as X21, X31, X41,..., X4n, X3n, X2n, X1n,.
[0052]
By dividing 128 bits into 4 groups and 32 groups (32 light emitting element groups 9), n = 1 to 32.
[0053]
Assuming that each light emitting element group 9 is a group G1, G2,... Gm, the light emitting elements having the electrode interval X11 in the group G1 and the light emitting elements having the electrode interval X12 in the group G2 are connected by the connecting line 11a. It is connected to a light emitting element having an electrode interval X1n.
[0054]
A light emitting element having an electrode interval X21 in the group G1, a light emitting element having an electrode interval X22 in the group G2, and a light emitting element having an electrode interval X2n in the group Gm are connected by a connection line 11b.
[0055]
Similarly, the light emitting element with the electrode interval X31 in the group G1, the light emitting element with the electrode interval X32 in the group G2, and the light emitting element with the electrode interval X3n in the group Gm are connected by the connection line 11c.
[0056]
A light emitting element having an electrode interval X41 in the group G1, a light emitting element having an electrode interval X42 in the group G2, and a light emitting element having an electrode interval X4n in the group Gm are connected by a connecting line 11d.
[0057]
Then, by selectively applying a voltage between the electrode pads 8 provided in each light emitting element group and the other grouped electrode pads 10, a current can be passed to a predetermined light emitting element. The element is caused to emit light.
[0058]
Thus, according to the LED array of the present invention, a common electrode pad 8 is provided for each light emitting element group 9 (group G1, G2,... Gm...), And the light emitting element group 9 (group G1,. G2,... Gm, and so on), the electrode spacing x of each light emitting element is different, and the electrode spacing x of the light emitting elements of one light emitting element group and the electrode spacing x of the light emitting elements of the other light emitting element group are the same, Since the electrode pads 10 formed in common for both the common electrodes 5 are arranged, the number of electrode pads is reduced, and the arrangement area is reduced, thereby increasing the density of the light emitting elements and the LED array. Miniaturization is achieved.
[0059]
In the present invention, the protective film 12 is formed on the surface, and at the same time, at least a part of the electrode pads 8 and 12 for connection with an external circuit and a part of the light emitting region A of the reverse conductivity type semiconductor layer 3 are formed on the insulating film 6. And the individual electrode 4 is connected to the exposed portion.
[0060]
About the insulating film 6, it is good to set the film thickness d so that reflection may be prevented.
[0061]
The conditions for this may be as follows.
[0062]
N1: Refractive index of the insulating film 6, d: Film thickness of the insulating film 6, m: Integer, λ: Light emission wavelength of the light emitting element, N2: GaAs material of the one-conductivity-type semiconductor layer 2 and the reverse-conductivity-type semiconductor layer 3 In the refractive index, the antireflection condition is preferably (N1) d = (1/4 + m / 2) λ, and further (N1) = √ (N2).
[0063]
In addition, for the protective film 12, a dye may be contained in a synthetic resin material such as polyimide in order to make it light-shielding, and a black pigment may be contained as such a dye. For example, molybdenum disulfide, graphite, and Carbon blacks such as acetylene black, ketjen black and furnace black, metal oxides such as magnetite cobalt oxide, copper oxide and chromium oxide, composite metal oxides such as copper oxide-chromium oxide-iron oxide, titanium black, etc. There is.
[0064]
The insulating film 6 and the protective film 12 are covered and designed to have an optimal optical transmittance according to the wavelength of the LED array. In the protective film 12, the optical transmittance is relative to the wavelength of the LED array. Is designed to be the lowest so that the stray light can be reduced, and as a result, an LED array with improved MTF can be realized.
[0065]
For example, when the insulating film 6 is made of a SiNx film, the protective film 12 is made of an organic resin film, and the wavelength of the LED is 740 nm, the optimum transmittance is 100%. On the other hand, the thickness and refractive index of the insulating film 6 are designed so that the light transmittance is close to 100%. For example, the thickness of the insulating film 6 made of SiNx (refractive index = 1.88) is preferably about 3100A.
[0066]
Further, according to the LED array of this example, the electrode pads formed in common to the respective one electrodes of the light emitting elements are arranged for each light emitting element group as in the above configuration, In the extending part of each light emitting element, the electrode distance to the other electrode is different, the electrode distance of the light emitting element in one light emitting element group is the same as the electrode distance of the light emitting element in the other light emitting element group, and the other Another electrode pad formed in common with the electrode is provided.
[0067]
Thus, by arranging the electrode pad formed in common for the plurality of one electrode and further arranging the other electrode pad formed in common for the plurality of other electrodes, the number of electrode pads is reduced. The arrangement area is reduced, thereby achieving high density of the light emitting elements and miniaturization of the LED array.
[0068]
In addition, the number of processes is reduced compared with the LED array having a multilayer electrode structure as proposed in Japanese Patent Laid-Open Nos. 9-277592 and 11-40842, and a multilayer electrode structure having an interlayer insulating film is used. By not using the LED array, the manufacturing cost is reduced, and an LED array in which the density and size of the light emitting elements are achieved can be obtained. Further, in order to energize the other electrode of each light emitting element having the same electrode spacing, a connection line is formed in parallel with the array line of the light emitting elements so as to straddle the insulating film formed in the extending part of the one-conductivity type semiconductor layer. is doing. Therefore, in the conventional LED array, in addition to the insulating film formed as is well known, an interlayer insulating film that is indispensable for the electrical insulation between the wirings is not formed. This reduces the manufacturing cost and reduces the cost. LED arrays are provided. Furthermore, the symmetric electrode spacing pattern is obtained by changing the individual electrode spacing within the light emitting device group in the arrangement order with respect to one light emitting device group and the other light emitting device group. As a result, the signal processing of the light emission order when the LED head is mounted can be made relatively easy, and the design of the mounting board can also be facilitated. Then, by regularly arranging the regular pattern in the LED array, it becomes easy in design to provide electrode pads in other regions. It is possible to provide a large space in the shortest part of the symmetrical electrode interval. As a result, the size of the LED array chip can be reduced, and a larger wire bonding pad can be used for mounting the LED array. As a result, it is possible to reduce the chip size of the LED array and improve the yield in manufacturing the LED head. In the above LED array, a resin film is formed on the surface, and at the same time, at least the electrode connection part to the external circuit and the upper part of the reverse conductivity type semiconductor layer are covered. Therefore, the insulating film is formed according to the wavelength of the LED array. In addition, the resin film is designed to have the lowest optical transmittance with respect to the wavelength of the LED array, thereby reducing the stray light and improving the MTF. Realized. Further, in the case of an opaque film containing a dye, the resin film can be further improved, and an LED head with high MTF and high print quality can be provided.
[0069]
Next, a method for manufacturing the LED array as described above will be described.
[0070]
First, a one-conductivity-type semiconductor layer 2 and a reverse-conductivity-type semiconductor layer 3 are sequentially stacked on a high-resistance silicon single crystal substrate 1 by MOCVD or the like.
[0071]
First, when these semiconductor layers 2 and 3 are formed, the substrate temperature is set to 400 to 500 ° C., thereby forming an amorphous gallium arsenide film with a thickness of 200 to 2000 mm, and then the substrate temperature is set to 700 to The temperature is raised to 900 ° C. to form the one-conductivity-type semiconductor layer 2 and the reverse-conductivity-type semiconductor layer 3 having a desired thickness.
[0072]
In this film formation, as source gases, TMG ((CH 3 ) 3 Ga), TEG ((C 2 H 5 ) 3 Ga), arsine (AsH 3 ), TMA ((CH 3 ) 3 Al), TEA (( C 2 H 5) 3 Al) and the like are used as the gas for controlling conductivity types, silane (SiH 4), hydrogen selenide (H 2 Se), and DMZ ((CH 3) 2 Zn ) As the carrier gas, H 2 or the like is used.
[0073]
Next, the semiconductor layers 2 and 3 are patterned in an island shape so that adjacent elements are electrically isolated. Etching for that purpose is performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution, dry etching using CCl 2 F 2 gas, or the like.
[0074]
Thereafter, an extension 7 is provided on one end side of the one conductivity type semiconductor layer 2, a part of the extension 7 is exposed on the extension 7, and an adjacent region portion of the one conductivity type semiconductor layer 2 is Etch to be exposed. In addition, the reverse conductivity type semiconductor layer 3 is etched so that the reverse conductivity type semiconductor layer 3 is formed narrower than the one conductivity type semiconductor layer 2.
[0075]
Such etching is also performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution or dry etching using CCl2 F2 gas.
[0076]
Next, etching is performed with, for example, an alkaline aqueous solution so that adjacent light emitting elements are electrically separated even on the substrate. At this time, a part of the extended portion 7 of the one-conductivity-type semiconductor layer 2 is exposed, and an adjacent region portion of the one-conductivity-type semiconductor layer 2 is exposed, and the reverse-conductivity-type semiconductor layer 3 is It is performed while leaving the pattern used when the reverse conductive semiconductor layer 3 is etched so as to be formed narrower than the conductive semiconductor layer 2, so that the reverse conductive semiconductor layer 3 can be electrically connected without any changes. To separate.
[0077]
Next, an insulating film 6 made of an organic resin by spin coating is formed. The insulating film may be made of silicon nitride using silane gas (SiH 4 ) and ammonia gas (NH 3 ) by plasma CVD.
[0078]
The electrode pads 9 and 10 and the connection line 11 are formed by forming and patterning chromium and gold by vapor deposition or sputtering. Finally, the protective film 12 formed with an organic resin by spin coating is formed.
[0079]
【The invention's effect】
As described above, according to the LED array of the present invention, at least a part of the light emitting region of the reverse conductivity type semiconductor layer is covered with the light-transmitting electrical insulating film, and further, other than the light emission region of the reverse conductivity type semiconductor layer. By covering the portion with a light-shielding synthetic resin layer, stray light was reduced or eliminated, thereby obtaining a high-quality and high-reliability LED array with improved MTF.
[0080]
In the LED array of the present invention, a one-conductivity-type semiconductor layer, a reverse-conductivity-type semiconductor layer, and one electrode are sequentially stacked on a single crystal substrate, and the one-conductivity-type semiconductor layer is drawn on the extended portion. A plurality of light emitting element groups, each having a plurality of light emitting elements formed by arranging the other electrode and the insulating film side by side, and an electrode pad formed in common for each of the electrodes of these light emitting elements are arranged. In the arrangement arranged in the form of individual lines, the electrode spacing to the other electrode in the extending part of each light emitting element in the light emitting element group is different, and the electrode spacing of the light emitting element in one light emitting element group and the other light emitting element group The electrode spacing of the light emitting element is made the same, and other electrode pads formed in common for both other electrodes are arranged, thereby reducing the number of electrode pads and reducing the arrangement area, As a result, the height of the light emitting element Cathodic, and downsizing of the LED array was achieved.
[0081]
Compared to conventional LED arrays with a multilayer electrode structure, the number of processes is reduced, and the multilayer electrode structure with an interlayer insulating film is not used, thereby reducing manufacturing costs and increasing the density and miniaturization of light-emitting elements. As a result, an LED array was achieved.
[0082]
In the above LED array, a resin film is formed on the surface, and at the same time, at least the electrode connection part to the external circuit and the upper part of the reverse conductivity type semiconductor layer are covered. Therefore, the insulating film is formed according to the wavelength of the LED array. In addition, the resin film is designed to have the lowest optical transmittance with respect to the wavelength of the LED array, thereby reducing the stray light and improving the MTF. Realized. Further, in the case of an opaque film containing a dye, the resin film can be further improved, and an LED head with high MTF and high print quality can be provided.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of an LED array of the present invention.
FIG. 2 is a cross-sectional view taken along the line VV ′ shown in FIG.
FIG. 3 is a cross-sectional view taken along the line hh ′ shown in FIG.
FIG. 4 is a plan view showing an embodiment of the LED array of the present invention.
FIG. 5 is a plan view showing an embodiment of a conventional LED array.
FIG. 6 is a cross-sectional view showing a conventional LED array.
FIG. 7 is a plan view showing an embodiment of a conventional LED array.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Single crystal substrate 2 ... One conductivity type semiconductor layer 3 ... Reverse conductivity type semiconductor layer 4 ... Individual electrode 5 ... Common electrode 6 ... Insulating film 7 ... Extension part 8 ... Electrode pad 9 ... Light emitting element group 10 ... Electrode pad 11 ... Connection line x ... Electrode interval A ... Light emitting region

Claims (5)

少なくとも一導電型半導体層と逆導電型半導体層と電極とを順次積層してなる発光素子が基板上に複数個配列され、各発光素子の上面の発光領域から光を照射するLEDアレイであって、
前記発光素子は、前記上面の発光領域以外の部分に、少なくとも前記逆導電型半導体層を構成する発光層の端面と、前記一導電型半導体層の少なくとも一部の端面とを含む斜面を有し、
前記発光素子は、少なくとも前記斜面を含む領域が光透過性の電気的絶縁膜によって被覆されており、
前記電気的絶縁膜の前記斜面を覆う部分には、前記発光層の端面を含む前記斜面の全体を被覆するように遮光性合成樹脂層が設けられていることを特徴とするLEDアレイ。
At least one conductivity type semiconductor layer and the opposite conductivity type semiconductor layer and the electrode and sequentially stacked comprising light-emitting device is a plurality arranged on a substrate, there an LED array for emitting light from the light emitting region of the upper surface of the light emitting element And
The light emitting element has a slope including at least an end surface of a light emitting layer constituting the reverse conductivity type semiconductor layer and an end surface of at least a part of the one conductivity type semiconductor layer in a portion other than the light emitting region on the upper surface. ,
In the light emitting element, at least a region including the inclined surface is covered with a light-transmitting electrical insulating film,
A light-shielding synthetic resin layer is provided on a portion of the electrical insulating film that covers the inclined surface so as to cover the entire inclined surface including an end face of the light emitting layer .
前記遮光性合成樹脂層は、染料が合成樹脂材に含有されてなることを特徴とする請求項1記載のLEDアレイ。  2. The LED array according to claim 1, wherein the light-shielding synthetic resin layer comprises a synthetic resin material containing a dye. 前記合成樹脂材はポリイミドであることを特徴とする請求項1または2記載のLEDアレイ。  The LED array according to claim 1, wherein the synthetic resin material is polyimide. 前記電気的絶縁膜は、複数の前記発光素子の前記斜面、および前記逆導電型半導体層の前記基板表面に略平行な上面を被覆していることを特徴とする請求項1〜3のいずれかに記載のLEDアレイ。  The electrical insulating film covers the slopes of the plurality of light emitting elements and the upper surface substantially parallel to the substrate surface of the reverse conductivity type semiconductor layer. LED array described in 1. 前記発光領域は、前記逆導電型半導体層の前記基板表面に略平行な上面の範囲内にあり、
前記遮光性合成樹脂層は、前記電気的絶縁膜を、前記斜面全体にわたって被覆していることを特徴とする請求項1〜4のいずれかに記載のLEDアレイ。
The light emitting region is in a range of an upper surface substantially parallel to the substrate surface of the reverse conductivity type semiconductor layer,
The LED array according to any one of claims 1 to 4, wherein the light-shielding synthetic resin layer covers the electrical insulating film over the entire slope.
JP2002158228A 2002-05-30 2002-05-30 LED array Expired - Fee Related JP4126454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158228A JP4126454B2 (en) 2002-05-30 2002-05-30 LED array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158228A JP4126454B2 (en) 2002-05-30 2002-05-30 LED array

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008012439A Division JP2008153681A (en) 2008-01-23 2008-01-23 Led array

Publications (2)

Publication Number Publication Date
JP2003347581A JP2003347581A (en) 2003-12-05
JP4126454B2 true JP4126454B2 (en) 2008-07-30

Family

ID=29773655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158228A Expired - Fee Related JP4126454B2 (en) 2002-05-30 2002-05-30 LED array

Country Status (1)

Country Link
JP (1) JP4126454B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995085B2 (en) 2007-07-04 2011-08-09 Seiko Epson Corporation Line head, and an image forming apparatus using the line head
JP2009238893A (en) * 2008-03-26 2009-10-15 Oki Data Corp Semiconductor device, optical print head, and image forming apparatus
JP5222165B2 (en) * 2009-01-27 2013-06-26 株式会社沖データ Light source device and head-up display device having the same
JP6072192B2 (en) * 2015-10-22 2017-02-01 株式会社東芝 Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and method for manufacturing light emitting device
CN113745259B (en) * 2020-05-29 2024-02-27 成都辰显光电有限公司 Light-emitting diode display panel and preparation method thereof

Also Published As

Publication number Publication date
JP2003347581A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US20030052323A1 (en) Semiconductor light-emitting device, electrode for the device, method for fabricating the electrode, LED lamp using the device, and light source using the LED lamp
KR101259969B1 (en) Light emitting device
JP4493153B2 (en) Nitride-based semiconductor light emitting device
US11296258B2 (en) Light-emitting diode
US20200135799A1 (en) Display device
CN110268587A (en) Surface-emitting laser and electronic equipment
KR20030007061A (en) Light-emitting diode array
JP4126454B2 (en) LED array
US20220037556A1 (en) Light-emitting device and display device having the same
US12087748B2 (en) Display device and manufacturing method thereof
KR101916369B1 (en) Light emitting diode
JP2008153681A (en) Led array
JP4543732B2 (en) Light emitting diode array
JP3854073B2 (en) LED array and LED head
TW202207491A (en) Light-emitting device and display device having the same
JPH07131070A (en) Semiconductor light emitting element and semiconductor light emitting element array
JP4012716B2 (en) LED array and manufacturing method thereof
JP3559463B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP7492666B2 (en) Light emitting element
JP3722680B2 (en) LED array
US20230215981A1 (en) Light-emitting device and display device using the same
JPH11312824A (en) Semiconductor light-emitting device
JP2002064222A (en) Led array
JP2003046130A (en) Led array
JP2024515638A (en) Unit pixel for LED display and display device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees