TW202207491A - Light-emitting device and display device having the same - Google Patents

Light-emitting device and display device having the same Download PDF

Info

Publication number
TW202207491A
TW202207491A TW110117551A TW110117551A TW202207491A TW 202207491 A TW202207491 A TW 202207491A TW 110117551 A TW110117551 A TW 110117551A TW 110117551 A TW110117551 A TW 110117551A TW 202207491 A TW202207491 A TW 202207491A
Authority
TW
Taiwan
Prior art keywords
light
emitting element
layer
semiconductor stack
filter layer
Prior art date
Application number
TW110117551A
Other languages
Chinese (zh)
Inventor
卓亨穎
沈立宇
洪侑毅
歐震
張利銘
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to DE102021119657.4A priority Critical patent/DE102021119657A1/en
Priority to US17/389,467 priority patent/US20220037556A1/en
Priority to CN202110870856.4A priority patent/CN114068784A/en
Publication of TW202207491A publication Critical patent/TW202207491A/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting device includes: a semiconductor stack; and a filter on the semiconductor stack, wherein the filter includes a first surface facing the semiconductor stack and a second surface opposite to the first surface; wherein: the light-emitting device emits a light; the light includes a first light within a first direction, and the first light has a first full width at half maximum (FWHM); and a second light within a second direction, and the second light has a second FWHM; the angle between the first direction and a normal vector of the second surface is between 45-90 degrees and the angle between the second direction and the a normal vector of the second surface is between 0-30 degrees; and the second FWHM is smaller than the first FWHM.

Description

發光元件及顯示裝置Light-emitting element and display device

本發明是有關於一種發光元件及顯示裝置,特別是有關於一種具有濾光層的發光元件及具有此發光元件的顯示裝置。The present invention relates to a light-emitting element and a display device, and more particularly, to a light-emitting element having a filter layer and a display device having the light-emitting element.

固態發光元件中的發光二極體(LEDs)具有低功率消耗、高亮度、高演色性、及體積小等優點,已廣泛用於各式照明及顯示裝置。舉例而言,發光元件作為顯示裝置的畫素,可以取代傳統液晶顯示裝置,並實現更高畫質的顯示效果。當發光元件應用於顯示裝置,如何維持發光元件的光電特性並提升顯示裝置之顯示效果,為本技術領域人員所研究開發的目標之一。Light-emitting diodes (LEDs) in solid-state light-emitting devices have the advantages of low power consumption, high brightness, high color rendering, and small size, and have been widely used in various lighting and display devices. For example, as a pixel of a display device, a light-emitting element can replace a traditional liquid crystal display device and achieve a higher-quality display effect. When a light-emitting element is applied to a display device, how to maintain the optoelectronic properties of the light-emitting element and improve the display effect of the display device is one of the research and development goals of those skilled in the art.

一種發光元件,包含:一半導體疊層;以及一濾光層,位於半導體疊層上,包含一第一表面面對半導體疊層以及一第二表面相對於第一表面;其中:發光元件發出一光線;所述光線包含在一第一方向光,其具有一第一半高寬;以及在一第二方向光,其具有一第二半高寬;第一方向與第二表面之法線方向之夾角介於45-90度,第二方向與第二表面之法線方向之夾角介於0-30度;以及第二半高寬小於第一半高寬。A light-emitting element, comprising: a semiconductor stack; and a filter layer, located on the semiconductor stack, comprising a first surface facing the semiconductor stack and a second surface opposite to the first surface; wherein: the light-emitting element emits a light; the light includes a first directional light, which has a first half-width; and a second directional light, which has a second half-width; the first direction and the normal direction of the second surface The included angle is 45-90 degrees, the included angle between the second direction and the normal direction of the second surface is 0-30 degrees; and the second half-height width is smaller than the first half-height width.

一種發光元件,包含:一半導體疊層,發出一第一光線;以及一濾光層,位於半導體疊層上,包含一第一表面面對半導體疊層以及一第二表面相對於第一表面;其中:第一光線經由濾光層得到一第二光線;第一光線具有一第一半高寬,第二光線具有一第二半高寬;以及第二半高寬小於第一半高寬,及/或第二光線具有一半高寬小於或等於25 nm。A light-emitting element, comprising: a semiconductor stack, emitting a first light; and a filter layer, located on the semiconductor stack, comprising a first surface facing the semiconductor stack and a second surface opposite to the first surface; Wherein: the first ray obtains a second ray through the filter layer; the first ray has a first half-height width, the second ray has a second half-height-width; and the second half-height-width is smaller than the first half-height-width, And/or the second light has a half height and width less than or equal to 25 nm.

一種發光元件,包含:一半導體疊層,發出一第一光線;以及一濾光層,位於半導體疊層上,包含一第一表面面對半導體疊層以及一第二表面相對於第一表面;其中:濾光層包含交互堆疊的一第一介電材料層以及一第二介電材料層;第一光線經由濾光層得到一第二光線;以及發光元件具有一發散角介於50度至110度。A light-emitting element, comprising: a semiconductor stack, emitting a first light; and a filter layer, located on the semiconductor stack, comprising a first surface facing the semiconductor stack and a second surface opposite to the first surface; Wherein: the filter layer includes a first dielectric material layer and a second dielectric material layer stacked alternately; the first light obtains a second light through the filter layer; and the light-emitting element has a divergence angle ranging from 50 degrees to 110 degrees.

下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得 本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下 之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符 號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有 一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考 量,相同之符號的元件將不再重述。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings, such that Those skilled in the art of the present invention can fully understand the spirit of the present invention. The present invention is not limited to the following example, but may be implemented in other forms. In this manual, there are some identical symbols No., which represents the components with the same or similar structure, function and principle, and is the industry's Those with ordinary knowledge can make inferences based on the teachings of this manual. Test the simplicity of the manual Quantities, elements with the same symbols will not be repeated.

圖1顯示本申請案第一實施例發光元件1之截面圖。如圖1所示,發光元件1包含基板10,半導體疊層12位於基板第一表面10a,其中半導體疊層12在基板第一表面10a上依序包含一第一半導體層121、一活性層123和一第二半導體層122,第一半導體層121具有一第一表面121a不被活性層123和第二半導體層122所覆蓋。透明導電層18位於第二半導體層122上,第一電極20位於第一半導體層第一表面121a上,以及第二電極30位於透明導電層18上。濾光層50位於半導體疊層12上。在基板10相對於第一表面10a的第二表面10b,設置有反射結構16。FIG. 1 shows a cross-sectional view of a light-emitting device 1 according to a first embodiment of the present application. As shown in FIG. 1 , the light-emitting element 1 includes a substrate 10, and a semiconductor stack 12 is located on the first surface 10a of the substrate, wherein the semiconductor stack 12 includes a first semiconductor layer 121 and an active layer 123 on the first surface 10a of the substrate in sequence. And a second semiconductor layer 122 , the first semiconductor layer 121 has a first surface 121 a not covered by the active layer 123 and the second semiconductor layer 122 . The transparent conductive layer 18 is located on the second semiconductor layer 122 , the first electrode 20 is located on the first surface 121 a of the first semiconductor layer, and the second electrode 30 is located on the transparent conductive layer 18 . The filter layer 50 is on the semiconductor stack 12 . A reflection structure 16 is provided on the second surface 10b of the substrate 10 opposite to the first surface 10a.

基板10可以是一成長基板,包括用於生長磷化鎵銦(AlGaInP)的砷化鎵(GaAs)基板、及磷化鎵(GaP)基板,或用於生長氮化銦鎵(InGaN)或氮化鋁鎵(AlGaN)的藍寶石(Al2 O3 )基板,氮化鎵(GaN)基板,碳化矽(SiC)基板、及氮化鋁(AlN)基板。基板10可以是一圖案化基板,即,基板10在其第一表面10a上具有圖案化結構(圖未示)。於一實施例中,從半導體疊層12發射的光可以被基板10的圖案化結構所折射,從而提高發光元件的亮度。此外,圖案化結構減緩或抑制了基板10與半導體疊層12之間因晶格不匹配而導致的錯位,從而改善半導體疊層12的磊晶品質。The substrate 10 may be a growth substrate, including a gallium arsenide (GaAs) substrate for growing gallium indium phosphide (AlGaInP), and a gallium phosphide (GaP) substrate, or for growing indium gallium nitride (InGaN) or nitrogen Aluminum gallium (AlGaN) sapphire (Al 2 O 3 ) substrates, gallium nitride (GaN) substrates, silicon carbide (SiC) substrates, and aluminum nitride (AlN) substrates. The substrate 10 may be a patterned substrate, that is, the substrate 10 has a patterned structure on its first surface 10a (not shown). In one embodiment, the light emitted from the semiconductor stack 12 may be refracted by the patterned structure of the substrate 10, thereby increasing the brightness of the light-emitting element. In addition, the patterned structure slows down or suppresses the dislocation caused by lattice mismatch between the substrate 10 and the semiconductor stack 12 , thereby improving the epitaxial quality of the semiconductor stack 12 .

在本申請案的一實施例中,在基板10上形成半導體疊層12的方法包含有機金屬化學氣相沉積(MOCVD)、分子束磊晶法(MBE)、氫化物氣相磊晶(HVPE)或離子鍍,例如濺鍍或蒸鍍等。In one embodiment of the present application, the method of forming the semiconductor stack 12 on the substrate 10 includes metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE) Or ion plating, such as sputtering or evaporation, etc.

半導體疊層12更包含緩衝結構(圖未示)在基板第一表面10a與第一半導體層121之間。緩衝結構、第一半導體層121、活性層123和第二半導體層122構成半導體疊層12。緩衝結構可減小上述的晶格不匹配並抑制錯位,從而改善磊晶品質。緩衝層的材料包括GaN、AlGaN或AlN。在一實施例中,緩衝結構包括多個子層(圖未示)。子層包括相同材料或不同材料。在一實施例中,緩衝結構包括兩個子層,其中第一子層的生長方式為濺鍍,第二子層的生長方式為MOCVD。在一實施例中,緩衝層另包含第三子層。其中第三子層的生長方式為MOCVD,第二子層的生長溫度高於或低於第三子層的生長溫度。於一實施例中,第一、第二及第三子層包括相同的材料,例如AlN,或不同材料,例如AN、GaN、AlGaN。在本申請案的一實施例中,第一半導體層121和第二半導體層122,例如為包覆層(cladding layer)或侷限層(confinement layer),具有不同的導電型態、電性、極性或用於提供電子或電洞的摻雜元素。例如,第一半導體層121是n型半導體,以及第二半導體層122是p型半導體。活性層123形成於第一半導體層121與第二半導體層122之間。電子與電洞在電流驅動下在活性層123中結合,將電能轉換成光能以發光。可藉由改變半導體疊層12中一個或多個層別的物理特性和化學組成,來調整發光元件1或半導體疊層12所發出的光之波長。The semiconductor stack 12 further includes a buffer structure (not shown) between the first surface 10 a of the substrate and the first semiconductor layer 121 . The buffer structure, the first semiconductor layer 121 , the active layer 123 and the second semiconductor layer 122 constitute the semiconductor stack 12 . The buffer structure can reduce the above-mentioned lattice mismatch and suppress dislocation, thereby improving epitaxial quality. The material of the buffer layer includes GaN, AlGaN or AlN. In one embodiment, the buffer structure includes multiple sub-layers (not shown). The sublayers include the same material or different materials. In one embodiment, the buffer structure includes two sub-layers, wherein the growth method of the first sub-layer is sputtering, and the growth method of the second sub-layer is MOCVD. In one embodiment, the buffer layer further includes a third sublayer. The growth mode of the third sublayer is MOCVD, and the growth temperature of the second sublayer is higher or lower than the growth temperature of the third sublayer. In one embodiment, the first, second and third sublayers comprise the same material, eg, AlN, or different materials, eg, AN, GaN, AlGaN. In an embodiment of the present application, the first semiconductor layer 121 and the second semiconductor layer 122, such as a cladding layer or a confinement layer, have different conductivity types, electrical properties, and polarities Or doping elements used to provide electrons or holes. For example, the first semiconductor layer 121 is an n-type semiconductor, and the second semiconductor layer 122 is a p-type semiconductor. The active layer 123 is formed between the first semiconductor layer 121 and the second semiconductor layer 122 . Electrons and holes are combined in the active layer 123 under the driving of current, converting electrical energy into light energy to emit light. The wavelength of the light emitted by the light emitting element 1 or the semiconductor stack 12 can be adjusted by changing the physical properties and chemical composition of one or more layers in the semiconductor stack 12 .

半導體疊層12的材料包括Alx Iny Ga(1-x-y) N或Alx Iny Ga(1-x-y) P的III-V族半導體材料,其中0≤x,y≤1;x+y≤1。根據活性層的材料,當半導體疊層12的材料是AlInGaP系列時,可以發出波長介於570nm和780nm之間的紅光或波長介於550nm和570nm之間的黃光。當半導體疊層12的材料是InGaN系列時,可以發出波長介於380nm和490nm之間的藍光或深藍光或波長介於490nm和550nm之間的綠光。活性層123可以是單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure; DH)、雙面雙異質結構(double-side double heterostructure;DDH)、多重量子井(multi-quantum well;MQW)。活性層123的材料可以是i型、p型或n型半導體。The material of the semiconductor stack 12 includes a III-V semiconductor material of AlxInyGa(1- xy ) N or AlxInyGa (1- xy ) P, where 0≤x, y≤1; x+ y ≤1. Depending on the material of the active layer, when the material of the semiconductor stack 12 is AlInGaP series, red light with a wavelength between 570 nm and 780 nm or yellow light with a wavelength between 550 nm and 570 nm can be emitted. When the material of the semiconductor stack 12 is InGaN series, blue light or deep blue light with wavelengths between 380 nm and 490 nm or green light with wavelengths between 490 nm and 550 nm can be emitted. The active layer 123 may be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), a multi-quantum well (MQW) ). The material of the active layer 123 may be an i-type, p-type or n-type semiconductor.

透明導電層18與第二半導體層122電性接觸,用以橫向分散電流。於另一實施例中,透明導電層18可包含開口(圖未示)位於第二電極30下方,暴露第二半導體層122,第二電極30可經由透明導電層18之開口接觸第二半導體層122。透明導電層18可以是金屬或是透明導電材料,其中金屬可選自具有透光性的薄金屬層,透明導電材料對於活性層123所發出的光線為透明,包含石墨烯、銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。The transparent conductive layer 18 is in electrical contact with the second semiconductor layer 122 for laterally dispersing current. In another embodiment, the transparent conductive layer 18 may include an opening (not shown) under the second electrode 30 to expose the second semiconductor layer 122 , and the second electrode 30 may contact the second semiconductor layer through the opening of the transparent conductive layer 18 122. The transparent conductive layer 18 can be a metal or a transparent conductive material, wherein the metal can be selected from a thin metal layer with light transmittance, and the transparent conductive material is transparent to the light emitted by the active layer 123, including graphene, indium tin oxide ( ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO) or indium zinc oxide (IZO).

第一電極20位於第一半導體層第一表面121a上,與第一半導體層121電性連接。第二電極30與第二半導體層121電性連接。第一電極20及第二電極30分別包含一焊盤電極。於圖1中,僅示例性地繪示第一電極20及第二電極30的焊盤電極。於另一實施例中,第一電極20及/或第二電極30更包含延伸自焊盤電極的指狀電極(圖未示)。第一電極20及第二電極30的焊盤電極用以打線或焊接,使發光元件1和外部電源或外部電子元件電性連接。第一電極20與第二電極30之材料包含金屬,例如鉻(Cr)、鈦(Ti)、金(Au)、鋁(Al)、銅(Cu)、銀(Ag)、錫(Sn)、鎳(Ni)、銠(Rh)或鉑(Pt)等金屬或上述材料之合金或疊層。The first electrode 20 is located on the first surface 121 a of the first semiconductor layer and is electrically connected to the first semiconductor layer 121 . The second electrode 30 is electrically connected to the second semiconductor layer 121 . The first electrode 20 and the second electrode 30 respectively include a pad electrode. In FIG. 1 , only the pad electrodes of the first electrode 20 and the second electrode 30 are exemplarily shown. In another embodiment, the first electrode 20 and/or the second electrode 30 further include finger electrodes (not shown) extending from the pad electrodes. The pad electrodes of the first electrode 20 and the second electrode 30 are used for wire bonding or welding to electrically connect the light-emitting element 1 with an external power source or an external electronic element. The materials of the first electrode 20 and the second electrode 30 include metals, such as chromium (Cr), titanium (Ti), gold (Au), aluminum (Al), copper (Cu), silver (Ag), tin (Sn), Metals such as nickel (Ni), rhodium (Rh) or platinum (Pt), or alloys or laminates of the above materials.

於一實施例中,發光元件1更可包含一電流阻擋層(圖未示)位於透明導電層18與第二半導體層122之間,及/或位於第一電極20與第一半導體層121之間。In one embodiment, the light-emitting element 1 may further include a current blocking layer (not shown) between the transparent conductive layer 18 and the second semiconductor layer 122 , and/or between the first electrode 20 and the first semiconductor layer 121 . between.

濾光層50包含開孔501及502,於本實施例中,如圖1所示,濾光層50覆蓋半導體疊層12、透明導電層18及部分的第一電極20和第二電極30,並分別經由開孔501及502露出第一電極20和第二電極30,更詳言之,露出第一電極20和第二電極30的焊盤電極。於另一實施例(圖未示)中,濾光層50未覆蓋第一電極20及第二電極30。於另一實施例(圖未示)中,濾光層50覆蓋半導體疊層12、透明導電層18且延伸至部分的第一電極20和第二電極30下方,第一電極20和第二電極30分別經由其下方的開孔501及502與半導體疊層12電性連接。The filter layer 50 includes openings 501 and 502. In this embodiment, as shown in FIG. 1, the filter layer 50 covers the semiconductor stack 12, the transparent conductive layer 18 and part of the first electrode 20 and the second electrode 30. The first electrodes 20 and the second electrodes 30 are exposed through the openings 501 and 502 respectively, and more specifically, the pad electrodes of the first electrodes 20 and the second electrodes 30 are exposed. In another embodiment (not shown), the filter layer 50 does not cover the first electrode 20 and the second electrode 30 . In another embodiment (not shown), the filter layer 50 covers the semiconductor stack 12 and the transparent conductive layer 18 and extends to a part of the first electrode 20 and the second electrode 30 under the first electrode 20 and the second electrode. 30 is electrically connected to the semiconductor stack 12 through openings 501 and 502 thereunder, respectively.

濾光層50由一對或複數對不同折射率的材料層交互堆疊所形成,對特定波長範圍的光線提供過濾功能。當發光元件1發出單一顏色光時,可藉由濾光層50過濾特定波長範圍的光線,將發光元件1所發出的單一顏色光純化。此外,於一實施例中,濾光層50也可同時做為一保護結構,具有保護發光元件的功能,例如阻擋外界水氣進入發光元件。於一實施例中,藉由不同折射率介電材料的選擇搭配其厚度設計,形成一干涉現象,讓發光元件發出的光經由濾光層50選擇性地進行穿透或反射,僅有特定波長範圍的光可以穿透濾光層50,來達到濾光的效果。濾光層50可具有帶通濾光功能、低通濾光功能或高通濾光功能。The filter layer 50 is formed by alternately stacking a pair or a plurality of pairs of material layers with different refractive indices, and provides a filtering function for light in a specific wavelength range. When the light-emitting element 1 emits light of a single color, the light of a specific wavelength range can be filtered by the filter layer 50 to purify the light of a single color emitted by the light-emitting element 1 . In addition, in one embodiment, the filter layer 50 can also be used as a protection structure at the same time, and has the function of protecting the light-emitting element, such as blocking external moisture from entering the light-emitting element. In one embodiment, through the selection of different refractive index dielectric materials and their thickness design, an interference phenomenon is formed, so that the light emitted by the light-emitting element is selectively transmitted or reflected through the filter layer 50, and only has a specific wavelength. A range of light can pass through the filter layer 50 to achieve a filter effect. The filter layer 50 may have a band-pass filter function, a low-pass filter function or a high-pass filter function.

圖2A顯示濾光層50的一截面局部放大圖,於本實施例中,如第2A圖所示,濾光層50包含第一組材料疊層,由第一子層50a及第二子層50b堆疊所組成。第一組材料疊層例如包含介電材料,一第一子層50a及一第二子層50b組成一介電材料對。第一子層50a相較於第二子層50b具有較高的折射率。藉由不同折射率材料的選擇搭配其厚度設計,過濾特定波長範圍的光線。於一實施例中,第一子層50a相較於第二子層50b具有較小的厚度。介電材料包括例如氧化矽、氮化矽、氧氮化矽、氧化鈮、氧化鉿、氧化鈦、氟化鎂、氧化鋁等。於一實施例中,濾光層50例如為一分佈式布拉格反射器(DBR, distributed Bragg reflector)。FIG. 2A shows an enlarged partial cross-sectional view of the filter layer 50. In this embodiment, as shown in FIG. 2A, the filter layer 50 includes a first set of material stacks, consisting of a first sub-layer 50a and a second sub-layer 50b stack. The first set of material stacks includes, for example, dielectric materials, and a first sub-layer 50a and a second sub-layer 50b form a pair of dielectric materials. The first sub-layer 50a has a higher refractive index than the second sub-layer 50b. Through the selection of different refractive index materials and their thickness design, light in a specific wavelength range can be filtered. In one embodiment, the first sub-layer 50a has a smaller thickness than the second sub-layer 50b. Dielectric materials include, for example, silicon oxide, silicon nitride, silicon oxynitride, niobium oxide, hafnium oxide, titanium oxide, magnesium fluoride, aluminum oxide, and the like. In one embodiment, the filter layer 50 is, for example, a distributed Bragg reflector (DBR).

於一實施例中,濾光層50更可包含第一子層50a及第二子層50b以外的其他層。例如,濾光層50更包含一底層(圖未示)位於第一子層50a(及/或第二子層50b)與半導體疊層12之間。也就是說,先於半導體疊層12上形成底層,接著再形成第一子層50a及第二子層50b。於一實施例中,底層包含介電材料,其厚度大於第一子層50a及第二子層50b的厚度。於一實施例中,底層之形成方式與第一子層50a及第二子層50b不同,例如,底層之形成方式為化學汽相沉積(Chemical Vapor Deposition,CVD),更佳地,藉由電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)來形成。第一子層50a及第二子層50b之形成方式為濺鍍。於一實施例中,底層可提供保護發光元件或保護半導體疊層的功能,例如阻擋外界水氣進入發光元件。In one embodiment, the filter layer 50 may further include layers other than the first sub-layer 50a and the second sub-layer 50b. For example, the filter layer 50 further includes a bottom layer (not shown) between the first sub-layer 50 a (and/or the second sub-layer 50 b ) and the semiconductor stack 12 . That is, the bottom layer is formed on the semiconductor stack 12 first, and then the first sub-layer 50a and the second sub-layer 50b are formed. In one embodiment, the bottom layer includes a dielectric material with a thickness greater than that of the first sub-layer 50a and the second sub-layer 50b. In one embodiment, the formation method of the bottom layer is different from that of the first sub-layer 50a and the second sub-layer 50b. For example, the formation method of the bottom layer is chemical vapor deposition (CVD). It is formed by plasma enhanced chemical vapor deposition (PECVD). The first sub-layer 50a and the second sub-layer 50b are formed by sputtering. In one embodiment, the bottom layer can provide a function of protecting the light-emitting element or protecting the semiconductor stack, such as blocking external moisture from entering the light-emitting element.

於另一實施例中,如圖2B所示,濾光層50包含複數組材料疊層,第一組材料疊層由第一子層50a及第二子層50b堆疊所組成,第二組材料疊層由第三子層50c及第四子層50d堆疊所組成。其中第二組材料疊層例如包含介電材料,一第三子層50c及一第四子層50d組成一介電材料對。第三子層50c相較於第四子層50d具有較高的折射率,於一實施例中,第三子層50c相較於第四子層50d具有較小的厚度。第三子層50c與第一子層50a具有不同厚度,第三子層50c與第一子層50a可以是相同材料或不同材料。第四子層50d與第二子層50b具有不同厚度,第四子層50d與第二子層50b可以是相同材料或不同材料。In another embodiment, as shown in FIG. 2B , the filter layer 50 includes a plurality of material stacks, the first material stack is composed of a stack of a first sublayer 50a and a second sublayer 50b, and the second material stack The stack consists of a stack of a third sub-layer 50c and a fourth sub-layer 50d. The second set of material stacks include, for example, dielectric materials, and a third sub-layer 50c and a fourth sub-layer 50d form a pair of dielectric materials. The third sub-layer 50c has a higher refractive index than the fourth sub-layer 50d. In one embodiment, the third sub-layer 50c has a smaller thickness than the fourth sub-layer 50d. The third sublayer 50c and the first sublayer 50a have different thicknesses, and the third sublayer 50c and the first sublayer 50a may be of the same material or different materials. The fourth sub-layer 50d and the second sub-layer 50b have different thicknesses, and the fourth sub-layer 50d and the second sub-layer 50b may be made of the same material or different materials.

於另一實施例中,濾光層50更可包含一上層(圖未示)位於第一子層50a(及/或第二子層50b)上,相對第二半導體層122之另一側。也就是說,先於半導體疊層12上形成第一子層50a及第二子層50b,接著再形成上層。上層包含介電材料,其厚度大於第一子層50a及第二子層50b的厚度。於一實施例中,上層之形成方式與第一子層50a及第二子層50b不同,例如,上層之形成方式為化學汽相沉積(CVD),更佳地,藉由電漿輔助化學氣相沉積(PECVD)來形成。第一子層50a及第二子層50b之形成方式為濺鍍。於一實施例中,上層可增加整體濾光層50的強度,例如當濾光層50受到外力時,上層可使濾光層50不至於因外力而破裂損傷。In another embodiment, the filter layer 50 may further include an upper layer (not shown) on the first sub-layer 50 a (and/or the second sub-layer 50 b ), opposite to the other side of the second semiconductor layer 122 . That is, the first sub-layer 50a and the second sub-layer 50b are formed on the semiconductor stack 12 first, and then the upper layer is formed. The upper layer includes a dielectric material with a thickness greater than that of the first sub-layer 50a and the second sub-layer 50b. In one embodiment, the formation method of the upper layer is different from that of the first sub-layer 50a and the second sub-layer 50b. For example, the formation method of the upper layer is chemical vapor deposition (CVD), and more preferably, by plasma-assisted chemical vapor deposition. phase deposition (PECVD). The first sub-layer 50a and the second sub-layer 50b are formed by sputtering. In one embodiment, the upper layer can increase the strength of the entire filter layer 50 . For example, when the filter layer 50 is subjected to external force, the upper layer can prevent the filter layer 50 from being broken and damaged by the external force.

於另一實施例中,濾光層50包含複數組材料疊層與底層及/或上層。In another embodiment, the filter layer 50 includes a plurality of material stacks and a bottom layer and/or an upper layer.

於另一實施例中,於形成濾光層50之前,藉由原子沉積法於透明導電層18及半導體疊層20之表面上形成一緻密層(圖未示)以直接披覆半導體疊層12。緻密層的材料包含氧化矽、氧化鋁、氧化鉿、氧化鉭、氧化鋯、氧化釔、氧化鑭、氧化鉭、氮化矽、氮化鋁或氮氧化矽。於本實施例中,緻密層與半導體疊層12相接之介面包含金屬元素及氧,其中金屬元素包含鋁、鉿、鉭、鋯、釔、鑭或鉭。緻密層包含一厚度介於50 Å至2000 Å之間,較佳介於100 Å至1500 Å之間。於一實施例中,緻密層可共型覆蓋形成於半導體疊層12上,藉由其膜質特性可提供半導體疊層12一較佳的保護作用,例如避免水氣進入半導體疊層12,且可輔助濾光層50與半導體疊層12之間的附著力。In another embodiment, before the filter layer 50 is formed, a dense layer (not shown) is formed on the surface of the transparent conductive layer 18 and the semiconductor stack 20 by atomic deposition to directly cover the semiconductor stack 12 . The material of the dense layer includes silicon oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, yttrium oxide, lanthanum oxide, tantalum oxide, silicon nitride, aluminum nitride or silicon oxynitride. In this embodiment, the interface between the dense layer and the semiconductor stack 12 includes metal elements and oxygen, wherein the metal elements include aluminum, hafnium, tantalum, zirconium, yttrium, lanthanum or tantalum. The dense layer comprises a thickness between 50 Å and 2000 Å, preferably between 100 Å and 1500 Å. In one embodiment, the dense layer can be formed on the semiconductor stack 12 by conformal covering, and can provide a better protection function for the semiconductor stack 12 by virtue of its film quality, such as preventing moisture from entering the semiconductor stack 12, and can protect the semiconductor stack 12. Adhesion between the filter layer 50 and the semiconductor stack 12 is aided.

於一實施例中,濾光層50包含4對以上、30對以下的介電材料對。當介電材料對小於4對時,濾光效果不佳。當介電材料對大於30對時,會增加製作成本。較佳地,濾光層50包含8對以上、20對以下的介電材料對。以一具有低通濾光功能的濾光層50為例,濾光層50對於一波長小於λon 的光線具有95%以上的穿透率,對於一波長大於λoff 的光線具有5%以下的穿透率。對於λon 至λoff 之間的波長,取決於濾光層50的介電材料對數,穿透率具有劇烈變化。於一實施例中,當濾光層50包含8對以上的介電材料對,可以使λoff 與λon 之差值小於或等於31 nm。當濾光層50包含12對以上的介電材料對,可以使λoff 與λon 之差值小於或等於11 nm,也就是說,濾光層50包含12對以上的介電材料對可以有較窄的光過渡區段(transition band),進而達到較有效的濾光純化效果。藉由濾光層50的低通濾光功能,可將發光元件1發出的光線在大於λoff 的特定波長範圍被過濾掉,進一步達到光純化的效果。類似的,當濾光層50具有高通濾光功能,對於一波長大於λon 的光線具有95%以上的穿透率,對於一波長小於λoff 的光線具有5%以下的穿透率。當濾光層50具有帶通濾光功能,對於一波長介於λon1 至λon2 的光線具有95%以上的穿透率,對於一波長小於λoff1 的光線具有5%以下的穿透率,對於一波長大於λoff2 的光線具有5%以下的穿透率,其中λoff1 <λon1 <λon2 <λoff2In one embodiment, the filter layer 50 includes more than 4 pairs and less than 30 pairs of dielectric material pairs. When the dielectric material pairs are less than 4 pairs, the filtering effect is not good. When there are more than 30 pairs of dielectric materials, the fabrication cost will increase. Preferably, the filter layer 50 includes more than 8 pairs and less than 20 pairs of dielectric material pairs. Taking a filter layer 50 with a low-pass filter function as an example, the filter layer 50 has a transmittance of more than 95% for a light with a wavelength less than λ on , and has a transmittance of less than 5% for a light with a wavelength greater than λ off . penetration rate. For wavelengths between λon and λoff , depending on the number of pairs of dielectric material of the filter layer 50, the transmittance has a dramatic change. In one embodiment, when the filter layer 50 includes more than 8 pairs of dielectric materials, the difference between λ off and λ on can be less than or equal to 31 nm. When the filter layer 50 contains more than 12 pairs of dielectric material pairs, the difference between λ off and λ on can be less than or equal to 11 nm, that is to say, the filter layer 50 contains more than 12 pairs of dielectric material pairs can have A narrower light transition band can achieve a more effective filtering and purification effect. With the low-pass filter function of the filter layer 50 , the light emitted by the light-emitting element 1 can be filtered out in a specific wavelength range greater than λ off , thereby further achieving the effect of light purification. Similarly, when the filter layer 50 has a high-pass filter function, it has a transmittance of more than 95% for a light with a wavelength greater than λon , and a transmittance of less than 5% for a light with a wavelength less than λoff . When the filter layer 50 has a band-pass filter function, it has a transmittance of more than 95% for a light with a wavelength between λ on1 and λ on2 , and a transmittance of less than 5% for a light with a wavelength less than λ off1 . A light with a wavelength greater than λ off2 has a transmittance of less than 5%, where λ off1on1on2off2 .

反射結構16位於基板第二表面10b,用以反射半導體疊層12所發出的光線,使光線主要經由發光元件1之上表面(即,濾光層50所在之表面)被摘出。於一實施例中,反射結構16包含一金屬反射層,其中金屬材料可選自對於半導體疊層12所發出的光線具有高反射率的材料,例如鋁、銀等。於另一實施例中,反射結構16可包含疊層結構,其中疊層結構包含由一對或複數對不同折射率的子層交互堆疊所形成。疊層結構各子層的材料包含具有光穿透性的材料,例如導電材料或絕緣材料。導電材料包含金屬氧化物例如銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等。絕緣材料包含有機材料或無機材料,其中無機材料包含矽膠、玻璃或介電材料等。藉由不同折射率材料的選擇搭配其厚度設計,使反射結構16對特定波長範圍的光線提供反射功能。於一實施例中,反射結構16例如為一分佈式布拉格反射器(DBR, distributed Bragg reflector)。於另一實施例中,反射結構16包含介電材料疊層與及金屬層(圖未示),形成一全方位反射鏡(omnidirectional reflector,ODR)。於另一實施例中,反射結構16可省略。The reflection structure 16 is located on the second surface 10b of the substrate to reflect the light emitted by the semiconductor stack 12, so that the light is mainly extracted through the upper surface of the light emitting element 1 (ie, the surface where the filter layer 50 is located). In one embodiment, the reflective structure 16 includes a metal reflective layer, wherein the metal material can be selected from materials with high reflectivity for the light emitted by the semiconductor stack 12 , such as aluminum, silver, and the like. In another embodiment, the reflective structure 16 may include a stacked structure, wherein the stacked structure includes a pair or a plurality of pairs of sub-layers with different refractive indices stacked alternately. The material of each sub-layer of the laminated structure includes a material with light transmittance, such as a conductive material or an insulating material. The conductive material includes metal oxides such as indium tin oxide (ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO), indium zinc oxide (IZO), and the like. The insulating material includes organic material or inorganic material, wherein the inorganic material includes silica gel, glass or dielectric material, etc. Through the selection of materials with different refractive indices and the thickness design, the reflective structure 16 can provide a reflection function for light in a specific wavelength range. In one embodiment, the reflection structure 16 is, for example, a distributed Bragg reflector (DBR). In another embodiment, the reflective structure 16 includes a dielectric material stack and a metal layer (not shown) to form an omnidirectional reflector (ODR). In another embodiment, the reflection structure 16 may be omitted.

半導體疊層12所發出的光線,例如一第一光線,為單一顏色光,例如為藍光、綠光、藍綠光、黃光或紅光。其經過濾光層50而得到一第二光線,與第一光線顏色相同。第二光線從發光元件1之上表面被摘出。其中,第二光線具有比第一光線還小的半高寬(full width at half maximum,FWHM)。於一實施例中,經過濾光層50而得到的第二光線,與第一光線顏色相同,其峰值波長與第一光線的峰值波長一致或近似,或者第一光線和第二光線的波長範圍重疊,且第二光線具有比第一光線還小的半高寬。於一實施例中,半導體疊層12發出的第一光線部份經過濾光層50從上表面被摘出,即第二光線;第一光線另一部份由發光元件1的側面未經過濾光層50被摘出。由發光元件1的側面未經過濾光層50被摘出的光,其峰值波長及半高寬與第一光線一致或近似。於一實施例中,針對一峰值波長為λp nm的光線,濾光層50在λp nm下具有80%以上的穿透率,更佳地,具有90%以上的穿透率。濾光層50對於波長(λp +∆λ) nm以上光線的穿透率小於50%,及/或對於波長(λp -∆λ) nm以下光線的穿透率小於50%。可依使用者對於濾光效果及發光元件光強度的需求來決定∆λ,並選擇不同折射率的子層材料搭配其厚度來設計濾光層50。The light emitted by the semiconductor stack 12, such as a first light, is a single color light, such as blue light, green light, blue-green light, yellow light or red light. A second light is obtained through the filter layer 50, and the color is the same as that of the first light. The second light is extracted from the upper surface of the light-emitting element 1 . The second ray has a smaller full width at half maximum (FWHM) than the first ray. In one embodiment, the second light obtained through the filter layer 50 has the same color as the first light, and its peak wavelength is consistent with or similar to the peak wavelength of the first light, or the wavelength range of the first light and the second light. overlap, and the second ray has a smaller half-height width than the first ray. In one embodiment, part of the first light emitted by the semiconductor stack 12 is extracted from the upper surface through the light filter layer 50 , that is, the second light; the other part of the first light is unfiltered from the side of the light-emitting element 1 . Layer 50 is extracted. The light extracted from the side surface of the light-emitting element 1 without the filter layer 50 has a peak wavelength and a half-width that are consistent with or similar to the first light. In one embodiment, for a light with a peak wavelength of λ p nm, the filter layer 50 has a transmittance of more than 80% at λ p nm, more preferably, a transmittance of more than 90%. The transmittance of the filter layer 50 for light with wavelengths above (λ p +Δλ) nm is less than 50%, and/or the transmittance for light with wavelengths below (λ p -Δλ) nm is less than 50%. The Δλ can be determined according to the user's requirements for the filter effect and the light intensity of the light-emitting element, and the filter layer 50 can be designed by selecting sub-layer materials with different refractive indices and their thicknesses.

圖3顯示依據本申請案一實施例所模擬的實驗結果。圖3中,曲線L1表示半導體疊層12實際發出光線的波長頻譜,為第一光線;曲線F1表示濾光層50對於不同波長光線的穿透率;以及曲線L2表示半導體疊層12搭配濾光層50所得到的模擬波長頻譜,也就是第一光線經由濾光層50後所得到的第二光線的模擬波長頻譜。於本實驗中,半導體疊層12所發出的第一光線為綠光,其峰值波長(peak wavelength)為532 nm。濾光層50包含複數對由SiO2 和TiO2 所組成的介電材料對,其中,包含三組介電材料疊層,第一組介電材料疊層較靠近半導體疊層12,第二組介電材料疊層較遠離半導體疊層12,第三組介電材料疊層介於第一組和第二組介電材料疊層之間。其中,第一組的SiO2 和TiO2 介電材料對的光學厚度大於第三組的SiO2 和TiO2 介電材料對的光學厚度;第二組的SiO2 和TiO2 介電材料對的光學厚度大於及/或小於第三組的SiO2 和TiO2 介電材料對的光學厚度。第一組的SiO2 和TiO2 介電材料對包含整數對或非整數對,第二組的SiO2 和TiO2 介電材料對包含整數對或非整數對,第三組的SiO2 和TiO2 介電材料對包含整數對或非整數對。第三組介電材料疊層中介電材料對數目分別大於第一組及第二組介電材料疊層中的介電材料對數目。藉由調整第一組和第二組介電材料疊層的厚度,可以降低因干涉現象造成部分波長範圍穿透率下降的現象。FIG. 3 shows experimental results simulated according to an embodiment of the present application. In FIG. 3, the curve L1 represents the wavelength spectrum of the light actually emitted by the semiconductor stack 12, which is the first light; the curve F1 represents the transmittance of the filter layer 50 to light of different wavelengths; and the curve L2 represents the combination of the semiconductor stack 12 with the filter The simulated wavelength spectrum obtained by the layer 50 is the simulated wavelength spectrum of the second light obtained after the first light passes through the filter layer 50 . In this experiment, the first light emitted by the semiconductor stack 12 is green light with a peak wavelength of 532 nm. The filter layer 50 includes a plurality of pairs of dielectric material pairs composed of SiO 2 and TiO 2 , wherein, there are three sets of dielectric material stacks, the first set of dielectric material stacks is closer to the semiconductor stack 12 , and the second set of dielectric material stacks is closer to the semiconductor stack 12 . The dielectric material stack is further away from the semiconductor stack 12, and the third set of dielectric material stacks is interposed between the first and second sets of dielectric material stacks. Wherein, the optical thickness of the SiO 2 and TiO 2 dielectric material pair of the first group is greater than that of the third group of SiO 2 and TiO 2 dielectric material pairs; the optical thickness of the second group SiO 2 and TiO 2 dielectric material pair The optical thickness is greater and/or less than the optical thickness of the SiO2 and TiO2 dielectric material pair of the third group. The first group of SiO2 and TiO2 dielectric material pairs contains integer or non-integer pairs, the second group of SiO2 and TiO2 dielectric material pairs contains integer or non-integer pairs, and the third group of SiO2 and TiO2 2 Dielectric material pairs include integer pairs or non-integer pairs. The number of dielectric material pairs in the third set of dielectric material stacks is greater than the number of dielectric material pairs in the first and second sets of dielectric material stacks, respectively. By adjusting the thicknesses of the first group and the second group of dielectric material stacks, the phenomenon of reducing the transmittance in a part of the wavelength range caused by the interference phenomenon can be reduced.

如圖3所示,濾光層50對於此峰值波長具有80%以上的穿透率;更佳地,濾光層50對於此峰值波長具有90%以上的穿透率。濾光層50對於波長550 nm以上光線的穿透率小於50%,對於波長535 nm以下光線的穿透率大於或等於80%。此外,第一光線經過濾光層50得到第二光線,第二光線同為綠光,但具有比第一光線還小的半高寬。濾光層50過濾掉了第一光線在特定波段的光。於本實驗中,藉由濾光層50對第一光線在550 nm以上低穿透率的特性,過濾掉大部分550 nm以上的光,使第二光線的波長頻譜比第一光線的波長頻譜對稱,具有比第一光線還小的半高寬。於一實施例中,第二光線的半高寬小於或等於25 nm。更佳地,第二光線的半高寬小於或等於20 nm。如此一來,可提高發光元件1所發出光線的色彩純度。As shown in FIG. 3 , the filter layer 50 has a transmittance of over 80% for this peak wavelength; more preferably, the filter layer 50 has a transmittance of over 90% for this peak wavelength. The transmittance of the filter layer 50 for light with wavelengths above 550 nm is less than 50%, and the transmittance for light with wavelengths below 535 nm is greater than or equal to 80%. In addition, the first light passes through the light filter layer 50 to obtain a second light. The second light is also green light, but has a smaller half-height width than the first light. The filter layer 50 filters out the light of the first light in a specific wavelength band. In this experiment, by virtue of the low transmittance of the first light above 550 nm by the filter layer 50, most of the light above 550 nm is filtered out, so that the wavelength spectrum of the second light is higher than that of the first light. Symmetrical, with a half-height less than the first ray. In one embodiment, the width at half maximum of the second light is less than or equal to 25 nm. More preferably, the full width at half maximum of the second light is less than or equal to 20 nm. In this way, the color purity of the light emitted by the light-emitting element 1 can be improved.

於另一實施例中,針對峰值波長為λp nm的光線,例如532 nm的綠光,濾光層50具有帶通濾光功能,對於此峰值波長具有80%以上的穿透率,對於波長550 nm以上光線的穿透率小於50%,對於波長510 nm以下光線的穿透率小於50%。藉由濾光層50過濾掉大部分波長550 nm以上的光線,以及波長510 nm以下的光線。In another embodiment, for light with a peak wavelength of λ p nm, such as green light with a wavelength of 532 nm, the filter layer 50 has a band-pass filter function, and has a transmittance of more than 80% for this peak wavelength. The transmittance of light above 550 nm is less than 50%, and the transmittance of light with wavelength below 510 nm is less than 50%. Most of the light with wavelengths above 550 nm and the light with wavelengths below 510 nm are filtered out by the filter layer 50 .

圖4顯示本申請案第二實施例發光元件2之截面圖。與發光元件1之差別在於,發光元件2包含複數個電性串聯的發光單元。本實施例以具有兩個發光單元11a及11b的發光元件2為示例,發光單元11a及11b相互分離位於基板第一表面10a上。發光單元11a及11b分別具有半導體疊層12及透明導電層18,絕緣層36位於發光單元11a及11b之間,覆蓋基板第一表面10a、發光單元11a的第一半導體層121側壁、發光單元11b的半導體疊層12側壁及部分第二半導體層122的上表面。連接電極60位於絕緣層36上,其一端接觸發光單元11a的第一半導體層121,其另一端接觸發光單元11b的透明導電層18。如此一來,使發光單元11a及11b形成電性串接。在另一實施例中,連接電極60電性連接發光單元11a及11b上的第一半導體層121,及/或連接電極60電性連接發光單元11a及11b上的第二半導體層121,使發光單元11a及11b形成並聯、串聯或是串並聯等不同的發光單元陣列。FIG. 4 shows a cross-sectional view of the light-emitting element 2 according to the second embodiment of the present application. The difference from the light-emitting element 1 is that the light-emitting element 2 includes a plurality of light-emitting units electrically connected in series. This embodiment takes the light-emitting element 2 having two light-emitting units 11a and 11b as an example, and the light-emitting units 11a and 11b are located on the first surface 10a of the substrate separated from each other. The light-emitting units 11a and 11b respectively have a semiconductor stack 12 and a transparent conductive layer 18, an insulating layer 36 is located between the light-emitting units 11a and 11b, and covers the first surface 10a of the substrate, the sidewalls of the first semiconductor layer 121 of the light-emitting unit 11a, and the light-emitting unit 11b The sidewalls of the semiconductor stack 12 and a part of the upper surface of the second semiconductor layer 122 . The connection electrode 60 is located on the insulating layer 36, one end of which contacts the first semiconductor layer 121 of the light-emitting unit 11a, and the other end contacts the transparent conductive layer 18 of the light-emitting unit 11b. In this way, the light-emitting units 11a and 11b are electrically connected in series. In another embodiment, the connecting electrode 60 is electrically connected to the first semiconductor layer 121 on the light emitting units 11a and 11b, and/or the connecting electrode 60 is electrically connected to the second semiconductor layer 121 on the light emitting units 11a and 11b, so that light is emitted The units 11a and 11b form different light-emitting unit arrays such as parallel, series, or series-parallel.

第一電極20位於發光單元11b的第一半導體層121上,第二電極30位於發光單元11a的第二半導體層122上。濾光層50覆蓋發光單元11a及11b、連接電極60、以及發光單元11a及11b之間的基板第一表面10a。類似於第一實施例之發光元件1,發光元件2的濾光層50具有開孔501及502分別露出第一電極20和第二電極30。濾光層50之功能、結構與材料如同前述,在此不加以贅述。發光元件2中半導體疊層12所發出的第一光線,經過濾光層50得到第二光線,從發光元件2之上表面(即,濾光層50所在之表面)被摘出。其中,第二光線與第一光線顏色相同,且具有比第一光線還小的半高寬。如此一來,可提高發光元件2所發出光線的色彩純度。於一實施例中,第二光線為綠光,其半高寬小於或等於25 nm。更佳地,第二光線的半高寬小於或等於20 nm。The first electrode 20 is located on the first semiconductor layer 121 of the light emitting unit 11b, and the second electrode 30 is located on the second semiconductor layer 122 of the light emitting unit 11a. The filter layer 50 covers the light emitting units 11a and 11b, the connection electrodes 60, and the first surface 10a of the substrate between the light emitting units 11a and 11b. Similar to the light-emitting element 1 of the first embodiment, the filter layer 50 of the light-emitting element 2 has openings 501 and 502 to expose the first electrode 20 and the second electrode 30, respectively. The function, structure and material of the filter layer 50 are the same as those described above, and will not be repeated here. The first light emitted by the semiconductor stack 12 in the light-emitting element 2 passes through the filter layer 50 to obtain the second light, which is extracted from the upper surface of the light-emitting element 2 (ie, the surface where the filter layer 50 is located). Wherein, the second light ray has the same color as the first light ray, and has a smaller half-height width than the first light ray. In this way, the color purity of the light emitted by the light-emitting element 2 can be improved. In one embodiment, the second light is green light, and its full width at half maximum is less than or equal to 25 nm. More preferably, the full width at half maximum of the second light is less than or equal to 20 nm.

圖5顯示本申請案第三實施例發光元件3之截面圖。不同於發光元件1及發光元件2,發光元件3為一覆晶式元件(flip-chip),以覆晶方式將發光元件3的第一電極20’及第二電極30’連接至一載板(圖未示),使發光元件3與載板上的電路(圖未示)接合,以達到和外部電子元件或外部電源的連接。此外,不同於發光元件1及發光元件2,發光元件3的濾光層50形成於半導體疊層12上,且位於基板第二表面10b。濾光層50之功能、結構及材料如同前述實施例,在此不加以贅述。FIG. 5 shows a cross-sectional view of the light-emitting element 3 according to the third embodiment of the present application. Different from the light-emitting element 1 and the light-emitting element 2, the light-emitting element 3 is a flip-chip element, and the first electrode 20' and the second electrode 30' of the light-emitting element 3 are connected to a carrier in a flip-chip manner (not shown in the figure), the light-emitting element 3 is connected with the circuit (not shown in the figure) on the carrier board, so as to achieve the connection with external electronic components or external power supply. In addition, unlike the light emitting element 1 and the light emitting element 2, the light filter layer 50 of the light emitting element 3 is formed on the semiconductor stack 12 and located on the second surface 10b of the substrate. The functions, structures and materials of the filter layer 50 are the same as those in the previous embodiments, and are not described in detail here.

發光元件3包含反射結構28覆蓋透明導電層18。反射結構28可包含金屬反射層,例如是單層金屬或是由複數層金屬所形成之疊層。於一實施例中,反射結構28包含阻障層(圖未示)及反射層(圖未示),阻障層形成並覆蓋於反射層上,阻障層可以防止反射層之金屬元素的遷移、擴散或氧化。反射層的材料包含對於半導體疊層12所發射的光線具有高反射率的金屬材料,例如銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru)或上述材料之合金或疊層。阻障層的材料包括鉻(Cr)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn) 或上述材料之合金或疊層。半導體疊層12所發出的光線,經由反射結構28的反射,從發光元件3之上表面(即,濾光層50所在之表面)被摘出,增加發光元件3的亮度。The light-emitting element 3 includes a reflective structure 28 covering the transparent conductive layer 18 . The reflective structure 28 may include a metal reflective layer, such as a single layer of metal or a stack of multiple layers of metal. In one embodiment, the reflective structure 28 includes a barrier layer (not shown) and a reflective layer (not shown). The barrier layer is formed and covers the reflective layer. The barrier layer can prevent the migration of metal elements in the reflective layer. , diffusion or oxidation. The material of the reflective layer includes a metal material having high reflectivity for the light emitted by the semiconductor stack 12, such as silver (Ag), gold (Au), aluminum (Al), titanium (Ti), chromium (Cr), copper ( Cu), nickel (Ni), platinum (Pt), ruthenium (Ru) or alloys or stacks of the above materials. The material of the barrier layer includes chromium (Cr), platinum (Pt), titanium (Ti), tungsten (W), zinc (Zn) or alloys or stacks of the above materials. The light emitted by the semiconductor stack 12 is extracted from the upper surface of the light-emitting element 3 (ie, the surface on which the filter layer 50 is located) through the reflection of the reflective structure 28 , thereby increasing the brightness of the light-emitting element 3 .

發光元件3包含保護層26覆蓋半導體疊層12以及半導體疊層12之側壁,於一實施例中,保護層26更可覆蓋基板第一表面10a。保護層26包含開孔261及262分別露出第一半導體層121及反射結構28。保護層26的材料為非導電材料,包含有機材料,例如Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)或氟碳聚合物(Fluorocarbon Polymer),或是無機材料,例如矽膠(Silicone)、玻璃(Glass)或是介電材料,介電材料例如為氧化矽(SiOx )、氮化矽(SiNx )、氧氮化矽(SiOx Ny )、氧化鈮(Nb2 O5 )、氧化鉿(HfO2 )、氧化鈦(TiOx )、氟化鎂(MgF2 )、氧化鋁(Al2 O3 )等。於一實施例中,保護層26由一對或複數對不同折射率的材料交互堆疊所形成,藉由不同折射率材料的選擇搭配其厚度設計,保護層26形成一反射結構,對特定波長範圍的光線提供反射功能,例如為一分佈式布拉格反射器。當保護層26形成反射結構時,半導體疊層12所發出的光線,經由保護層26的反射,從發光元件3之上表面(即,濾光層50所在之表面)被摘出,可增加發光元件3的亮度。The light-emitting element 3 includes a protective layer 26 covering the semiconductor stack 12 and sidewalls of the semiconductor stack 12 . In one embodiment, the protective layer 26 can further cover the first surface 10 a of the substrate. The protective layer 26 includes openings 261 and 262 to expose the first semiconductor layer 121 and the reflective structure 28, respectively. The material of the protective layer 26 is a non-conductive material, including organic materials, such as Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy resin (Epoxy), acrylic resin (Acrylic Resin), ring Olefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide) or fluorocarbon polymer ( Fluorocarbon Polymer), or inorganic materials, such as Silicone, Glass, or dielectric materials, such as silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride ( SiO x N y ), niobium oxide (Nb 2 O 5 ), hafnium oxide (HfO 2 ), titanium oxide (TiO x ), magnesium fluoride (MgF 2 ), aluminum oxide (Al 2 O 3 ), and the like. In one embodiment, the protective layer 26 is formed by alternately stacking a pair or a plurality of pairs of materials with different refractive indices. By selecting and designing the thicknesses of the materials with different refractive indices, the protective layer 26 forms a reflective structure that responds to a specific wavelength range. The light provided by the reflection function, such as a distributed Bragg reflector. When the protective layer 26 forms a reflective structure, the light emitted by the semiconductor stack 12 is extracted from the upper surface of the light-emitting element 3 (ie, the surface on which the filter layer 50 is located) through the reflection of the protective layer 26 , thereby increasing the number of light-emitting elements. 3 brightness.

於一實施例中,當保護層26為一反射結構時,反射結構28可以省略。In one embodiment, when the protective layer 26 is a reflective structure, the reflective structure 28 may be omitted.

發光元件3包含第一電極20’和第二電極30’。第一電極20’經由開口261與第一半導體層121電性連接,第二電極30’經由開口262與反射結構28、透明導電層18以及第二半導體層122電性連接。第一電極20’及第二電極30’包含金屬材料,例如鉻(Cr)、鈦(Ti)、鎢(W)、金(Au)、鋁(Al)、銦(In)、錫(Sn)、鎳(Ni)、銠(Rh)、鉑(Pt)等金屬或上述材料之疊層或合金。第一電極20’及第二電極30’可由單個層或是多個層所組成。例如,第一電極20’及第二電極30’可包括Ti/Au、Ti/Pt/Au、Cr/Au、Cr/Pt/Au、Ni/Au、Ni/Pt/Au或Cr/Al/Cr/Ni/Au等。The light-emitting element 3 includes a first electrode 20' and a second electrode 30'. The first electrode 20' is electrically connected to the first semiconductor layer 121 through the opening 261, and the second electrode 30' is electrically connected to the reflective structure 28, the transparent conductive layer 18 and the second semiconductor layer 122 through the opening 262. The first electrode 20' and the second electrode 30' include metal materials, such as chromium (Cr), titanium (Ti), tungsten (W), gold (Au), aluminum (Al), indium (In), tin (Sn) , nickel (Ni), rhodium (Rh), platinum (Pt) and other metals or a laminate or alloy of the above materials. The first electrode 20' and the second electrode 30' may be composed of a single layer or multiple layers. For example, the first electrode 20' and the second electrode 30' may include Ti/Au, Ti/Pt/Au, Cr/Au, Cr/Pt/Au, Ni/Au, Ni/Pt/Au or Cr/Al/Cr /Ni/Au etc.

於另一實施例中,發光元件3可包含複數個發光單元形成於基板10上,類似於發光元件2,相鄰發光單元之間形成有絕緣層,以連接電極將複數個發光單元電性連接後,接著,再形成保護層26、第一電極20’及第二電極30’。In another embodiment, the light-emitting element 3 may include a plurality of light-emitting units formed on the substrate 10. Similar to the light-emitting element 2, an insulating layer is formed between adjacent light-emitting units to electrically connect the plurality of light-emitting units with connecting electrodes. Then, the protective layer 26 , the first electrode 20 ′ and the second electrode 30 ′ are formed again.

發光元件3中半導體疊層12所發出的第一光線,穿過基板10,經過濾光層50而得到第二光線,從發光元件3之上表面(即,濾光層50所在之表面)被摘出。其中,第二光線與第一光線顏色相同,且具有比第一光線還小的半高寬。如此一來,可提高發光元件3所發出光線的色彩純度。於一實施例中,第二光線為綠光,其半高寬小於或等於25 nm。更佳地,第二光線的半高寬小於或等於20 nm。The first light emitted by the semiconductor stack 12 in the light-emitting element 3 passes through the substrate 10 and passes through the filter layer 50 to obtain the second light, which is emitted from the upper surface of the light-emitting element 3 (ie, the surface on which the filter layer 50 is located). pick out. Wherein, the second light ray has the same color as the first light ray, and has a smaller half-height width than the first light ray. In this way, the color purity of the light emitted by the light-emitting element 3 can be improved. In one embodiment, the second light is green light, and its full width at half maximum is less than or equal to 25 nm. More preferably, the full width at half maximum of the second light is less than or equal to 20 nm.

圖6顯示本申請案第四實施例發光元件4之截面圖。發光元件4與發光元件3類似,差別在於,發光元件4不具有基板10,發光元件4的濾光層50位於第一半導體層121的第二表面121b,其中第二表面121b與第一表面121a相對。濾光層50之功能、結構及材料如同前述實施例,在此不加以贅述。發光元件4中半導體疊層12所發出的第一光線,經過濾光層50而得到第二光線,從發光元件4之上表面(即,濾光層50所在之表面)被摘出。其中,第二光線具有比第一光線還小的半高寬。如此一來,可提高發光元件4所發出光線的色彩純度。於一實施例中,第二光線為綠光,其半高寬小於或等於25 nm。更佳地,第二光線的半高寬小於或等於20 nm。FIG. 6 shows a cross-sectional view of the light-emitting element 4 according to the fourth embodiment of the present application. The light-emitting element 4 is similar to the light-emitting element 3, except that the light-emitting element 4 does not have the substrate 10, and the filter layer 50 of the light-emitting element 4 is located on the second surface 121b of the first semiconductor layer 121, wherein the second surface 121b and the first surface 121a relatively. The functions, structures and materials of the filter layer 50 are the same as those in the previous embodiments, and are not described in detail here. The first light emitted by the semiconductor stack 12 in the light-emitting element 4 passes through the filter layer 50 to obtain the second light, which is extracted from the upper surface of the light-emitting element 4 (ie, the surface where the filter layer 50 is located). Wherein, the second light ray has a half-height width smaller than that of the first light ray. In this way, the color purity of the light emitted by the light-emitting element 4 can be improved. In one embodiment, the second light is green light, and its full width at half maximum is less than or equal to 25 nm. More preferably, the full width at half maximum of the second light is less than or equal to 20 nm.

圖7A顯示本申請案第五實施例發光元件5之截面圖。發光元件5包含第一電極20”與第二電極30”分別設置在半導體疊層12的兩個相對表面121b及122a,分別與第一半導體層121和第二半導體層122電性連接。濾光層50覆蓋半導體疊層12的側表面及第一半導體層第二表面121b,包含開口501露出第一電極20”。於另一實施例中(圖未示),濾光層50更覆蓋第一電極20”的側表面,開口501露出第一電極20”的上表面。於另一實施例中,第一電極20”位於開口501中且覆蓋部分濾光層50的表面50e。於一實施例中,發光元件5更包含導電接著層及/或導電基板(圖未示)位於第二半導體層122與第二電極30”之間,半導體疊層12利用導電接著層與導電基板接合。於另一實施例中,如圖7B所示,半導體疊層12的順序與圖7A相反。濾光層50覆蓋半導體疊層12的側表面及第二半導體層表面122a,包含開口501露出第二電極30”。發光元件5中半導體疊層12所發出的第一光線,經過濾光層50而得到第二光線,從發光元件5之上表面及側表面(即,濾光層50所在之表面)被摘出。其中,第二光線與第一光線顏色相同,且具有比第一光線還小的半高寬。如此一來,可提高發光元件5所發出光線的色彩純度。於一實施例中,第二光線為綠光,其半高寬小於或等於25 nm。更佳地,第二光線的半高寬小於或等於20 nm。於另一實施中(圖未示),濾光層50覆蓋半導體疊層12的表面121b或122a,未覆蓋半導體疊層12的側面。於一實施例中,在量測上述各實施例之發光元件時,為避免有未通過濾光層50的光線,例如由發光元件側面未覆蓋濾光層50所摘出的光干擾,於量測時可選用光學量測套筒收光量測,以收集量測由濾光層50摘出的第二光線。FIG. 7A shows a cross-sectional view of the light-emitting element 5 according to the fifth embodiment of the present application. The light-emitting element 5 includes a first electrode 20'' and a second electrode 30'' respectively disposed on two opposite surfaces 121b and 122a of the semiconductor stack 12, and electrically connected to the first semiconductor layer 121 and the second semiconductor layer 122, respectively. The filter layer 50 covers the side surface of the semiconductor stack 12 and the second surface 121b of the first semiconductor layer, including the opening 501 to expose the first electrode 20''. In another embodiment (not shown), the filter layer 50 further covers On the side surface of the first electrode 20 ″, the opening 501 exposes the upper surface of the first electrode 20 ″. In another embodiment, the first electrode 20 ″ is located in the opening 501 and covers part of the surface 50e of the filter layer 50 . In one embodiment, the light-emitting element 5 further includes a conductive adhesive layer and/or a conductive substrate (not shown) located between the second semiconductor layer 122 and the second electrode 30 ″, and the semiconductor stack 12 uses the conductive adhesive layer and the conductive substrate. In another embodiment, as shown in Fig. 7B, the sequence of the semiconductor stack 12 is reversed from that of Fig. 7A. The filter layer 50 covers the side surface of the semiconductor stack 12 and the second semiconductor layer surface 122a, including the opening 501 exposed The second electrode 30". The first light emitted by the semiconductor stack 12 in the light-emitting element 5 passes through the filter layer 50 to obtain the second light, which is extracted from the top and side surfaces of the light-emitting element 5 (ie, the surface where the filter layer 50 is located). Wherein, the second light ray has the same color as the first light ray, and has a smaller half-height width than the first light ray. In this way, the color purity of the light emitted by the light-emitting element 5 can be improved. In one embodiment, the second light is green light, and its full width at half maximum is less than or equal to 25 nm. More preferably, the full width at half maximum of the second light is less than or equal to 20 nm. In another implementation (not shown), the filter layer 50 covers the surface 121 b or 122 a of the semiconductor stack 12 and does not cover the side surface of the semiconductor stack 12 . In one embodiment, when measuring the light-emitting elements of the above embodiments, in order to avoid light that does not pass through the filter layer 50, such as light interference extracted from the side of the light-emitting element that is not covered with the filter layer 50, the measurement is performed. In this case, an optical measuring sleeve can be used to collect and measure the light, so as to collect and measure the second light extracted by the filter layer 50 .

在本技術領域中,發光元件的波長頻譜中具有最高光強度的波長定義為峰值波長,而在衡量一光線的色彩特性時,尤其是可見光色光的色彩特性時,可利用色光的主波長(dominant wavelength)或是色度座標來定義。本技術領域人員可以理解具有同樣峰值波長的光線,不見得具有同樣的主波長,也就是說不見得具有同樣的色彩特性。而當一色光的主波長與峰值波長越接近,表示此色光的色純度越高。相較於習知技術,依據本申請案任一實施例之發光元件,所發出的光線的主波長與峰值波長較接近,例如,發光元件所發出的光線的主波長與峰值波長的差值小於3 nm,更佳地,小於 2 nm。圖8A至8C顯示依本申請案第三實施例之發光元件3與一比較例發光元件之實驗比較。發光元件3與比較例發光元件的差別在於,比較例發光元件不具有濾光層50。在本實驗中,濾光層50包含如同圖3模擬實驗中所使用的疊層結構。如圖8A所示,比較例發光元件與發光元件3皆發出綠光,具有近似的峰值波長,但相較於比較例發光元件,依據第三實施例的發光元件3所發出的光線,其半高寬較小。此外,發光元件3所發出的光線,其主波長與其峰值波長的差值為2.46 nm,小於比較例發光元件其主波長與峰值波長的差值8.63 nm。換言之,發光元件3所發出的光線的色純度較高。In the technical field, the wavelength with the highest light intensity in the wavelength spectrum of the light-emitting element is defined as the peak wavelength, and when measuring the color characteristics of a light, especially the color characteristics of visible light, the dominant wavelength of the color can be used. wavelength) or chromaticity coordinates. Those skilled in the art can understand that light with the same peak wavelength does not necessarily have the same dominant wavelength, that is, does not necessarily have the same color characteristics. When the dominant wavelength of a color light is closer to the peak wavelength, it means that the color purity of the color light is higher. Compared with the prior art, according to the light-emitting element of any embodiment of the present application, the dominant wavelength and the peak wavelength of the light emitted are closer, for example, the difference between the dominant wavelength and the peak wavelength of the light emitted by the light-emitting element is less than 3 nm, more preferably, less than 2 nm. 8A to 8C show experimental comparisons between the light-emitting element 3 according to the third embodiment of the present application and a light-emitting element of a comparative example. The difference between the light-emitting element 3 and the light-emitting element of the comparative example is that the light-emitting element of the comparative example does not have the filter layer 50 . In this experiment, the filter layer 50 includes a laminated structure as used in the simulation experiment of FIG. 3 . As shown in FIG. 8A , both the light-emitting element of the comparative example and the light-emitting element 3 emit green light with similar peak wavelengths, but compared with the light-emitting element of the comparative example, the light emitted by the light-emitting element 3 according to the third embodiment is half the Smaller height and width. In addition, the difference between the main wavelength and the peak wavelength of the light emitted by the light-emitting element 3 is 2.46 nm, which is smaller than the difference between the main wavelength and the peak wavelength of the light-emitting element of the comparative example 8.63 nm. In other words, the color purity of the light emitted by the light-emitting element 3 is high.

圖8B顯示色域規範BT.2020(又稱Rec. 2020)於CIE 1931色度座標上的色域分布,以及比較例發光元件與發光元件3的正向光線於CIE 1931色度座標上的分布。在圖8B及8C中,比較例發光元件與發光元件3的光線係利用光學量測套筒收得及量測。為清楚顯示所測得的色度座標值,圖8C顯示圖8B中區域R的局部放大圖。參照圖8B,色域規範BT.2020定義在CIE 1931色度座標上,純紅色位於(0.708, 0.292),純綠色位於(0.17, 0.797),純藍色位於(0.131, 0.046)。相較於習知技術,依據本申請案任一實施例之發光元件,所發出的光線的色純度較高,也就是說,更接近上述色域規範中的純色點座標。一般而言,當一待測光源於色度座標上越接近色域之邊界(也就是如圖8B中馬蹄形光譜軌跡),則色純度越高。色純度可以用百分比表示,定義在CIE色度座標上,待測光源的色度坐標與白點光源(energy white point)之色度座標直線距離與白點光源至待測光源主波長之光譜軌跡色度座標距離的百分比。以本申請案任一實施例之發光元件所發出峰值波長介於525 nm至535 nm的綠光為例, 此綠光基於CIE 1931色度座標具有一色度座標值(X1,Y1),其中X1 ≦ 0.2,Y1 ≧ 0.75。參照圖8C,Group_Ref_1為發出光線之峰值波長為530 nm的比較例發光元件所測得的資料點,Group_Ref_2為發出光線之峰值波長為532 nm的比較例發光元件所測得的資料點,Group_Exp_1為發出光線之峰值波長為530 nm的發光元件3所測得的資料點,Group_Exp_2為發出光線之峰值波長為532 nm的發光元件3所測得的資料點。相較於發出光線之峰值波長相同的比較例發光元件,依據第三實施例的發光元件3所發出的綠光,較接近純綠色座標(0.17, 0.797),具有較高的色純度。以本申請案任一實施例之發光元件所發出峰值波長介於525 nm至535 nm的綠光為例,其色純度大於或等於92%。更佳地,大於或等於93%。Figure 8B shows the color gamut distribution of the color gamut specification BT.2020 (also known as Rec. 2020) on the CIE 1931 chromaticity coordinates, and the forward light distribution of the comparative example light-emitting element and light-emitting element 3 on the CIE 1931 chromaticity coordinates . In FIGS. 8B and 8C , the light rays of the light-emitting element of the comparative example and the light-emitting element 3 are received and measured by an optical measurement sleeve. In order to clearly show the measured chromaticity coordinate values, FIG. 8C shows a partial enlarged view of the region R in FIG. 8B. 8B, the color gamut specification BT.2020 is defined on the CIE 1931 chromaticity coordinates, with pure red at (0.708, 0.292), pure green at (0.17, 0.797), and pure blue at (0.131, 0.046). Compared with the prior art, according to the light-emitting element of any embodiment of the present application, the color purity of the light emitted is higher, that is, closer to the coordinates of the pure color point in the above-mentioned color gamut specification. Generally speaking, when a light source to be measured is closer to the boundary of the color gamut on the chromaticity coordinates (ie, the horseshoe-shaped spectral locus as shown in FIG. 8B ), the higher the color purity is. Color purity can be expressed as a percentage, defined on the CIE chromaticity coordinates, the linear distance between the chromaticity coordinates of the light source to be measured and the chromaticity coordinates of the energy white point and the spectral locus from the white point light source to the dominant wavelength of the light source to be measured Percentage of chromaticity coordinate distance. Taking the green light with a peak wavelength between 525 nm and 535 nm emitted by the light-emitting element of any embodiment of the present application as an example, the green light has a chromaticity coordinate value (X1, Y1) based on the CIE 1931 chromaticity coordinate, wherein X1 ≦ 0.2, Y1 ≧ 0.75. Referring to FIG. 8C , Group_Ref_1 is the data point measured by the light-emitting element of the comparative example with the peak wavelength of light emitted at 530 nm, Group_Ref_2 is the data point measured by the light-emitting element of the comparative example with the peak wavelength of light emitted at 532 nm, and Group_Exp_1 is The data points measured by the light-emitting element 3 whose peak wavelength of emitted light is 530 nm, and Group_Exp_2 are the data points measured by the light-emitting element 3 whose peak wavelength of emitted light is 532 nm. Compared with the light-emitting element of the comparative example with the same peak wavelength of light, the green light emitted by the light-emitting element 3 according to the third embodiment is closer to the pure green coordinate (0.17, 0.797) and has higher color purity. Taking the green light with a peak wavelength between 525 nm and 535 nm emitted by the light-emitting element of any embodiment of the present application as an example, the color purity is greater than or equal to 92%. More preferably, greater than or equal to 93%.

圖9顯示依本申請案第三實施例之發光元件3依不同角度所量測的波長與光強度。於本實驗中,發光元件3依上述實施例所述,濾光層50位於基板第二表面10b上,發光元件3所發出的光線包含正向出光及側向出光,其中正向出光的光強度大於側向出光的光強度,正向出光的半高寬小於側向出光的半高寬。發光元件3發出的光線包含在一第一方向所發出的光線,其包含經由側向出光的光線,具有一第一半高寬及第一光強度;發光元件3發出的光線包含在一第二方向所發出的光線,其包含經由正向出光的光線,具有一第二半高寬及第二光強度。於一實施例中,由於濾光層50位於基板第二表面10b上,基板第二表面10b與第一表面10a之間的側壁未披覆濾光層50,因此第一方向與光摘出表面的法線方向之夾角介於45-90度範圍內所量測到的第一方向光線包含有未經由經由濾光層50自發光元件3側面(例如基板側壁)摘出的光線。第二方向與光摘出表面的法線方向之夾角介於0-30度範圍內所量測到的第二方向光線包含有經由正向出光的光線。於本實驗中,相對於第一方向光線,第二方向光線的第二半高寬小於第一半高寬且小於或等於 25 nm,第二光強度大於第一光強度。這裡的光摘出表面為濾光層50相對於半導體疊層12的表面50e。上述實驗係以一綠光發光元件為例,然而,依本申請案任一實施例發光元件的半導體疊層可以發出紅光、黃光、藍光或藍綠光,依據該些色光來設計濾光層50的疊層結構,可得到純化的紅光、黃光、藍光或藍綠光,達到如同前述的效果。藉由濾光層50提升發光元件的光色彩純度,特別是在正向光上的色彩純度,對於特定的產品應用有所助益。例如將依本申請案任一實施例之發光元件應用在顯示裝置,可實現高色彩飽和度、高對比度及廣色域。FIG. 9 shows the wavelengths and light intensities of the light-emitting element 3 according to the third embodiment of the present application measured at different angles. In this experiment, the light-emitting element 3 is as described in the above-mentioned embodiment, the filter layer 50 is located on the second surface 10b of the substrate, and the light emitted by the light-emitting element 3 includes forward light and side light, wherein the light intensity of the forward light is The light intensity is greater than the light intensity of the lateral light, and the full width at half maximum of the forward light is smaller than that of the lateral light. The light emitted by the light-emitting element 3 includes the light emitted in a first direction, which includes the light emitted through the lateral light, and has a first half-height width and a first light intensity; the light emitted by the light-emitting element 3 includes a second The light emitted in the direction includes the light emitted through the forward direction, and has a second half width and a second light intensity. In one embodiment, since the filter layer 50 is located on the second surface 10b of the substrate, the sidewall between the second surface 10b of the substrate and the first surface 10a is not covered with the filter layer 50, so the difference between the first direction and the light extraction surface is not covered by the filter layer 50. The light in the first direction measured when the angle between the normal directions is in the range of 45-90 degrees includes the light that is not extracted from the side surface of the light-emitting element 3 (eg, the sidewall of the substrate) through the filter layer 50 . The light in the second direction measured when the angle between the second direction and the normal direction of the light extraction surface is in the range of 0-30 degrees includes the light exiting through the forward direction. In this experiment, relative to the light in the first direction, the second half width of the light in the second direction is smaller than the first half width and less than or equal to 25 nm, and the second light intensity is greater than the first light intensity. The light extraction surface here is the surface 50e of the filter layer 50 relative to the semiconductor stack 12 . The above experiment takes a green light-emitting element as an example. However, according to any embodiment of the present application, the semiconductor stack of the light-emitting element can emit red light, yellow light, blue light or blue-green light, and the filter is designed according to these colors. The layered structure of the layer 50 can obtain purified red light, yellow light, blue light or blue-green light, and achieve the same effect as described above. The color purity of the light-emitting element, especially the color purity of the forward light, is improved by the filter layer 50, which is helpful for specific product applications. For example, applying the light-emitting element according to any embodiment of the present application to a display device can achieve high color saturation, high contrast, and wide color gamut.

正向出光的光線是經由濾光層50所摘出的光,其藉由濾光層50的濾光特性純化半導體疊層12產生的光線。於本實施例中,側向出光的光,例如在第一方向的光包含未經由濾光層50所摘出的光,例如自發光元件側面摘出的光,具有接近原來半導體疊層12產生的光線的特性,例如具有接近原來半導體疊層12產生的光線的半高寬。然而本申請案不在此限。基於進一步減少未經濾光層50摘出的側向光影響光純化,於一實施例中,依本申請案任一實施例發光元件之側面上亦可形成一調變結構(圖未示)。於一實施例中,調變結構包含一反射層,將射向發光元件側面的光反射或改變方向成為正向出光的光線。於另一實施例中,調變結構包含一光吸收層,吸收射向發光元件側面的光。於另一實施例中,調變結構包含一濾光層,其功能類似濾光層50僅讓特定波段的光穿透。於另一實施例中,調變結構包含一光阻擋層,阻擋光從發光元件側面摘出。於一實施例中,調變結構可於後段封裝模組應用端搭配使用。例如於封裝體中發光元件的側面設置調變結構,發光元件封裝體的結構將詳述如後。The light emitted in the forward direction is the light extracted by the filter layer 50 , which purifies the light generated by the semiconductor stack 12 through the filter properties of the filter layer 50 . In this embodiment, the light emitted from the side, such as the light in the first direction, includes the light that is not extracted by the filter layer 50 , such as the light extracted from the side of the light-emitting element, which is close to the light generated by the original semiconductor stack 12 . characteristics, such as having a half-height width close to that of the light generated by the original semiconductor stack 12 . However, this application is not limited to this. In order to further reduce the effect of the lateral light not extracted by the filter layer 50 on the light purification, in one embodiment, a modulation structure (not shown) can also be formed on the side surface of the light-emitting element according to any embodiment of the present application. In one embodiment, the modulation structure includes a reflective layer, which reflects or changes the direction of the light emitted to the side of the light-emitting element to become the light emitted in the forward direction. In another embodiment, the modulation structure includes a light absorbing layer for absorbing light emitted to the side of the light-emitting element. In another embodiment, the modulation structure includes a filter layer, which is similar in function to the filter layer 50 to allow only light in a specific wavelength band to pass through. In another embodiment, the modulation structure includes a light blocking layer to block light from being extracted from the side of the light-emitting element. In one embodiment, the modulation structure can be used in conjunction with the application end of the back-end packaging module. For example, the modulation structure is arranged on the side surface of the light-emitting element in the package. The structure of the light-emitting element package will be described in detail later.

圖10A為依據本申請案一實施例之顯示裝置101的上視示意圖。如第10圖所示,顯示裝置101包含顯示基板200,其中顯示基板200包含顯示區210與非顯示區220,以及複數個畫素PX排列設置於顯示基板200中的顯示區210,各畫素PX分別包含第一子畫素PX_A、第二子畫素PX_B與第三子畫素PX_C。非顯示區220中設置有資料線驅動電路130以及掃描線驅動電路140。資料線驅動電路130連接各畫素PX的資料線(data line)(圖未示),以傳輸資料訊號至各畫素PX。掃描線驅動電路140連接各畫素PX之掃描線(scan line)(圖未示),以傳輸掃描訊號至各畫素PX。畫素PX包含前述任一實施例之發光元件,以濾光層50相對於半導體疊層12的表面50e做為主要的光摘出面。於一實施例中,為了實現高解析度的顯示裝置,通常需要設置小尺寸、高密度排列的畫素,因此任一子畫素的發光元件的對角線長度小於300 μm。FIG. 10A is a schematic top view of a display device 101 according to an embodiment of the present application. As shown in FIG. 10 , the display device 101 includes a display substrate 200 , wherein the display substrate 200 includes a display area 210 and a non-display area 220 , and a plurality of pixels PX are arranged in the display area 210 in the display substrate 200 . PX respectively includes a first sub-pixel PX_A, a second sub-pixel PX_B and a third sub-pixel PX_C. The data line driving circuit 130 and the scanning line driving circuit 140 are disposed in the non-display area 220 . The data line driving circuit 130 is connected to a data line (not shown) of each pixel PX, so as to transmit data signals to each pixel PX. The scan line driving circuit 140 is connected to a scan line (not shown) of each pixel PX, so as to transmit a scan signal to each pixel PX. The pixel PX includes the light-emitting element of any of the foregoing embodiments, and the surface 50e of the filter layer 50 opposite to the semiconductor stack 12 is used as the main light extraction surface. In one embodiment, in order to realize a high-resolution display device, it is usually necessary to provide small-sized and high-density pixels, so the diagonal length of the light-emitting element of any sub-pixel is less than 300 μm.

各子畫素發出不同顏色的光,於一實施例中,第一子畫素PX_A、第二子畫素PX_B與第三子畫素PX_C例如分別為紅色子畫素、綠色子畫素以及藍色子畫素。可選用發出不同波長光線的發光元件分別作為子畫素,使各子畫素呈現不同顏色。藉由各子畫素所發出紅色、綠色以及藍色之光線的組合,使顯示裝置101發出全彩的影像。再次參照圖8B,當各子畫素中的發光元件所發出的色光基於色度座標越接近色域規範所制定的純色點座標時,畫素所能呈現的色域範圍越廣,即,可以實現廣色域的顯示裝置。在習知顯示裝置中,為了達到高色彩飽和度、高對比度或廣色域等目的,需要在畫素中發光元件以外設置濾光元件或波長轉換元件等,可能增加整體顯示裝置的製程複雜度、製作成本及結構複雜度。此外,使用濾光元件或波長轉換元件可能會損失掉發光元件的亮度或光強度。依本申請案任一實施例之發光元件所製作的顯示裝置,可以改善上述問題。Each sub-pixel emits light of different colors. In one embodiment, the first sub-pixel PX_A, the second sub-pixel PX_B and the third sub-pixel PX_C are, for example, red sub-pixels, green sub-pixels and blue sub-pixels, respectively. Dice pixel. Light-emitting elements that emit light of different wavelengths can be selected as sub-pixels respectively, so that each sub-pixel presents different colors. The display device 101 emits a full-color image through the combination of red, green, and blue light emitted by each sub-pixel. Referring to FIG. 8B again, when the color light emitted by the light-emitting elements in each sub-pixel is closer to the solid color point coordinates formulated by the color gamut specification based on the chromaticity coordinates, the wider the color gamut range that the pixel can present, that is, it can be A display device that realizes a wide color gamut. In the conventional display device, in order to achieve high color saturation, high contrast, or wide color gamut, it is necessary to provide filter elements or wavelength conversion elements in addition to the light-emitting elements in the pixels, which may increase the process complexity of the overall display device. , production cost and structural complexity. Furthermore, the use of filter elements or wavelength conversion elements may lose the brightness or light intensity of the light emitting element. The display device fabricated according to the light-emitting element of any embodiment of the present application can improve the above-mentioned problems.

本實施例中單一畫素PX之子畫素個數、面積及排列並不限於此,可依據使用者對於色彩及解析度等不同需求,進而有不同的實施方式。依據本申請案另一實施例之顯示裝置(圖未示),其畫素PX更包含一第四子畫素,第四子畫素包含前述任一實施例之發光元件。第四子畫素所包含的發光元件的光線波長不同於第一子畫素至第三子畫素中的發光元件。例如,第四子畫素為藍綠色子畫素,第四子畫素中的發光元件,其發出光線的峰值波長介於495 nm至520 nm。更佳地,介於500 nm至510 nm。同樣地,第四子畫素中的發光元件藉由濾光層50純化半導體疊層所發出的藍綠光,以得到較高色彩純度的藍綠光,進而提高顯示裝置的色彩表現能力。In this embodiment, the number, area and arrangement of sub-pixels of a single pixel PX are not limited to this, and different implementations can be implemented according to different requirements of users such as color and resolution. According to a display device (not shown) according to another embodiment of the present application, the pixel PX further includes a fourth sub-pixel, and the fourth sub-pixel includes the light-emitting element of any of the foregoing embodiments. The light wavelengths of the light-emitting elements included in the fourth sub-pixel are different from the light-emitting elements in the first to third sub-pixels. For example, the fourth sub-pixel is a blue-green sub-pixel, and the light-emitting element in the fourth sub-pixel emits light with a peak wavelength ranging from 495 nm to 520 nm. More preferably, between 500 nm and 510 nm. Similarly, the light-emitting element in the fourth sub-pixel purifies the blue-green light emitted by the semiconductor stack through the filter layer 50 to obtain blue-green light with higher color purity, thereby improving the color rendering capability of the display device.

於一實施例中,圖10B為圖10A中一個畫素PX的截面示意圖。任一子畫素包含一發光元件封裝體6,發光元件封裝體6內封有前述第三實施例之發光元件3或第四實施例之發光元件4。發光元件封裝體6接合於顯示基板200上。顯示基板200上設置有電路層110以及電路接合墊8a與8b。電路層110與電路接合墊之間為電性連接,電路層110可包含主動式電子元件,例如電晶體。發光元件封裝體6之電極81及83例如透過焊接的方式分別與電路接合墊8a及8b接合,並經由電路層110與顯示器驅動電路(即,資料線驅動電路130以及掃描線驅動電路140)電性連接。如此一來,藉由資料線驅動電路130、掃描線驅動電路140及電路層110可控制畫素PX中的發光元件。In one embodiment, FIG. 10B is a schematic cross-sectional view of one pixel PX in FIG. 10A . Any sub-pixel includes a light-emitting element package 6, and the light-emitting element package 6 encapsulates the light-emitting element 3 of the third embodiment or the light-emitting element 4 of the fourth embodiment. The light emitting element package 6 is bonded to the display substrate 200 . The circuit layer 110 and the circuit bonding pads 8 a and 8 b are disposed on the display substrate 200 . The circuit layer 110 and the circuit bonding pads are electrically connected, and the circuit layer 110 may include active electronic components, such as transistors. The electrodes 81 and 83 of the light-emitting element package 6 are respectively bonded to the circuit bonding pads 8 a and 8 b by, for example, soldering, and are electrically connected to the display driving circuit (ie, the data line driving circuit 130 and the scanning line driving circuit 140 ) through the circuit layer 110 . sexual connection. In this way, the light-emitting elements in the pixels PX can be controlled by the data line driving circuit 130 , the scanning line driving circuit 140 and the circuit layer 110 .

圖10C為依據本申請案一實施例之發光元件封裝體6,如前述,發光元件封裝體6內封有第三實施例之發光元件3。發光元件封裝體6包含封裝材料90覆蓋發光元件3的側表面。於一實施例中,封裝材料90包含一基材(matrix),例如為矽氧樹脂(Silicone)、環氧樹脂(Epoxy)、壓克力或其混和物。於另一實施例中,封裝材料90包含基材及其他材料,以形成前述的調變結構。例如,封裝材料90包含基材及吸光材料,以形成一光吸收層,其中吸光材料包含黑色材料,例如碳黑。例如,封裝材料90包含基材及反射材料,以形成一反射層,其中反射材料包含氧化鈦(TiOx )、氧化矽(SiOx )或其混和物。於另一實施例中,封裝材料90包含多個不同功能的調變結構,例如,封裝材料90包含反射層覆蓋發光元件,以及光吸收層覆蓋反射層。FIG. 10C shows a light-emitting element package 6 according to an embodiment of the present application. As mentioned above, the light-emitting element package 6 encapsulates the light-emitting element 3 of the third embodiment. The light emitting element package 6 includes the encapsulation material 90 covering the side surfaces of the light emitting element 3 . In one embodiment, the packaging material 90 includes a matrix, such as silicone, epoxy, acrylic or a mixture thereof. In another embodiment, the packaging material 90 includes a substrate and other materials to form the aforementioned modulation structure. For example, the encapsulation material 90 includes a base material and a light-absorbing material to form a light-absorbing layer, wherein the light-absorbing material includes a black material, such as carbon black. For example, the packaging material 90 includes a base material and a reflective material to form a reflective layer, wherein the reflective material includes titanium oxide (TiO x ), silicon oxide (SiO x ) or a mixture thereof. In another embodiment, the encapsulation material 90 includes a plurality of modulation structures with different functions. For example, the encapsulation material 90 includes a reflective layer covering the light-emitting element, and a light absorbing layer covering the reflective layer.

於另一實施例中(圖未示),畫素PX包含發光元件封裝體6,單一發光元件封裝體6內同時封有複數個發光元件,各發光元件構成一子畫素。於一實施例中,發光元件封裝體6的封裝材料90形成調變結構,並填充於複數個發光元件之間。圖10B示例性繪示發光元件封裝體6內封有依本申請案一實施例之覆晶式發光元件,但本申請案的發光元件封裝體並不限於此。於其他實施例中(圖未示),任一子畫素包含依據本申請案任一實施例之發光元件,以適合不同實施例發光元件的打線方式、焊接方式或固晶方式,將發光元件之第一電極20(20’或20”)與第二電極30(30’或30”),分別電性連接於顯示基板200上的電路接合墊8a與8b。In another embodiment (not shown), the pixel PX includes a light-emitting element package 6, and a single light-emitting element package 6 simultaneously encapsulates a plurality of light-emitting elements, and each light-emitting element constitutes a sub-pixel. In one embodiment, the encapsulation material 90 of the light-emitting element package 6 forms a modulation structure and is filled between a plurality of light-emitting elements. FIG. 10B exemplarily shows that the light-emitting element package 6 is encapsulated with a flip-chip light-emitting element according to an embodiment of the present application, but the light-emitting element package of the present application is not limited thereto. In other embodiments (not shown), any sub-pixel includes the light-emitting element according to any embodiment of the present application, and the light-emitting element is bonded to the light-emitting element in a wire bonding method, soldering method or die-bonding method suitable for the light-emitting element of different embodiments. The first electrode 20 (20' or 20") and the second electrode 30 (30' or 30") are electrically connected to the circuit bonding pads 8a and 8b on the display substrate 200, respectively.

圖11本申請案第六實施例發光元件9之截面圖。圖11的發光元件9僅以類似前述圖1的發光元件1作為一示例,發光元件9和發光元件1的主要結構類似,差異在於濾光層50’。然而,發光元件9的主要結構可如同前述實施例中任一發光元件。發光元件9包含濾光層50’,由一對或複數對不同折射率的材料層交互堆疊所形成。濾光層50’與前述濾光層50具有類似的結構,藉由選擇不同折射率介電材料作為濾光層50’中第一子層及第二子層(圖未示),並搭配其厚度設計,形成一干涉現象,讓發光元件9發出的光經由濾光層50’選擇性地進行穿透或反射。其差別在於,濾光層50’對特定角度範圍的光線提供過濾功能,也就是僅有特定角度範圍的光可以穿透濾光層50’。具體而言,如圖11所示的發光元件9,半導體疊層12發出一具有特定峰值波長的光線入射到濾光層50’,濾光層50’可讓大部分小角度入射光穿透,並反射大部分大角度入射光。於另一實例中,發光元件9的結構類似前述實施例中的發光元件3,半導體疊層12發出的光線穿過基板10,入射到濾光層50’,濾光層50e’可讓大部分小角度入射光穿透,並反射大部分大角度入射光。這裡入射光的角度係指入射光方向與入射面法線方向的夾角。於一實施例中,圖12顯示發光元件9的光路徑示意圖。小角度入射光的光路徑如同P1,自活性層123發出的光經過濾光層50’,從濾光層表面50e’摘出。大角度入射光的光路徑如同P2,自活性層123發出的光在半導體疊層12和濾光層50’之介面發生全反射,朝向基板10,並且在基板第一表面10a的圖案化結構(圖未示)而產生折射及/或散射,而改變了方向,在半導體疊層12和濾光層50’之介面形成小角度入射光,從濾光層表面50e’摘出。如此一來,濾光層50’可使發光元件9所發出光線的出光角度收斂,來達到收斂出光角度的效果。FIG. 11 is a cross-sectional view of a light-emitting element 9 according to a sixth embodiment of the present application. The light-emitting element 9 in FIG. 11 is only taken as an example similar to the light-emitting element 1 in FIG. 1. The main structure of the light-emitting element 9 and the light-emitting element 1 are similar, and the difference lies in the filter layer 50'. However, the main structure of the light-emitting element 9 may be the same as any of the light-emitting elements in the foregoing embodiments. The light-emitting element 9 includes a filter layer 50', which is formed by alternately stacking one or more pairs of material layers with different refractive indices. The filter layer 50 ′ has a similar structure to the aforementioned filter layer 50 , by selecting different refractive index dielectric materials as the first sub-layer and the second sub-layer (not shown) in the filter layer 50 ′, and matching them The thickness is designed to form an interference phenomenon, so that the light emitted by the light emitting element 9 can be selectively transmitted or reflected through the filter layer 50 ′. The difference is that the filter layer 50' provides a filtering function for light in a specific angle range, that is, only light in a specific angle range can penetrate the filter layer 50'. Specifically, as shown in the light-emitting element 9 shown in FIG. 11 , the semiconductor stack 12 emits a light with a specific peak wavelength and is incident on the filter layer 50 ′. And reflect most of the large angle incident light. In another example, the structure of the light-emitting element 9 is similar to that of the light-emitting element 3 in the foregoing embodiment, and the light emitted by the semiconductor stack 12 passes through the substrate 10 and enters the filter layer 50 ′. Small-angle incident light penetrates, and most large-angle incident light is reflected. The angle of the incident light here refers to the angle between the direction of the incident light and the normal direction of the incident surface. In one embodiment, FIG. 12 shows a schematic diagram of the light path of the light emitting element 9 . The light path of the incident light at a small angle is the same as P1, and the light emitted from the active layer 123 passes through the filter layer 50' and is extracted from the surface 50e' of the filter layer. The light path of the large-angle incident light is the same as P2, and the light emitted from the active layer 123 is totally reflected at the interface between the semiconductor stack 12 and the filter layer 50', toward the substrate 10, and the patterned structure ( Not shown) to produce refraction and/or scattering, and change the direction, forming a small angle incident light at the interface between the semiconductor stack 12 and the filter layer 50', and extracting from the filter layer surface 50e'. In this way, the filter layer 50' can make the light-emitting angle of the light emitted by the light-emitting element 9 converge, so as to achieve the effect of converging the light-emitting angle.

發光元件9所發出的光線包含正向出光及側向出光,其中正向出光的光強度大於側向出光的光強度。於一實施例中,濾光層50’對於入射角小於10度的光線時,光穿透率大於90%;對於入射角大於20度的光線,光穿透率小於10%。依上述第六實施例之發光元件9,其發散角(或又稱光束角)小於等於120度;於另一實施例中,發光元件9的發散角小於或等於110度。於另一實施例中,發光元件9的發散角介於50度至110度。於另一實施例中,發光元件9的發散角介於50度至100度。發散角指的是,在光源的配光曲線中,也就是發光元件在各個角度發光強度的空間分佈中,光強度達到出光面法線方向上光強度的二分之一,兩邊所形成的夾角。The light emitted by the light-emitting element 9 includes forward light and side light, wherein the light intensity of the forward light is greater than the light intensity of the side light. In one embodiment, the light transmittance of the filter layer 50' is greater than 90% when the incident angle is less than 10 degrees; and the light transmittance is less than 10% when the incident angle is greater than 20 degrees. According to the light-emitting element 9 of the sixth embodiment, the divergence angle (or also called the beam angle) is less than or equal to 120 degrees; in another embodiment, the divergence angle of the light-emitting element 9 is less than or equal to 110 degrees. In another embodiment, the divergence angle of the light-emitting element 9 ranges from 50 degrees to 110 degrees. In another embodiment, the divergence angle of the light-emitting element 9 is between 50 degrees and 100 degrees. Divergence angle means that in the light distribution curve of the light source, that is, in the spatial distribution of the luminous intensity of the light-emitting element at each angle, the light intensity reaches half of the light intensity in the normal direction of the light-emitting surface, and the angle formed by the two sides .

圖13顯示第六實施例之發光元件9與比較例發光元件在各個角度發光強度的空間分佈。第六實施例之發光元件9結構類似發光元件1,濾光層50、50’都是由一對或複數對不同折射率材料構成的第一子層及第二子層交互堆疊所形成,濾光層50’類似濾光層50可以選擇性反射及穿透特定入射光。濾光層50內第一子層及第二子層之折射率及厚度設定為讓特定波長範圍的光線穿透,提供過濾功能,同時在入射光小角度入射角下,相對大角度其具有較大的光強度。濾光層50’內第一子層及第二子層之折射率及厚度設定為讓特定入射角度範圍的光線穿透,小角度入射角的入射光相較於大角度入射角的入射光具有較大的光強度。於一實施例中,入射光在小於10度的入射角達到90%以上的穿透率,在大於20度的入射角僅有10%以下的穿透率(或達到80%以上的反射率)。於一實施例中,濾光層50’包含複數對由SiO2 和TiO2 所組成的介電材料對,其中,包含三組介電材料疊層,第一組介電材料疊層較靠近半導體疊層12,第二組介電材料疊層較遠離半導體疊層12,第三組介電材料疊層介於第一組和第二組介電材料疊層之間。其中,第一組的SiO2 和TiO2 介電材料對的光學厚度大於第三組的SiO2 和TiO2 介電材料對的光學厚度;第二組的SiO2 和TiO2 介電材料對的光學厚度大於及/或小於第三組的SiO2 和TiO2 介電材料對的光學厚度。第一組的SiO2 和TiO2 介電材料對包含整數對或非整數對,第二組的SiO2 和TiO2 介電材料對包含整數對或非整數對,第三組的SiO2 和TiO2 介電材料對包含整數對或非整數對。第三組介電材料疊層中介電材料對數目分別大於第一組及第二組介電材料疊層中的介電材料對數目。藉由調整第一組和第二組介電材料疊層的厚度,可以降低因干涉現象造成部分角度範圍穿透率下降的現象。比較例發光元件結構類似於發光元件9,惟差別在於不具有濾光層50’。由圖13可看出,相較於比較例,第六實施例發光元件9在60度至120度有較高的光強度,具有較高的正向光;也就是說,以濾光層表面50e’之法線方向約正負30度以內,第六實施例發光元件9具有較高的光強度,可將光集中在正向上。此外,第六實施例發光元件9的發散角為101度,小於比較例發光元件的發散角139度。FIG. 13 shows the spatial distribution of the luminous intensity at various angles of the light-emitting element 9 of the sixth embodiment and the light-emitting element of the comparative example. The structure of the light-emitting element 9 of the sixth embodiment is similar to that of the light-emitting element 1. The filter layers 50 and 50' are formed by alternately stacking a first sub-layer and a second sub-layer composed of a pair or a plurality of pairs of materials with different refractive indices. The optical layer 50', like the optical filter layer 50, can selectively reflect and transmit certain incident light. The refractive index and thickness of the first sub-layer and the second sub-layer in the filter layer 50 are set to allow light in a specific wavelength range to penetrate, providing a filtering function. large light intensity. The refractive indices and thicknesses of the first sub-layer and the second sub-layer in the filter layer 50' are set to allow light in a specific incident angle range to penetrate. greater light intensity. In one embodiment, the transmittance of the incident light is more than 90% at the incident angle less than 10 degrees, and the transmittance is less than 10% (or the reflectivity reaches more than 80%) at the incident angle greater than 20 degrees. . In one embodiment, the filter layer 50 ′ includes a plurality of pairs of dielectric material pairs composed of SiO 2 and TiO 2 , wherein there are three sets of dielectric material stacks, and the first set of dielectric material stacks is closer to the semiconductor. For the stack 12, the second set of dielectric material stacks is further away from the semiconductor stack 12, and the third set of dielectric material stacks is interposed between the first and second sets of dielectric material stacks. Wherein, the optical thickness of the SiO 2 and TiO 2 dielectric material pair of the first group is greater than that of the third group of SiO 2 and TiO 2 dielectric material pairs; the optical thickness of the second group SiO 2 and TiO 2 dielectric material pair The optical thickness is greater and/or less than the optical thickness of the SiO2 and TiO2 dielectric material pair of the third group. The first group of SiO2 and TiO2 dielectric material pairs contains integer or non-integer pairs, the second group of SiO2 and TiO2 dielectric material pairs contains integer or non-integer pairs, and the third group of SiO2 and TiO2 2 Dielectric material pairs include integer pairs or non-integer pairs. The number of dielectric material pairs in the third set of dielectric material stacks is greater than the number of dielectric material pairs in the first and second sets of dielectric material stacks, respectively. By adjusting the thicknesses of the first group and the second group of dielectric material stacks, it is possible to reduce the phenomenon that the transmittance in a part of the angle range decreases due to the interference phenomenon. The structure of the light-emitting element of the comparative example is similar to that of the light-emitting element 9, except that it does not have the filter layer 50'. It can be seen from FIG. 13 that, compared with the comparative example, the light-emitting element 9 of the sixth embodiment has higher light intensity at 60 degrees to 120 degrees, and has higher forward light; The normal direction of 50e' is within about plus or minus 30 degrees, the light-emitting element 9 of the sixth embodiment has a high light intensity and can concentrate the light in the positive direction. In addition, the divergence angle of the light-emitting element 9 of the sixth embodiment is 101 degrees, which is smaller than the divergence angle of the light-emitting element 9 of the comparative example, which is 139 degrees.

如同前述實施例,於另一實施例中,第六實施例發光元件9之側面上亦可形成一調變結構(圖未示)。於一實施例中,調變結構包含一反射層,將射向發光元件側面的光反射或改變方向成為正向出光的光線。於另一實施例中,調變結構包含一光吸收層,吸收射向發光元件側面的光。於另一實施例中,調變結構包含一濾光層,其功能類似濾光層50’僅讓特定角度的光線穿透。於另一實施例中,調變結構包含一光阻擋層,阻擋光從發光元件側面摘出。As in the previous embodiment, in another embodiment, a modulation structure (not shown) can also be formed on the side surface of the light-emitting element 9 of the sixth embodiment. In one embodiment, the modulation structure includes a reflective layer, which reflects or changes the direction of the light emitted to the side of the light-emitting element to become the light emitted in the forward direction. In another embodiment, the modulation structure includes a light absorbing layer for absorbing light emitted to the side of the light-emitting element. In another embodiment, the modulation structure includes a filter layer, which functions similarly to the filter layer 50' to allow only light at a specific angle to penetrate. In another embodiment, the modulation structure includes a light blocking layer to block light from being extracted from the side of the light-emitting element.

圖14為一感測模組201的示意圖。如圖14所示,感測模組201包含載板400,一發光元件封裝體6’其內封有依據本申請案任意實施例之發光元件9以及一光感測元件40位於載板400之表面,發光元件9與光感測元件40電性連接於載板400上的電路(圖未示)。發光元件封裝體6’之結構與前述發光元件封裝體6類似,在此不加以贅述。圖14的發光元件封裝體6’和發光元件9以類似發光元件3的結構以覆晶方式接合於載板400上做為一示例,然而可依據不同實施例的發光元件來選擇不同的打線方式、焊接方式或固晶方式,將發光元件9固定於載板400,並使其與載板400上的電路電性連接。光感測元件40包含光電二極體。光感測元件40與發光元件封裝體6’或發光元件9之間更可設置一光阻擋元件80,可避免兩者之間干擾,例如避免發光元件9所發出的光線直接被光感測元件40接收。FIG. 14 is a schematic diagram of a sensing module 201 . As shown in FIG. 14 , the sensing module 201 includes a carrier board 400 , a light-emitting element package 6 ′ in which the light-emitting element 9 according to any embodiment of the present application is encapsulated, and a light-sensing element 40 is located between the carrier board 400 . On the surface, the light-emitting element 9 and the light-sensing element 40 are electrically connected to a circuit (not shown) on the carrier board 400 . The structure of the light-emitting element package 6' is similar to that of the aforementioned light-emitting element package 6, and is not repeated here. The light emitting element package 6 ′ and the light emitting element 9 in FIG. 14 are bonded to the carrier board 400 by flip chip with a structure similar to the light emitting element 3 as an example. However, different wire bonding methods can be selected according to the light emitting elements of different embodiments. The light-emitting element 9 is fixed on the carrier board 400 by a soldering method or a die-bonding method, and is electrically connected to the circuit on the carrier board 400 . The light sensing element 40 includes a photodiode. A light blocking element 80 can be further arranged between the light sensing element 40 and the light emitting element package 6' or the light emitting element 9 to avoid interference between the two, for example, to prevent the light emitted by the light emitting element 9 from being directly affected by the light sensing element 40 received.

感測模組201應用於一生理感測裝置。例如,發光元件9所發出的光線,照射於使用者的人體,而產生一反射訊號,光感測元件40接收反射訊號,可得到一量測訊號,再經由電路的運算得到使用者的生理資訊,例如包含心跳、血氧、血壓、血糖、水分或汗液等資訊。為了量測到準確的生理資訊,發光元件9所發出的光線較佳為集中的並具有一定的光強度。依本申請案實施例的感測模組201,使用具有濾光層50’之發光元件9,由於濾光層50’可以收斂發光元件的出光角度,在不需要額外光學元件例如透鏡的輔助下,可以得到較集中的光源。此外,少了額外光學元件,也使得感測模組201具有較輕薄的體積,適合使用者配戴。The sensing module 201 is applied to a physiological sensing device. For example, the light emitted by the light-emitting element 9 is irradiated on the user's body to generate a reflection signal. The light-sensing element 40 receives the reflection signal to obtain a measurement signal, and then obtains the physiological information of the user through the operation of the circuit. , such as heartbeat, blood oxygen, blood pressure, blood sugar, water, or sweat. In order to measure accurate physiological information, the light emitted by the light-emitting element 9 is preferably concentrated and has a certain light intensity. According to the sensing module 201 of the embodiment of the present application, the light-emitting element 9 having the filter layer 50' is used, because the filter layer 50' can converge the light-emitting angle of the light-emitting element, without the assistance of additional optical elements such as lenses , a more concentrated light source can be obtained. In addition, the lack of additional optical elements also enables the sensing module 201 to have a lighter and thinner volume, which is suitable for users to wear.

於另一實施例中,發光元件9也可以應用於如圖10A之顯示裝置101及如圖10B之畫素PX。藉由濾光層50’收斂發光元件的出光角度,使整體顯示裝置101的複數個畫素PX中的發光元件出光角度一致,進而提高顯示裝置101畫面的均勻性。In another embodiment, the light-emitting element 9 can also be applied to the display device 101 as shown in FIG. 10A and the pixel PX as shown in FIG. 10B . By converging the light-emitting angles of the light-emitting elements by the filter layer 50', the light-emitting angles of the light-emitting elements in the plurality of pixels PX of the overall display device 101 are uniform, thereby improving the uniformity of the display device 101 screen.

惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變化。舉凡依本申請案申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本申請案之申請專利範圍內。However, the above-mentioned embodiments are merely illustrative to illustrate the principles and effects of the present application, and are not intended to limit the present application. Anyone with ordinary knowledge in the technical field to which this application pertains can make modifications and changes to the above embodiments without departing from the technical principles and spirit of this application. All equivalent changes and modifications made in accordance with the shape, structure, feature and spirit described in the scope of the patent application of the present application shall be included in the scope of the patent application of the present application.

1、2、3、4、5、9:發光元件 6、6’:發光元件封裝體 8a、8b:電路接合墊 10:基板 10a:基板第一表面 10b:基板第二表面 11a、11b:發光單元 101:顯示裝置 201:感測模組 110:電路層 130:資料線驅動電路 140:掃描線驅動電路 12:半導體疊層 121:第一半導體層 121a:第一表面 121b:第二表面 122:第二半導體層 122a:第二半導體層表面 123:活性層 16:反射結構 18:透明導電層 20、20’、20”:第一電極 30、30’、30”:第二電極 26:保護層 261、262:保護層開口 36:絕緣層 40:光感測元件 50、50’:濾光層 50a:第一子層 50b:第二子層 50c:第三子層 50d:第四子層 50e、50e’:濾光層表面 501、502:開孔 60:連接電極 80:光阻擋元件 81、83:電極 90:封裝材料 200:顯示基板 210:顯示區 220:非顯示區 400:載板 PX:畫素 PX_A、PX_B、PX_C:子畫素 P1、P2:光路徑1, 2, 3, 4, 5, 9: light-emitting elements 6, 6': Light emitting element package 8a, 8b: circuit bond pads 10: Substrate 10a: the first surface of the substrate 10b: The second surface of the substrate 11a, 11b: light-emitting unit 101: Display device 201: Sensing module 110: circuit layer 130: Data line driver circuit 140: Scan line driver circuit 12: Semiconductor stack 121: the first semiconductor layer 121a: first surface 121b: Second surface 122: the second semiconductor layer 122a: the surface of the second semiconductor layer 123: Active layer 16: Reflective Structure 18: Transparent conductive layer 20, 20', 20": the first electrode 30, 30', 30": the second electrode 26: Protective layer 261, 262: protective layer opening 36: Insulation layer 40: Light sensing element 50, 50': filter layer 50a: first sublayer 50b: Second sublayer 50c: Third sublayer 50d: Fourth sublayer 50e, 50e': filter layer surface 501, 502: Opening 60: Connect electrodes 80: Light blocking element 81, 83: Electrodes 90: Encapsulation material 200: Display substrate 210: Display area 220: non-display area 400: carrier board PX: pixel PX_A, PX_B, PX_C: Subpixels P1, P2: light path

﹝圖1﹞顯示本申請案第一實施例發光元件1。 ﹝圖2A及圖2B﹞顯示本申請案一實施例發光元件中濾光層的一截面局部放大圖。 ﹝圖3﹞顯示依據本申請案一實施例所模擬的實驗結果 ﹝圖4﹞顯示本申請案第二實施例發光元件2。 ﹝圖5﹞顯示本申請案第三實施例發光元件3。 ﹝圖6﹞顯示本申請案第四實施例發光元件4。 ﹝圖7A及圖7B﹞顯示本申請案第五實施例發光元件5。 ﹝圖8A至8C﹞顯示依本申請案第三實施例發光元件3與一比較例發光元件之實驗比較。 ﹝圖9﹞顯示依本申請案第三實施例之發光元件3依不同角度所量測的波長與光強度。 ﹝圖10A﹞顯示依據本申請案一實施例之顯示裝置101的上視示意圖。 ﹝圖10B﹞顯示依據本申請案一實施例一個畫素PX的截面示意圖。 ﹝圖10C﹞顯示依據本申請案一實施例發光元件封裝體的截面示意圖。 ﹝圖11﹞顯示本申請案第六實施例發光元件9。 ﹝圖12﹞顯示依據本申請案第六實施例發光元件9的光路徑示意圖。 ﹝圖13﹞顯示第六實施例之發光元件9與比較例發光元件的光強度分佈。 ﹝圖14﹞顯示依據本申請案一實施例感測模組的截面示意圖。﹝ FIG. 1 ﹞ shows the light-emitting element 1 according to the first embodiment of the present application. ﹝ FIG. 2A and FIG. 2B ﹞ show a partial enlarged view of a cross-section of a filter layer in a light-emitting element according to an embodiment of the present application. ﹝ FIG. 3 ﹞ shows the experimental results simulated according to an embodiment of the present application ﹝ FIG. 4 ﹞ shows the light-emitting element 2 of the second embodiment of the present application. ﹝ FIG. 5 ﹞ shows the light-emitting element 3 according to the third embodiment of the present application. ﹝ FIG. 6 ﹞ shows the light-emitting element 4 according to the fourth embodiment of the present application. ﹝ FIG. 7A and FIG. 7B ﹞ show the light-emitting element 5 according to the fifth embodiment of the present application. ( FIGS. 8A to 8C ) show the experimental comparison of the light-emitting element 3 according to the third embodiment of the present application and a light-emitting element of a comparative example. ﹝ FIG. 9 ﹞ shows the wavelength and light intensity measured at different angles of the light-emitting element 3 according to the third embodiment of the present application. ﹝ FIG. 10A ﹞ shows a schematic top view of a display device 101 according to an embodiment of the present application. ﹝ FIG. 10B ﹞ shows a schematic cross-sectional view of a pixel PX according to an embodiment of the present application. ﹝ FIG. 10C ﹞ shows a schematic cross-sectional view of a light-emitting device package according to an embodiment of the present application. ﹝ FIG. 11 ﹞ shows the light-emitting element 9 according to the sixth embodiment of the present application. ﹝ FIG. 12 ﹞ shows a schematic diagram of the light path of the light-emitting element 9 according to the sixth embodiment of the present application. (Fig. 13) shows the light intensity distribution of the light-emitting element 9 of the sixth embodiment and the light-emitting element of the comparative example. ﹝ FIG. 14 ﹞ shows a schematic cross-sectional view of a sensing module according to an embodiment of the present application.

3:發光元件3: Light-emitting element

10:基板10: Substrate

10a:第一表面10a: First surface

10b:第二表面10b: Second surface

12:半導體疊層12: Semiconductor stack

121:第一半導體層121: the first semiconductor layer

122:第二半導體層122: the second semiconductor layer

123:活性層123: Active layer

18:透明導電層18: Transparent conductive layer

26:保護層26: Protective layer

261、262:開孔261, 262: Opening

28:反射結構28: Reflective Structure

20’:第一電極20': first electrode

30’:第二電極30': second electrode

50:濾光層50: filter layer

50e:濾光層表面50e: filter layer surface

Claims (20)

一種發光元件,包含: 一半導體疊層;以及 一濾光層,位於該半導體疊層上,包含一第一表面面對該半導體疊層以及一第二表面相對於該第一表面; 其中:該發光元件發出一光線; 該光線包含一第一方向光,且具有一第一半高寬,以及一第二方向光,且具有一第二半高寬; 該第一方向光與該第二表面之一法線方向之夾角介於45-90度,該第二方向光與該第二表面之該法線方向之夾角介於0-30度;以及 該第二半高寬小於該第一半高寬。A light-emitting element, comprising: a semiconductor stack; and a filter layer on the semiconductor stack, comprising a first surface facing the semiconductor stack and a second surface opposite to the first surface; Wherein: the light-emitting element emits a light; The light includes a first directional light with a first half-width, and a second directional light with a second half-width; The included angle between the first directional light and a normal direction of the second surface is 45-90 degrees, and the included angle between the second directional light and the normal direction of the second surface is 0-30 degrees; and The second half-height width is smaller than the first half-height width. 如請求項1之發光元件,其中該光線具有一主波長以及一峰值波長,該主波長與該峰值波長之差值小於3 nm。The light-emitting element of claim 1, wherein the light has a main wavelength and a peak wavelength, and the difference between the main wavelength and the peak wavelength is less than 3 nm. 如請求項1之發光元件,其中該光線具有一峰值波長介於525 nm至535 nm,且該光線基於CIE 1931色度座標具有一色度座標值(X1,Y1),其中X1 ≦ 0.2,Y1 ≧ 0.75。The light-emitting element of claim 1, wherein the light has a peak wavelength ranging from 525 nm to 535 nm, and the light has a chromaticity coordinate value (X1, Y1) based on CIE 1931 chromaticity coordinates, wherein X1 ≦ 0.2, Y1 ≧ 0.75. 如請求項1之發光元件,其中該濾光層對於該光線的一峰值波長具有80%以上的穿透率。The light-emitting element of claim 1, wherein the filter layer has a transmittance of more than 80% for a peak wavelength of the light. 如請求項1之發光元件,其中該第二半高寬小於或等於25 nm。The light-emitting element of claim 1, wherein the second half width is less than or equal to 25 nm. 如請求項1之發光元件,其中該光線在該第二方向的光強度大於該光線在該第一方向的光強度。The light-emitting element of claim 1, wherein the light intensity of the light in the second direction is greater than the light intensity of the light in the first direction. 如請求項1之發光元件,其中該濾光層包含交互堆疊的一第一介電材料層以及一第二介電材料層。The light-emitting element of claim 1, wherein the filter layer comprises a first dielectric material layer and a second dielectric material layer which are alternately stacked. 如請求項1之發光元件,更包含一基板位於該半導體疊層與該第一表面之間,且該第一表面面對該基板。The light-emitting device of claim 1, further comprising a substrate between the semiconductor stack and the first surface, and the first surface faces the substrate. 如請求項1之發光元件,更包含一反射結構位於該半導體疊層下並覆蓋該半導體疊層;以及一電極位於該反射結構下。The light-emitting element of claim 1, further comprising a reflective structure located under the semiconductor stack and covering the semiconductor stack; and an electrode located under the reflective structure. 如請求項9之發光元件,其中該反射結構包含一金屬反射層,該電極與該金屬反射層電性連接。The light-emitting element of claim 9, wherein the reflective structure comprises a metal reflective layer, and the electrode is electrically connected to the metal reflective layer. 如請求項9之發光元件,其中該反射結構包含一介電材料疊層,該介電材料疊層包含一開口,且該電極經由該開口與該半導體疊層電性連接。The light-emitting device of claim 9, wherein the reflective structure includes a dielectric material stack, the dielectric material stack includes an opening, and the electrode is electrically connected to the semiconductor stack through the opening. 如請求項1之發光元件,更包含: 一基板,位於該半導體疊層下;以及 一電極,位於該半導體疊層上; 其中,該濾光層包含一開口露出該電極。As in the light-emitting element of claim 1, it further includes: a substrate under the semiconductor stack; and an electrode on the semiconductor stack; Wherein, the filter layer includes an opening to expose the electrode. 如請求項1之發光元件,該發光元件的一對角線長度小於300 μm。According to the light-emitting element of claim 1, the diagonal length of the light-emitting element is less than 300 μm. 如請求項1之發光元件,其中該光線具有一峰值波長介於525 nm至535 nm,且該光線具有一色純度大於或等於92%。The light-emitting element of claim 1, wherein the light has a peak wavelength ranging from 525 nm to 535 nm, and the light has a color purity greater than or equal to 92%. 一種發光元件,包含: 一半導體疊層,發出一第一光線;以及 一濾光層,位於該半導體疊層上,包含一第一表面面對該半導體疊層以及一第二表面相對於該第一表面; 其中:該第一光線經由該濾光層得到一第二光線; 該第一光線具有一第一半高寬,該第二光線具有一第二半高寬;以及 該第二半高寬小於該第一半高寬,及/或該第二光線具有一半高寬小於或等於25 nm。A light-emitting element, comprising: a semiconductor stack emitting a first light; and a filter layer on the semiconductor stack, comprising a first surface facing the semiconductor stack and a second surface opposite to the first surface; Wherein: the first light obtains a second light through the filter layer; The first ray has a first half-width, the second ray has a second half-height; and The second half-width is smaller than the first half-width, and/or the second light has a half-width less than or equal to 25 nm. 一種顯示裝置,包含複數個畫素,其中該複數個畫素之一包含如請求項1至請求項15之任一發光元件。A display device includes a plurality of pixels, wherein one of the plurality of pixels includes any light-emitting element according to claim 1 to claim 15. 一種發光元件封裝體,包含如請求項1至請求項15之任一發光元件。A light-emitting element package comprising any light-emitting element according to claim 1 to claim 15. 如請求項17之發光元件封裝體,更包含一調變結構覆蓋該發光元件的一側面。The light-emitting element package of claim 17, further comprising a modulation structure covering one side surface of the light-emitting element. 如請求項18之發光元件封裝體,其中該調變結構包含一反射層、一光吸收層、一光阻擋層或一濾光層。The light-emitting element package of claim 18, wherein the modulation structure comprises a reflection layer, a light absorption layer, a light blocking layer or a light filter layer. 一種發光元件,包含: 一半導體疊層,發出一第一光線;以及 一濾光層,位於該半導體疊層上,包含一第一表面面對該半導體疊層以及一第二表面相對於該第一表面; 其中:該濾光層包含交互堆疊的一第一介電材料層以及一第二介電材料層; 該第一光線經由該濾光層得到一第二光線;以及 該發光元件具有一發散角介於50度至110度。A light-emitting element, comprising: a semiconductor stack emitting a first light; and a filter layer on the semiconductor stack, comprising a first surface facing the semiconductor stack and a second surface opposite to the first surface; Wherein: the filter layer includes a first dielectric material layer and a second dielectric material layer alternately stacked; The first light obtains a second light through the filter layer; and The light-emitting element has a divergence angle ranging from 50 degrees to 110 degrees.
TW110117551A 2020-07-31 2021-05-14 Light-emitting device and display device having the same TW202207491A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102021119657.4A DE102021119657A1 (en) 2020-07-31 2021-07-28 Light-emitting device and display device containing it
US17/389,467 US20220037556A1 (en) 2020-07-31 2021-07-30 Light-emitting device and display device having the same
CN202110870856.4A CN114068784A (en) 2020-07-31 2021-07-30 Light emitting element and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109126046 2020-07-31
TW109126046 2020-07-31

Publications (1)

Publication Number Publication Date
TW202207491A true TW202207491A (en) 2022-02-16

Family

ID=81323548

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117551A TW202207491A (en) 2020-07-31 2021-05-14 Light-emitting device and display device having the same

Country Status (1)

Country Link
TW (1) TW202207491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828466B (en) * 2022-12-08 2024-01-01 台亞半導體股份有限公司 Photodiode structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828466B (en) * 2022-12-08 2024-01-01 台亞半導體股份有限公司 Photodiode structure

Similar Documents

Publication Publication Date Title
US20230343810A1 (en) Light Emitting Device With LED Stack For Display and Display Apparatus Having the Same
US6914268B2 (en) LED device, flip-chip LED package and light reflecting structure
US11721791B2 (en) Light-emitting device with semiconductor stack and reflective layer on semiconductor stack
EP3264476B1 (en) Light emitting diode chip
JP5130730B2 (en) Semiconductor light emitting device
CN110085716A (en) Light emitting semiconductor device
JP2008210903A (en) Semiconductor light emitting element
US20220037556A1 (en) Light-emitting device and display device having the same
CN114023861A (en) Micro-LED chip structure and manufacturing method thereof
KR101562375B1 (en) Light emitting diode chip and light emitting diode package each having distributed bragg reflector
TW202207491A (en) Light-emitting device and display device having the same
TWI765450B (en) Light emitting diode
US20230135799A1 (en) Light-emitting device
CN109935671B (en) Light emitting element
KR20210086955A (en) Light-emitting element and manufacturing method thereof
CN113555482A (en) Light emitting element and method for manufacturing the same
US20230215981A1 (en) Light-emitting device and display device using the same
US20220320176A1 (en) Unit pixel for led display and led display apparatus having the same
US20220336427A1 (en) Unit pixel for led display and led display apparatus having the same
EP4391766A1 (en) Light-emitting element array, light-emitting device, electronic apparatus, and photonic crystal structure
TWI690093B (en) Light-emitting element
TW202345419A (en) Light-emitting device
CN115498087A (en) Light-emitting diode, manufacturing method thereof and light-emitting diode display panel
CN115498082A (en) Light-emitting diode, manufacturing method thereof and light-emitting diode display panel
TW202316681A (en) Light emitting device