JP2008153681A - Led array - Google Patents

Led array Download PDF

Info

Publication number
JP2008153681A
JP2008153681A JP2008012439A JP2008012439A JP2008153681A JP 2008153681 A JP2008153681 A JP 2008153681A JP 2008012439 A JP2008012439 A JP 2008012439A JP 2008012439 A JP2008012439 A JP 2008012439A JP 2008153681 A JP2008153681 A JP 2008153681A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor layer
electrode
type semiconductor
led array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008012439A
Other languages
Japanese (ja)
Inventor
Katsunobu Kitada
勝信 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008012439A priority Critical patent/JP2008153681A/en
Publication of JP2008153681A publication Critical patent/JP2008153681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the light from the slope of a light emitting element to reflect at the electrode. <P>SOLUTION: An array of light emitting elements in which light emitting elements formed by laminating at least one conductivity type semiconductor layer and an inverse conductivity type semiconductor layer, are allocated in a plurality of lines, and an electrode layer which is arranged apart from the light emitting elements to continue in the arrangement direction of the light emitting elements, are prepared on a substrate. The light emitting element has the slope in which at least the boundary part between the end face of the one conductivity type semiconductor layer and the end face of the inverse conductivity type semiconductor layer, is exposed on the side in which at least the electrode layer is prepared. There is provided an LED array wherein at least a part of the electrode layer is covered with a light shielding layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はLEDアレイに関し、特にページプリンタ用感光ドラムの露光用光源などに用いられるLEDアレイに関するものである。   The present invention relates to an LED array, and more particularly to an LED array used for an exposure light source of a photosensitive drum for a page printer.

LEDアレイの基本的な構成は、一導電型半導体層と逆導電型半導体層と電極とを順次積層してなる発光素子を複数個配列して成り、そして、この逆導電型半導体層の発光領域部分をSiNxなどの光透過性の電気的絶縁膜にて被覆し、さらに、かかる逆導電型半導体層の発光領域以外の部分を光透過性の透明な合成樹脂層にて被覆している。   The basic configuration of the LED array is formed by arranging a plurality of light emitting elements in which one conductive semiconductor layer, a reverse conductive semiconductor layer, and an electrode are sequentially stacked, and a light emitting region of the reverse conductive semiconductor layer. The portion is covered with a light-transmitting electrical insulating film such as SiNx, and further, the portion other than the light emitting region of the reverse conductivity type semiconductor layer is covered with a light-transmitting transparent synthetic resin layer.

このような基本的な構成のLEDアレイについて、その具体例を述べる。従来のLEDアレイを図6と図7によって示す。図6はLEDアレイの平面図であり、図7はその断面図である。   A specific example of the LED array having such a basic configuration will be described. A conventional LED array is shown in FIGS. FIG. 6 is a plan view of the LED array, and FIG. 7 is a sectional view thereof.

21は単結晶基板であり、単結晶基板21上において、22は一導電型半導体層、23は逆導電型半導体層、24は個別電極、25は共通電極、26は窒化シリコン膜などから成る保護膜としての絶縁膜である。   Reference numeral 21 denotes a single crystal substrate. On the single crystal substrate 21, 22 is a one-conductivity-type semiconductor layer, 23 is a reverse-conductivity-type semiconductor layer, 24 is an individual electrode, 25 is a common electrode, and 26 is a protection made of a silicon nitride film or the like. It is an insulating film as a film.

単結晶基板21上に、各発光素子ごとに一導電型半導体層22と逆導電型半導体層23とが順次積層して形成され、その積層において、一導電型半導体層22の面積は逆導電型半導体層23の面積に比べて大きくしている。   A single-conductivity-type semiconductor layer 22 and a reverse-conductivity-type semiconductor layer 23 are sequentially stacked on the single crystal substrate 21 for each light-emitting element. In the stack, the area of the single-conductivity-type semiconductor layer 22 is the reverse-conductivity type. The area is larger than the area of the semiconductor layer 23.

一導電型半導体層22の上に絶縁膜26を被覆しているが、その露出部に共通電極25(25a、25b)を接続して設けている。   An insulating film 26 is covered on the one-conductivity-type semiconductor layer 22, and the common electrode 25 (25a, 25b) is connected to the exposed portion.

また、逆導電型半導体層23についても、その上に絶縁膜26を被覆しているが、その露出部に個別電極24を接続して設けている。   Also, the reverse conductivity type semiconductor layer 23 is also covered with an insulating film 26, and an individual electrode 24 is connected to the exposed portion.

さらに図6に示すように、共通電極25(25a、25b)は隣接する各発光素子ごとに(島状半導体層22、23ごとに)異なる群に属するように2群に分けて接続して設けられ、隣接する発光素子(島状半導体層22、23)が同じ個別電極24に接続されている。   Further, as shown in FIG. 6, the common electrode 25 (25a, 25b) is provided by being divided into two groups so as to belong to a different group for each adjacent light emitting element (each island-like semiconductor layer 22, 23). Adjacent light emitting elements (island-like semiconductor layers 22, 23) are connected to the same individual electrode 24.

この発光ダイオードアレイ構造では、個別電極24と共通電極25(25a、25b)の組み合わせを選択して電流を流すことによって、各発光素子を選択的に発光させることができる。   In this light emitting diode array structure, each light emitting element can be made to emit light selectively by selecting a combination of the individual electrode 24 and the common electrode 25 (25a, 25b) and passing a current.

近年、LEDアレイに対し、発光素子の高密度化や、その小型化が市場のニーズであるが、しかしながら、前記のような構成のLEDアレイにおいては、外部接続点である電極パッドの数をさらに減らしたり、外部回路との接続電極サイズをさらに小さくしたり、チップサイズをさらに小さくすることがむずかしくなっていた。   In recent years, with respect to LED arrays, there is a need in the market to increase the density of light-emitting elements and to reduce the size thereof. However, in the LED array having the above-described configuration, the number of electrode pads that are external connection points is further increased. It has been difficult to reduce the size of the connection electrode with the external circuit or to further reduce the chip size.

したがって、発光素子の高密度化や、LEDアレイの小型化という市場のニーズに十分に応えることができなくなっていた。   Therefore, it has been impossible to sufficiently meet the market needs for increasing the density of light emitting elements and reducing the size of LED arrays.

この課題を解消するために、マトリクス配線電極で層間絶縁膜を介して設ける多層電極構造のLEDアレイが提案されている(特開平9−277592号公報および特開平11−40842号公報参照)。   In order to solve this problem, an LED array having a multilayer electrode structure in which matrix wiring electrodes are provided via an interlayer insulating film has been proposed (see Japanese Patent Laid-Open Nos. 9-277592 and 11-40842).

しかしながら、かかる提案のLEDアレイについても、各発光ダイオードの個別電極の形成と、それら発光ダイオードをグループに分け、各グループから重複無く1つずつ選択するためのマトリクス配線の形成を2回行い、しかも、それぞれを絶縁膜等を介することで電気的に分離する工程を経ることで、かかる多層電極構造により製造工程が複雑化し、これによって製造歩留まりが低下し、製造コストが大きくなるという課題がある。   However, even with this proposed LED array, the formation of individual electrodes for each light emitting diode and the formation of matrix wiring for dividing the light emitting diodes into groups and selecting them one by one from each group are performed twice. However, through the process of electrically separating each through an insulating film or the like, the multilayer electrode structure complicates the manufacturing process, thereby reducing the manufacturing yield and increasing the manufacturing cost.

かかる課題を解消するために、本発明者は特開2000‐76437号公報のLEDアレイにおいて、マトリクス配線の形成を1回で行って、工程を簡略化する技術を提案した。   In order to solve such a problem, the present inventor has proposed a technique for simplifying the process by forming the matrix wiring in one time in the LED array disclosed in Japanese Patent Application Laid-Open No. 2000-76437.

同公報によれば、各発光素子群ごとに、それら発光素子の各一方電極に対し共通に成した電極パッドを配設し、そして、発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、一方の発光素子群の発光素子電極間隔と他方の発光素子群の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッドを配設している。   According to the publication, for each light emitting element group, an electrode pad formed in common for each one electrode of the light emitting elements is disposed, and the other electrode in the extending portion of each light emitting element in the light emitting element group The other electrode pads are formed in common for both the other electrodes with the same electrode interval between the light emitting element electrodes of one light emitting element group and the electrode interval of the light emitting element of the other light emitting element group. Is arranged.

このように複数の一方電極に対し共通に成した電極パッドを配設し、さらに複数の他方電極に対し共通に成した他の電極パッドを配設したことで、電極パッド数が少なくなり、その配設面積が小さくなり、これにより、発光素子の高密度化ならびにLEDアレイの小型化が達成された。   Thus, by arranging the electrode pad formed in common for the plurality of one electrode and further arranging the other electrode pad formed in common for the plurality of other electrodes, the number of electrode pads is reduced. The arrangement area is reduced, and as a result, the density of the light emitting elements and the size of the LED array are reduced.

また、上記構成のLEDアレイによれば、特開平9−277592号公報や特開平11−40842号公報において提案されている多層電極構造のLEDアレイと比べても、工程数が少なくなり、層間絶縁膜を介した多層電極構造を用いないことで、製造コストが小さくなり、発光素子の高密度化や小型化を達成したLEDアレイが得られた。   Further, according to the LED array having the above configuration, the number of processes is reduced and the interlayer insulation is reduced as compared with the LED array having the multilayer electrode structure proposed in Japanese Patent Laid-Open Nos. 9-277592 and 11-40842. By not using a multilayer electrode structure with a film interposed therebetween, the manufacturing cost was reduced, and an LED array in which the density and size of the light emitting elements were achieved was obtained.

しかしながら、特開2000‐76437号公報のLEDアレイによれば、その上に絶縁膜を被覆するに当り、各発光素子の逆導電型半導体の上部に配した絶縁膜と、この以外に配した絶縁膜とを、同一材にて、同時に形成したことで、双方の光透過特性が同じになり、そのために、逆導電型半導体上部から発せられる発光が、迷光として隣接する発光体への反射を招き、その結果、LEDアレイのMTFを低下させ、印画品質を低下させ、LEDヘッドの品質の安定化が図れなかった。   However, according to the LED array disclosed in Japanese Patent Application Laid-Open No. 2000-76437, when an insulating film is coated on the LED array, an insulating film disposed on the reverse conductive type semiconductor of each light emitting element and an insulating film disposed on the other side By forming the film with the same material at the same time, the light transmission characteristics of both are the same, so that the light emitted from the upper part of the reverse conductivity type semiconductor is reflected as a stray light to the adjacent light emitter. As a result, the MTF of the LED array was lowered, the printing quality was lowered, and the quality of the LED head could not be stabilized.

また、叙述した各LEDヘッドによれば、逆導電型半導体層の発光領域部分をSiNxなどの光透過性の電気的絶縁膜にて被覆し、さらに、かかる逆導電型半導体層の発光領域以外の部分を光透過性の透明な合成樹脂層にて被覆した構成であることで、光透過性の透明な合成樹脂層の内部に迷光が生じ、これによって発光の品質や信頼性が低下するという課題があった。   Further, according to each of the LED heads described, the light emitting region portion of the reverse conductivity type semiconductor layer is covered with a light transmissive electrical insulating film such as SiNx, and further, the light emitting region other than the light emission region of the reverse conductivity type semiconductor layer is covered. The problem is that stray light is generated inside the light-transmitting transparent synthetic resin layer by covering the portion with a light-transmitting transparent synthetic resin layer, thereby reducing the quality and reliability of light emission. was there.

本発明の目的は、叙上に鑑みて完成されたものであり、その目的はかかる迷光を減少させたり、無くしたLEDアレイを提供することにある。   An object of the present invention has been completed in view of the above description, and an object of the present invention is to provide an LED array in which such stray light is reduced or eliminated.

本発明の他の目的は、工程数を増やすこともなく、層間絶縁膜を介した多層電極構造を用いないで、製造コストを下げるとともに、発光素子の高密度化や小型化を達成したLEDアレイを提供することにある。   Another object of the present invention is to provide an LED array that does not increase the number of processes, does not use a multilayer electrode structure with an interlayer insulating film, reduces the manufacturing cost, and achieves higher density and smaller size of light emitting elements. Is to provide.

本発明のさらに他の目的はLEDアレイの外部接続工程であるワイヤーボンデ
ィングでの電気的ショート不良を発生させず、さらなる縮小化によるコスト低下
を達成するとともに、LEDアレイのMTFを改善し、印画品質を向上させたL
EDアレイを提供することにある。
Still another object of the present invention is not to cause an electrical short-circuit failure in wire bonding, which is an external connection process of the LED array, to achieve cost reduction by further downsizing, to improve the MTF of the LED array, and to improve the print quality. Improved L
It is to provide an ED array.

本発明のLEDアレイは、少なくとも一導電型半導体層と逆導電型半導体層とが積層された発光素子が、複数個配列された発光素子列と、前記発光素子列と離間して配置された、前記発光素子の配列方向に連続した電極層と、が基板上に設けられており、前記発光素子は、少なくとも前記電極層が設けられている側に、前記一導電型半導体層の端面と前記逆導電型半導体層の端面とを少なくとも含む斜面を有し、前記電極層の少なくとも一部が、遮光層によって覆われていることを特徴とする。なお、前記斜面は、前記斜面から離間する方向に延ばした垂線が前記基板の基板面と交わらない方向に傾いていることが好ましい。また、前記遮光層は、前記斜面の、前記一導電型半導体層の端面と前記逆導電型半導体層の端面と前記境界部を少なくとも覆うことが好ましい。また、前記発光素子の表面には、少なくとも前記斜面を含む領域に、光透過性の電気的絶縁膜が設けられており、前記遮光層は前記電気的絶縁膜の表面を覆うことが好ましい。また、前記遮光層は、染料が合成樹脂材に含有されてなることが好ましい。前記合成樹脂材はポリイミドであってもよい。   In the LED array of the present invention, a plurality of light emitting elements in which at least one conductive type semiconductor layer and a reverse conductive type semiconductor layer are stacked are arranged in a plurality of arranged light emitting element rows, and spaced apart from the light emitting element rows. An electrode layer continuous in the arrangement direction of the light-emitting elements is provided on a substrate, and the light-emitting element is at least opposite to the end face of the one-conductivity-type semiconductor layer on the side where the electrode layer is provided. It has a slope including at least the end face of the conductive semiconductor layer, and at least a part of the electrode layer is covered with a light shielding layer. The inclined surface is preferably inclined in a direction in which a perpendicular extending in a direction away from the inclined surface does not intersect the substrate surface of the substrate. The light shielding layer preferably covers at least the end face of the one-conductivity-type semiconductor layer, the end face of the reverse-conductivity-type semiconductor layer, and the boundary portion of the slope. Further, it is preferable that a light transmissive electrical insulating film is provided on a surface of the light emitting element in a region including at least the inclined surface, and the light shielding layer covers the surface of the electrical insulating film. Moreover, it is preferable that the light-shielding layer contains a dye in a synthetic resin material. The synthetic resin material may be polyimide.

本発明のLEDアレイによれば、少なくとも逆導電型半導体層の発光領域の一部分を光透過性の電気的絶縁膜にて被覆し、さらに当該逆導電型半導体層の発光領域以外の部分を遮光性合成樹脂層にて被覆してなることで、迷光を減少させたり、無くし、これによってMTFを向上させた高品質かつ高信頼性のLEDアレイが得られた。   According to the LED array of the present invention, at least a part of the light emitting region of the reverse conductivity type semiconductor layer is covered with a light-transmitting electrical insulating film, and the other part of the reverse conductivity type semiconductor layer is shielded from light. By covering with a synthetic resin layer, stray light was reduced or eliminated, and thereby a high-quality and high-reliability LED array with improved MTF was obtained.

また、本発明のLEDアレイにおいては、単結晶基板上に一導電型半導体層と逆導電型半導体層と一方電極とを順次積層し、この一導電型半導体層を引き出した延在部の上に他方電極と絶縁膜とを並設して成る発光素子を複数個配列し、さらにこれらの発光素子の各一方電極に対し共通に成した電極パッドを配設して成る発光素子群を、さらに複数個ライン状に配列せしめた構成において、発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、一方の発光素子群の発光素子の電極間隔と他方の発光素子群の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッドを配設して成ることで、電極パッド数が減少し、その配設面積が小さくなり、これにより、発光素子の高密度化、ならびにLEDアレイの小型化が達成された。   In the LED array of the present invention, a one-conductivity-type semiconductor layer, a reverse-conductivity-type semiconductor layer, and one electrode are sequentially stacked on a single crystal substrate, and the one-conductivity-type semiconductor layer is drawn on the extended portion. A plurality of light emitting element groups each including a plurality of light emitting elements formed by arranging the other electrode and the insulating film side by side, and an electrode pad formed in common for each electrode of these light emitting elements. In the arrangement arranged in the form of individual lines, the electrode spacing to the other electrode in the extending part of each light emitting element in the light emitting element group is different, and the electrode spacing of the light emitting element in one light emitting element group and the other light emitting element group The electrode spacing of the light emitting element is made the same, and other electrode pads formed in common for both other electrodes are arranged, thereby reducing the number of electrode pads and reducing the arrangement area, As a result, the height of the light emitting element Cathodic, and downsizing of the LED array was achieved.

また、従来の多層電極構造のLEDアレイと比べても、工程数が少なくなり、層間絶縁膜を介した多層電極構造を用いないことで、製造コストが下がり、発光素子の高密度化や小型化を達成したLEDアレイが得られた。   Compared to conventional LED arrays with a multilayer electrode structure, the number of processes is reduced, and the multilayer electrode structure with an interlayer insulating film is not used, thereby reducing manufacturing costs and increasing the density and miniaturization of light-emitting elements. As a result, an LED array was achieved.

また、本発明のLEDアレイでは樹脂膜を表面に形成すると同時に、少なくとも、外部回路との電極接続部および逆導電型半導体層上部以外を覆った構造としているため、絶縁膜をLEDアレイの波長に応じた最適な光学的透過率に設計すると共に、樹脂膜においては、LEDアレイの波長に対して光学的透過率が最も低いのに設計することで、迷光を小さくしMTFを向上させたLEDアレイを実現できた。また、樹脂膜においては、染料を含有した不透明膜とした場合には一層の改善が図れ、MTFの向上した印画品質の高いLEDヘッドを提供できた。   In the LED array of the present invention, the resin film is formed on the surface, and at the same time, at least the electrode connection part with the external circuit and the upper part of the reverse conductivity type semiconductor layer are covered. Therefore, the insulating film has the wavelength of the LED array. The LED array is designed to have an optimum optical transmittance according to the light intensity, and the resin film has the lowest optical transmittance with respect to the wavelength of the LED array, thereby reducing stray light and improving the MTF. Was realized. Further, in the case of an opaque film containing a dye, the resin film can be further improved, and an LED head with high MTF and high print quality can be provided.

本発明のLEDアレイの基本構造は、上述したごとく、少なくとも逆導電型半導体層の発光領域の一部分を光透過性の電気的絶縁膜にて被覆し、さらに当該逆導電型半導体層の発光領域以外の部分を遮光性合成樹脂層にて被覆してなるものであって、本発明はこのような構成を含むLEDアレイであり、その一例を以下、添付図面に基づき詳細に説明する。   As described above, the basic structure of the LED array of the present invention is such that at least a part of the light emitting region of the reverse conductivity type semiconductor layer is covered with a light-transmitting electrical insulating film, and further, other than the light emission region of the reverse conductivity type semiconductor layer. This part is covered with a light-shielding synthetic resin layer, and the present invention is an LED array including such a configuration, and an example thereof will be described below in detail with reference to the accompanying drawings.

図1〜図5は本発明のLEDアレイの一実施形態を示す。図1はLEDアレイの要部拡大の平面図であり、図2は図1に示すV−V‘線による断面図、図3は図1に示すh−h’線による断面図、図4は各発光素子の上面図である。図2および図3には、参照符号として、V、V‘、h、h’を明示することでもって、その断面図の方向を示す。また、図5は他のLEDアレイにおける要部平面図である。   1 to 5 show an embodiment of the LED array of the present invention. 1 is a plan view of an enlarged main portion of the LED array, FIG. 2 is a cross-sectional view taken along the line VV ′ shown in FIG. 1, FIG. 3 is a cross-sectional view taken along the line hh ′ shown in FIG. It is a top view of each light emitting element. 2 and 3, the directions of the cross-sectional views are shown by clearly indicating V, V ′, h, and h ′ as reference numerals. FIG. 5 is a plan view of the main part of another LED array.

1は単結晶基板であり、この単結晶基板1上において、2は一導電型半導体層、3は逆導電型半導体層、4は前記一方電極である個別電極、5は前記他方電極である共通電極、6および12は有機樹脂膜などから成る保護膜としての絶縁膜である。   Reference numeral 1 denotes a single crystal substrate. On this single crystal substrate 1, 2 is a one-conductivity-type semiconductor layer, 3 is a reverse-conductivity-type semiconductor layer, 4 is an individual electrode that is the one electrode, and 5 is a common that is the other electrode. The electrodes 6 and 12 are insulating films as protective films made of an organic resin film or the like.

また、8および10(10a,10b)は外部接続用の電極パッドである。   8 and 10 (10a, 10b) are electrode pads for external connection.

単結晶基板1上に、各発光素子ごとに一導電型半導体層2と逆導電型半導体層3とが順次積層して形成され、その積層において、一導電型半導体層2の面積は逆導電型半導体層3の面積に比べて大きくして、一導電型半導体層2を引き出すことで、一導電型半導体層2と同一材からなる延在部7を設けている。   A single conductive semiconductor layer 2 and a reverse conductive semiconductor layer 3 are sequentially stacked on the single crystal substrate 1 for each light emitting element. In the stack, the area of the single conductive semiconductor layer 2 is a reverse conductive type. The extended portion 7 made of the same material as that of the one-conductivity-type semiconductor layer 2 is provided by making the one-conductivity-type semiconductor layer 2 larger than the area of the semiconductor layer 3.

また、図2に示されるように、一導電型半導体層2の上に前記光透過性の電気的絶縁膜であるポリイミド合成樹脂などの有機材もしくは窒化シリコン(SiNx)や酸化シリコン(SiO2)などの無機材からなる絶縁膜6を被覆しているが、その露出部に共通電極5(5a、5b)を接続して設けることで、絶縁膜6と共通電極5とを延在部7の上で並設している。   Further, as shown in FIG. 2, an organic material such as polyimide synthetic resin or silicon nitride (SiNx), silicon oxide (SiO2), or the like, which is the light-transmissive electrical insulating film, is formed on the one conductive type semiconductor layer 2. Insulating film 6 made of an inorganic material is covered, and common electrode 5 (5a, 5b) is connected to the exposed portion to provide insulating film 6 and common electrode 5 on extension portion 7. In parallel.

さらに逆導電型半導体層3の発光領域Aの一部分を絶縁膜6にて被覆し、その露出部に個別電極4を接続して設けている。また、前記遮光性合成樹脂層である保護膜12は逆導電型半導体層3の上ならびに外部接続用の電極パッド8、10を、それぞれ一部露出した形で覆われている。   Further, a part of the light emitting region A of the reverse conductivity type semiconductor layer 3 is covered with an insulating film 6, and an individual electrode 4 is connected to the exposed portion. The protective film 12 which is the light-shielding synthetic resin layer covers the reverse conductive semiconductor layer 3 and the electrode pads 8 and 10 for external connection in a partially exposed form.

この保護膜12については、逆導電型半導体層3の発光領域A以外の部分を被覆してなる。   The protective film 12 is formed by covering a portion other than the light emitting region A of the reverse conductivity type semiconductor layer 3.

つぎに各部材を詳述する。   Next, each member will be described in detail.

単結晶基板1は半導体基板からなり、高抵抗シリコン単結晶でもって構成した場合には、(100)面を<011>方向に2〜7°オフさせた基板などが好適である。 When the single crystal substrate 1 is made of a semiconductor substrate and is composed of a high resistance silicon single crystal, a substrate with the (100) plane turned off by 2 to 7 degrees in the <011> direction is preferable.

一導電型半導体層2は、バッファ層2a、オーミックコンタクト層2bおよび電子注入層2cで構成される。   The one conductivity type semiconductor layer 2 includes a buffer layer 2a, an ohmic contact layer 2b, and an electron injection layer 2c.

バッファ層2aとオーミックコンタクト層2bはガリウム砒素などで形成され、電子の注入層2cはアルミニウムガリウム砒素などで形成される。オーミックコンタクト層2bにはシリコンなどの一導電型半導体不純物を1×1017〜1019atoms(原子)/cm3 程度含有し、電子注入層2cにはシリコンなどの一導電型半導体不純物を程度含有する。 The buffer layer 2a and the ohmic contact layer 2b are formed of gallium arsenide or the like, and the electron injection layer 2c is formed of aluminum gallium arsenide or the like. The ohmic contact layer 2b contains about 1 × 10 17 to 10 19 atoms (atom) / cm 3 of one conductivity type semiconductor impurity such as silicon, and the electron injection layer 2c contains about one conductivity type semiconductor impurity such as silicon. To do.

バッファ層2aは単結晶基板1と半導体層との格子定数の不整合に基づくミスフィット転位を防止するために設けるものであり、半導体不純物を1×1016〜1019atoms/cm3含有させる。 The buffer layer 2a is provided in order to prevent misfit dislocation based on mismatch of lattice constants between the single crystal substrate 1 and the semiconductor layer, and contains 1 × 10 16 to 10 19 atoms / cm 3 of semiconductor impurities.

バッファ層2aは2〜4μm程度の厚みに形成され、オーミックコンタクト層2bは0.1〜3.0μm程度の厚みに形成され、電子注入層2cは0.2〜0.4μm程度の厚みに形成される。   The buffer layer 2a is formed to a thickness of about 2 to 4 μm, the ohmic contact layer 2b is formed to a thickness of about 0.1 to 3.0 μm, and the electron injection layer 2c is formed to a thickness of about 0.2 to 0.4 μm. Is done.

逆導電型半導体層3は、発光層3a、クラッド層3bおよび他のオーミックコンタクト層3cで構成される。   The reverse conductivity type semiconductor layer 3 includes a light emitting layer 3a, a cladding layer 3b, and another ohmic contact layer 3c.

発光層3aとクラッド層3bはアルミニウムガリウム砒素などから成り、オーミックコンタクト層3cはガリウム砒素などから成る。   The light emitting layer 3a and the cladding layer 3b are made of aluminum gallium arsenide, and the ohmic contact layer 3c is made of gallium arsenide.

発光層3a、クラッド層3bおよびオーミックコンタクト層3cは、電子の閉じ込め効果と光の取り出し効果を考慮して、各層の間にてアルミニウム砒素(AlAs)とガリウム砒素(GaAs)との混晶比を異ならしめる。   The light emitting layer 3a, the clad layer 3b, and the ohmic contact layer 3c have a mixed crystal ratio of aluminum arsenide (AlAs) and gallium arsenide (GaAs) between the layers in consideration of the electron confinement effect and the light extraction effect. Make it different.

発光層3aとクラッド層3bは亜鉛(Zn)などの逆導電型半導体不純物を1×1016〜1021atoms/cm3 程度含有し、オーミックコンタクト層3cは亜鉛などの逆導電型半導体不純物を1×1019〜1021atoms/cm3 程度含有する。 The light emitting layer 3a and the cladding layer 3b contain about 1 × 10 16 to 10 21 atoms / cm 3 of reverse conductivity type semiconductor impurities such as zinc (Zn), and the ohmic contact layer 3c contains 1 of reverse conductivity type semiconductor impurities such as zinc. × 10 19 to 10 21 atoms / cm 3

発光層3aとクラッド層3bは0.2〜0.4μm程度の厚みに形成され、オーミックコンタクト層3cの膜厚dについては、膜厚d>(0.15μm−オーミックコンタクト層膜厚)程度の厚みに形成される。   The light emitting layer 3a and the clad layer 3b are formed to a thickness of about 0.2 to 0.4 μm, and the film thickness d of the ohmic contact layer 3c is about film thickness d> (0.15 μm−ohmic contact layer film thickness). Formed in thickness.

また、絶縁膜6は、たとえば窒化シリコンなどから成り、厚み2000Å程度に形成される。   The insulating film 6 is made of, for example, silicon nitride and is formed with a thickness of about 2000 mm.

個別電極4と共通電極5(5a、5b、5c、5d)は金/クロム(Au/Cr)などから成り、厚み1μm程度に形成される。   The individual electrode 4 and the common electrode 5 (5a, 5b, 5c, 5d) are made of gold / chromium (Au / Cr) or the like and are formed with a thickness of about 1 μm.

各発光素子は、上記のような構成であるが、つぎに図1と図3にて各発光素子に対する電極構造を示す。   Each light emitting element is configured as described above. Next, an electrode structure for each light emitting element is shown in FIGS.

これら各発光素子の個別電極4に対し共通に成した電極パッド8を配設し、個々の電極パッド8に対応した発光素子群9を設け、さらに前記一方の発光素子群と他方の発光素子群とを交互に配列することで、複数個の発光素子群9をライン状に配列している。   A common electrode pad 8 is provided for the individual electrode 4 of each light emitting element, a light emitting element group 9 corresponding to each electrode pad 8 is provided, and the one light emitting element group and the other light emitting element group are provided. Are alternately arranged, whereby a plurality of light emitting element groups 9 are arranged in a line.

また、発光素子群9内における各発光素子の延在部7における共通電極5(5a、5b、5c、5d)に至る電極間隔xが異なるとともに、一方の発光素子群9の発光素子の電極間隔と、他方の発光素子群9の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッド10を配設している。   Further, the electrode interval x reaching the common electrode 5 (5a, 5b, 5c, 5d) in the extending portion 7 of each light emitting element in the light emitting element group 9 is different, and the electrode interval of the light emitting elements in one light emitting element group 9 is different. In addition, the other electrode pads 10 formed in common with respect to both other electrodes are disposed with the same electrode spacing of the light emitting elements of the other light emitting element group 9.

そして、電極間隔xを同じにした各発光素子の共通電極5を通電させるために、延在部7の上の絶縁膜6をまたがるように、接続線11(11a、11b、11c、11d)を発光素子の配列ラインと平行に形成している。   Then, in order to energize the common electrode 5 of each light emitting element having the same electrode interval x, the connection line 11 (11a, 11b, 11c, 11d) is provided so as to straddle the insulating film 6 on the extending portion 7. The light emitting elements are formed in parallel with the array lines.

さらに一方の発光素子群と他方の発光素子群としての隣接する発光素子群9、9に対し、発光素子群9内にて個々の電極間隔xを配列順に長くするか、もしくは短くして違えることで、対称的な電極間隔パターンにしている。   Further, with respect to one light emitting element group and the adjacent light emitting element groups 9 and 9 as the other light emitting element group, the individual electrode intervals x in the light emitting element group 9 may be increased or decreased in order of arrangement. Thus, a symmetrical electrode spacing pattern is used.

つぎに図5にて、電極間隔xを4とおりに違えて、128bit(ビット)LEDアレイを示す。   Next, in FIG. 5, a 128-bit (bit) LED array is shown by changing the electrode spacing x in four ways.

電極間隔xがもっとも短いものをX11として、そこを端部の発光素子として、順次、X21、X31、X41とし、…X4n、X3n、X2n、X1n、…としている。   The electrode having the shortest electrode interval x is designated as X11, which is designated as the light emitting element at the end, sequentially designated as X21, X31, X41,..., X4n, X3n, X2n, X1n,.

128bitを4種類で32グループ(32個の発光素子群9)に分けることで、n=1〜32である。   By dividing 128 bits into 4 groups and 32 groups (32 light emitting element groups 9), n = 1 to 32.

各発光素子群9をグループG1、G2、…Gmとすると、グループG1における電極間隔X11の発光素子と、グループG2における電極間隔X12の発光素子とを、接続線11aでもって接続し、グループGmにおける電極間隔X1nの発光素子と接続している。   Assuming that each light emitting element group 9 is a group G1, G2,... Gm, the light emitting elements having the electrode interval X11 in the group G1 and the light emitting elements having the electrode interval X12 in the group G2 are connected by the connecting line 11a. It is connected to a light emitting element having an electrode interval X1n.

グループG1における電極間隔X21の発光素子と、グループG2における電極間隔X22の発光素子と、…グループGmにおける電極間隔X2nの発光素子とを、接続線11bでもって接続している。   A light emitting element having an electrode interval X21 in the group G1, a light emitting element having an electrode interval X22 in the group G2, and a light emitting element having an electrode interval X2n in the group Gm are connected by a connection line 11b.

同様に、グループG1における電極間隔X31の発光素子と、グループG2における電極間隔X32の発光素子と、…グループGmにおける電極間隔X3nの発光素子とを、接続線11cでもって接続している。   Similarly, the light emitting element with the electrode interval X31 in the group G1, the light emitting element with the electrode interval X32 in the group G2, and the light emitting element with the electrode interval X3n in the group Gm are connected by the connection line 11c.

グループG1における電極間隔X41の発光素子と、グループG2における電極間隔X42の発光素子と、…グループGmにおける電極間隔X4nの発光素子とを、接続線11dでもって接続している。   A light emitting element having an electrode interval X41 in the group G1, a light emitting element having an electrode interval X42 in the group G2, and a light emitting element having an electrode interval X4n in the group Gm are connected by a connecting line 11d.

そして、各発光素子群に設けた電極パッド8と、他のグループされた電極パッド10とに対し、双方間に選択的に電圧を印加することで、所定の発光素子に電流を流すことができ、その素子を発光せしめる。   Then, by selectively applying a voltage between the electrode pads 8 provided in each light emitting element group and the other grouped electrode pads 10, a current can be passed to a predetermined light emitting element. The element is caused to emit light.

かくして本発明のLEDアレイによれば、各発光素子群9(グループG1、G2、…Gm…)ごとに、共通に成した電極パッド8を配設し、そして、発光素子群9(グループG1、G2、…Gm…)内における各発光素子の電極間隔xが異なるとともに、一方の発光素子群の発光素子の電極間隔xと他方の発光素子群の発光素子の電極間隔xとを同じにして、双方の共通電極5に対し共通に成した電極パッド10を配設したことで、電極パッド数が少なくなり、その配設面積が小さくなり、これにより、発光素子の高密度化、ならびにLEDアレイの小型化が達成される。   Thus, according to the LED array of the present invention, a common electrode pad 8 is provided for each light emitting element group 9 (group G1, G2,... Gm...), And the light emitting element group 9 (group G1,. G2,... Gm, and so on), the electrode spacing x of each light emitting element is different, and the electrode spacing x of the light emitting elements of one light emitting element group and the electrode spacing x of the light emitting elements of the other light emitting element group are the same, Since the electrode pads 10 formed in common for both the common electrodes 5 are arranged, the number of electrode pads is reduced, and the arrangement area is reduced, thereby increasing the density of the light emitting elements and the LED array. Miniaturization is achieved.

また、本発明においては、保護膜12を表面に形成すると同時に、少なくとも、外部回路との接続用電極パッド8、12の一部ならびに逆導電型半導体層3の発光領域Aの一部分を絶縁膜6にて被覆し、その露出部に個別電極4を接続して設けている。   In the present invention, the protective film 12 is formed on the surface, and at the same time, at least a part of the electrode pads 8 and 12 for connection with an external circuit and a part of the light emitting region A of the reverse conductivity type semiconductor layer 3 are formed on the insulating film 6. And the individual electrode 4 is connected to the exposed portion.

絶縁膜6については、反射を防止するように膜厚dを設定するとよい。   About the insulating film 6, it is good to set the film thickness d so that reflection may be prevented.

このための条件は、下記のようにするとよい。   The conditions for this may be as follows.

N1:絶縁膜6の屈折率、d:絶縁膜6の膜厚、m:整数、λ:発光素子の発光波長、N2:一導電型半導体層2と逆導電型半導体層3を成すGaAs材の屈折率において、反射防止の条件は、(N1)d=(1/4+m/2)λ、さらには(N1)=√(N2)にするとよい。   N1: Refractive index of the insulating film 6, d: Film thickness of the insulating film 6, m: Integer, λ: Light emission wavelength of the light emitting element, N2: GaAs material of the one-conductivity-type semiconductor layer 2 and the reverse-conductivity-type semiconductor layer 3 In the refractive index, the antireflection condition is preferably (N1) d = (1/4 + m / 2) λ, and further (N1) = √ (N2).

また、保護膜12については、遮光性とするために染料をポリイミドなどの合成樹脂材に含有させるとよく、このような染料として、黒色顔料を含有させるとよく、たとえば二硫化モリブデン、黒鉛、およびアセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、マグネタイト酸化コバルト、酸化銅、酸化クロム等の金属酸化物類ならびに酸化銅-酸化クロム−酸化鉄などの複合金属酸化物類、チタンブラツクなどがある。   In addition, for the protective film 12, a dye may be contained in a synthetic resin material such as polyimide in order to make it light-shielding, and a black pigment may be contained as such a dye. For example, molybdenum disulfide, graphite, and Carbon blacks such as acetylene black, ketjen black and furnace black, metal oxides such as magnetite cobalt oxide, copper oxide and chromium oxide, composite metal oxides such as copper oxide-chromium oxide-iron oxide, titanium black, etc. There is.

このような絶縁膜6と保護膜12とを被覆し、LEDアレイの波長に応じた最適な光学的透過率に設計するとともに、保護膜12においては、LEDアレイの波長に対して光学的透過率をもっとも低いものに設計することで、迷光を小さくし、その結果、MTFを向上させたLEDアレイを実現できる。   The insulating film 6 and the protective film 12 are covered and designed to have an optimal optical transmittance according to the wavelength of the LED array. In the protective film 12, the optical transmittance is relative to the wavelength of the LED array. Is designed to be the lowest so that the stray light can be reduced, and as a result, an LED array with improved MTF can be realized.

たとえば、絶縁膜6をSiNx膜にてなし、保護膜12を有機樹脂膜にて設け、LEDの波長を740nmとした場合、最適な透過率は100%となる。一方、絶縁膜6については、光透過性が100%に近くなるように、その厚みと屈折率を設計する。たとえば、SiNx(屈折率=1.88)からなる絶縁膜6の膜厚を約3100Aにするとよい。   For example, when the insulating film 6 is made of a SiNx film, the protective film 12 is made of an organic resin film, and the wavelength of the LED is 740 nm, the optimum transmittance is 100%. On the other hand, the thickness and refractive index of the insulating film 6 are designed so that the light transmittance is close to 100%. For example, the thickness of the insulating film 6 made of SiNx (refractive index = 1.88) is preferably about 3100A.

また、本例のLEDアレイによれば、上記構成のように各発光素子群ごとに、それら発光素子の各一方電極に対し共通に成した電極パッドを配設し、そして、発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、一方の発光素子群の発光素子の電極間隔と他方の発光素子群の発光素子の電極間隔とを同じにして、双方の他方電極に対し共通に成した他の電極パッドを配設している。   Further, according to the LED array of this example, the electrode pads formed in common to the respective one electrodes of the light emitting elements are arranged for each light emitting element group as in the above configuration, In the extending part of each light emitting element, the electrode distance to the other electrode is different, the electrode distance of the light emitting element in one light emitting element group is the same as the electrode distance of the light emitting element in the other light emitting element group, and the other Another electrode pad formed in common with the electrode is provided.

このように複数の一方電極に対し共通に成した電極パッドを配設し、さらに複数の他方電極に対し共通に成した他の電極パッドを配設したことで、電極パッド数が少なくなり、その配設面積が小さくなり、これにより、発光素子の高密度化、ならびにLEDアレイの小型化が達成される。   Thus, by arranging the electrode pad formed in common for the plurality of one electrode and further arranging the other electrode pad formed in common for the plurality of other electrodes, the number of electrode pads is reduced. The arrangement area is reduced, thereby achieving high density of the light emitting elements and miniaturization of the LED array.

また、特開平9−277592号や特開平11−40842号にて提案されているような多層電極構造のLEDアレイと比べても、工程数が少なくなり、層間絶縁膜を介した多層電極構造を用いないことで、製造コストが下がり、発光素子の高密度化や小型化を達成したLEDアレイが得られる。さらに前記電極間隔を同じにした各発光素子の他方電極を通電すべく、一導電型半導体層の延在部に形成した絶縁膜をまたがるように、接続線を発光素子の配列ラインと平行に形成している。したがって、従来のLEDアレイにおいて、周知のとおり形成されていた絶縁膜以外に、配線同士の電気的絶縁の為に不可欠な層間絶縁膜を形成することもなく、これによって製造コストが下がり、低コストなLEDアレイが提供される。さらに一方の発光素子群と他方の発光素子群に対し、発光素子群内にて個々の電極間隔を配列順に違えることで、対称的な電極間隔パターンにしており、そのように規則的なパターンにしたことで、LEDヘッド搭載時の発光順番の信号処理を比較的容易にし、延いては搭載基板の設計をも容易にできる。そして、その規則的パターンをLEDアレイに整然と設けることで、それ以外の領域に電極パッドを設けることが設計上容易になる。対称的な電極間隔の最も短い部分でのスペースが大きく取ることが可能となる。これにより、LEDアレイチップサイズの縮小化、ならびに、LEDアレイを搭載する際のワイヤーボンディングパッドを大きく取ることが可能となる。延いては、LEDアレイのチップ縮小化、ならびにLEDヘッド製造上の歩留りを向上できる。また、上記のLEDアレイでは樹脂膜を表面に形成すると同時に、少なくとも、外部回路との電極接続部および逆導電型半導体層上部以外を覆った構造としているため、絶縁膜をLEDアレイの波長に応じた最適な光学的透過率に設計すると共に、樹脂膜においては、LEDアレイの波長に対して光学的透過率が最も低いのに設計することで、迷光を小さくしMTFを向上させたLEDアレイを実現できた。また、樹脂膜においては、染料を含有した不透明膜とした場合には一層の改善が図れ、MTFの向上した印画品質の高いLEDヘッドを提供できる。   In addition, the number of processes is reduced compared with the LED array having a multilayer electrode structure as proposed in Japanese Patent Laid-Open Nos. 9-277592 and 11-40842, and a multilayer electrode structure having an interlayer insulating film is used. By not using the LED array, the manufacturing cost is reduced, and an LED array in which the density and size of the light emitting elements are achieved can be obtained. Further, in order to energize the other electrode of each light emitting element having the same electrode spacing, a connection line is formed in parallel with the array line of the light emitting elements so as to straddle the insulating film formed in the extending part of the one-conductivity type semiconductor layer. is doing. Therefore, in the conventional LED array, in addition to the insulating film formed as is well known, an interlayer insulating film that is indispensable for the electrical insulation between the wirings is not formed. This reduces the manufacturing cost and reduces the cost. LED arrays are provided. Furthermore, the symmetric electrode spacing pattern is obtained by changing the individual electrode spacing within the light emitting device group in the arrangement order with respect to one light emitting device group and the other light emitting device group. As a result, the signal processing of the light emission order when the LED head is mounted can be made relatively easy, and the design of the mounting board can be facilitated. Then, by regularly arranging the regular pattern in the LED array, it becomes easy in design to provide electrode pads in other regions. It is possible to provide a large space in the shortest part of the symmetrical electrode interval. As a result, the size of the LED array chip can be reduced, and a larger wire bonding pad can be used for mounting the LED array. As a result, it is possible to reduce the chip size of the LED array and improve the yield in manufacturing the LED head. In the above LED array, a resin film is formed on the surface, and at the same time, at least the electrode connection part to the external circuit and the upper part of the reverse conductivity type semiconductor layer are covered. Therefore, the insulating film is formed according to the wavelength of the LED array. In addition, the resin film is designed to have the lowest optical transmittance with respect to the wavelength of the LED array, thereby reducing the stray light and improving the MTF. Realized. Further, in the case of an opaque film containing a dye, the resin film can be further improved, and an LED head with high MTF and high print quality can be provided.

つぎに上述のようなLEDアレイの製造方法を説明する。   Next, a method for manufacturing the LED array as described above will be described.

まず、高抵抗シリコン単結晶基板1上に、一導電型半導体層2、逆導電型半導体層3をMOCVD法などで順次積層して形成する。   First, a one-conductivity-type semiconductor layer 2 and a reverse-conductivity-type semiconductor layer 3 are sequentially stacked on a high-resistance silicon single crystal substrate 1 by MOCVD or the like.

まず、これらの半導体層2、3を形成する場合、基板温度を400〜500℃に設定し、これによって200〜2000Åの厚みでもってアモルファス状のガリウム砒素膜を形成した後、基板温度を700〜900℃に上げて所望とおりの厚みの一導電型半導体層2と逆導電型半導体層3とを形成する。   First, when these semiconductor layers 2 and 3 are formed, the substrate temperature is set to 400 to 500 ° C., thereby forming an amorphous gallium arsenide film with a thickness of 200 to 2000 mm, and then the substrate temperature is set to 700 to The temperature is raised to 900 ° C. to form the one-conductivity-type semiconductor layer 2 and the reverse-conductivity-type semiconductor layer 3 having a desired thickness.

この成膜において、原料ガスとしてはTMG((CH33 Ga)、TEG((C253 Ga)、アルシン(AsH3 )、TMA((CH33 Al)、TEA((C253 Al)などが用いられ、導電型を制御するためのガスとしては、シラン(SiH4 )、セレン化水素(H2 Se)、DMZ((CH32 Zn)などが用いられ、キャリアガスとしては、H2などが用いられる。 In this film formation, as source gases, TMG ((CH 3 ) 3 Ga), TEG ((C 2 H 5 ) 3 Ga), arsine (AsH 3 ), TMA ((CH 3 ) 3 Al), TEA (( C 2 H 5) 3 Al) and the like are used as the gas for controlling conductivity types, silane (SiH 4), hydrogen selenide (H 2 Se), and DMZ ((CH 3) 2 Zn ) As the carrier gas, H 2 or the like is used.

つぎに、隣接する素子同志が電気的に分離されるように、半導体層2、3が島状にパターニングされる。そのためのエッチングは、硫酸過酸化水素系のエッチング液を用いたウエットエッチングやCCl22 ガスを用いたドライエッチングなどで行われる。 Next, the semiconductor layers 2 and 3 are patterned in an island shape so that adjacent elements are electrically isolated. Etching for that purpose is performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution, dry etching using CCl 2 F 2 gas, or the like.

しかる後に、一導電型半導体層2の一端部側に延在部7を設け、この延在部7の上にその一部が露出し、かつこの一導電型半導体層2の隣接する領域部分が露出するようにエッチングする。また、逆導電型半導体層3が一導電型半導体層2よりも幅狭に形成されるように逆導電型半導体層3をエッチングする。   Thereafter, an extension 7 is provided on one end side of the one conductivity type semiconductor layer 2, a part of the extension 7 is exposed on the extension 7, and an adjacent region portion of the one conductivity type semiconductor layer 2 is Etch to be exposed. In addition, the reverse conductivity type semiconductor layer 3 is etched so that the reverse conductivity type semiconductor layer 3 is formed narrower than the one conductivity type semiconductor layer 2.

このようなエッチングも硫酸過酸化水素系のエッチング液を用いたウェットエッチングやCCl2 F2 ガスを用いたドライエッチングなどで行なわれる。   Such etching is also performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution or dry etching using CCl2 F2 gas.

つぎに、隣接する発光素子が基板上でも電気的に分離されるように、たとえばアルカリ性水溶液でエッチングする。この時、一導電型半導体層2の延在部7の一部が露出し、かつこの一導電型半導体層2の隣接する領域部分が露出するように、そして、逆導電型半導体層3が一導電型半導体層2よりも幅狭に形成されるように逆導電型半導体層3をエッチングした際に用いたパターンを残したままで行ない、これによって逆導電型半導体層3を一切おかすことなく電気的に分離する。   Next, etching is performed with, for example, an alkaline aqueous solution so that adjacent light emitting elements are electrically separated even on the substrate. At this time, a part of the extended portion 7 of the one-conductivity-type semiconductor layer 2 is exposed, and an adjacent region portion of the one-conductivity-type semiconductor layer 2 is exposed, and the reverse-conductivity-type semiconductor layer 3 is It is performed while leaving the pattern used when the reverse conductive semiconductor layer 3 is etched so as to be formed narrower than the conductive semiconductor layer 2, so that the reverse conductive semiconductor layer 3 can be electrically connected without any changes. To separate.

つぎに有機系樹脂をスピンコート法で形成した絶縁膜6を形成する。絶縁膜はプラズマCVD法で、シランガス(SiH4 )とアンモニアガス(NH3 )を用いて窒化シリコンから成る物でも良い。 Next, an insulating film 6 made of an organic resin by spin coating is formed. The insulating film may be made of silicon nitride using silane gas (SiH 4 ) and ammonia gas (NH 3 ) by plasma CVD.

クロムと金を蒸着法やスパッタリング法で形成してパターニングすることで電極パッド9、10および接続線11を形成する。最後に有機系樹脂をスピンコート法で形成した保護膜12を形成する。   The electrode pads 9 and 10 and the connection line 11 are formed by forming and patterning chromium and gold by vapor deposition or sputtering. Finally, the protective film 12 formed with an organic resin by spin coating is formed.

本発明のLEDアレイの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the LED array of this invention. 図1に示すV−V‘線による断面図である。It is sectional drawing by the V-V 'line shown in FIG. 図1に示すh−h’線による断面図である。It is sectional drawing by the h-h 'line shown in FIG. 本発明のLEDアレイの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the LED array of this invention. 従来のLEDアレイの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the conventional LED array. 従来のLEDアレイを示す断面図である。It is sectional drawing which shows the conventional LED array. 従来のLEDアレイを一実施形態を示す平面図である。It is a top view which shows one Embodiment of the conventional LED array.

符号の説明Explanation of symbols

1・・・単結晶基板
2・・・一導電型半導体層
3・・・逆導電型半導体層
4・・・個別電極
5・・・共通電極
6・・・絶縁膜
7・・・延在部
8・・・電極パッド
9・・・発光素子群
10・・・電極パッド
11・・・接続線
x・・・電極間隔
A・・・発光領域
DESCRIPTION OF SYMBOLS 1 ... Single crystal substrate 2 ... One conductivity type semiconductor layer 3 ... Reverse conductivity type semiconductor layer 4 ... Individual electrode 5 ... Common electrode 6 ... Insulating film 7 ... Extension part 8 ... Electrode pad 9 ... Light emitting element group 10 ... Electrode pad 11 ... Connection line x ... Electrode interval A ... Light emitting region

Claims (6)

少なくとも一導電型半導体層と逆導電型半導体層とが積層された発光素子が、複数個配列された発光素子列と、
前記発光素子列と離間して配置された、前記発光素子の配列方向に連続した電極層と、が基板上に設けられており、
前記発光素子は、少なくとも前記電極層が設けられている側に、前記一導電型半導体層の端面と前記逆導電型半導体層の端面とを少なくとも含む斜面を有し、
前記電極層の少なくとも一部が、遮光層によって覆われていることを特徴とするLEDアレイ。
A light emitting element array in which a plurality of light emitting elements in which at least one conductivity type semiconductor layer and a reverse conductivity type semiconductor layer are stacked are arranged;
An electrode layer that is arranged apart from the light emitting element row and is continuous in the arrangement direction of the light emitting elements, is provided on the substrate,
The light emitting element has an inclined surface including at least an end face of the one-conductivity-type semiconductor layer and an end face of the reverse-conductivity-type semiconductor layer on at least the side where the electrode layer is provided,
An LED array, wherein at least a part of the electrode layer is covered with a light shielding layer.
前記斜面は、前記斜面から離間する方向に延ばした垂線が前記基板の基板面と交わらない方向に傾いていることを特徴とする請求項1記載のLEDアレイ。   2. The LED array according to claim 1, wherein the inclined surface is inclined in a direction in which a perpendicular extending in a direction away from the inclined surface does not intersect the substrate surface of the substrate. 前記遮光層は、前記斜面の、前記一導電型半導体層の端面と前記逆導電型半導体層の端面と前記境界部を少なくとも覆うことを特徴とする請求項1または2記載のLEDアレイ。   3. The LED array according to claim 1, wherein the light shielding layer covers at least an end face of the one conductivity type semiconductor layer, an end face of the reverse conductivity type semiconductor layer, and the boundary portion of the inclined surface. 前記発光素子の表面には、少なくとも前記斜面を含む領域に、光透過性の電気的絶縁膜が設けられており、前記遮光層は前記電気的絶縁膜の表面を覆うことを特徴とする請求項1〜3のいずれかに記載のLEDアレイ。   The surface of the light emitting element is provided with a light-transmitting electrical insulating film in a region including at least the inclined surface, and the light shielding layer covers the surface of the electrical insulating film. LED array in any one of 1-3. 前記遮光層は、染料が合成樹脂材に含有されてなることを特徴とする請求項1〜4のいずれかに記載のLEDアレイ。   The LED array according to any one of claims 1 to 4, wherein the light shielding layer comprises a synthetic resin material containing a dye. 前記合成樹脂材はポリイミドであることを特徴とする請求項5に記載のLEDアレイ。   The LED array according to claim 5, wherein the synthetic resin material is polyimide.
JP2008012439A 2008-01-23 2008-01-23 Led array Pending JP2008153681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012439A JP2008153681A (en) 2008-01-23 2008-01-23 Led array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012439A JP2008153681A (en) 2008-01-23 2008-01-23 Led array

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002158228A Division JP4126454B2 (en) 2002-05-30 2002-05-30 LED array

Publications (1)

Publication Number Publication Date
JP2008153681A true JP2008153681A (en) 2008-07-03

Family

ID=39655454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012439A Pending JP2008153681A (en) 2008-01-23 2008-01-23 Led array

Country Status (1)

Country Link
JP (1) JP2008153681A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199073A (en) * 1986-02-27 1987-09-02 Yokogawa Medical Syst Ltd Light emitting diode array
JPH0738148A (en) * 1993-07-19 1995-02-07 Hitachi Cable Ltd Compound semiconductor optical element, and light emitting diode and manufacture thereof
JPH0738151A (en) * 1993-07-22 1995-02-07 Sharp Corp Optical semiconductor device
JPH0818097A (en) * 1994-06-28 1996-01-19 Sharp Corp Light emitting diode
JPH09186367A (en) * 1995-12-28 1997-07-15 Oki Electric Ind Co Ltd Optical print head
JPH1174565A (en) * 1997-06-27 1999-03-16 Kyocera Corp Light-emission diode array
JPH11220162A (en) * 1998-01-30 1999-08-10 Ricoh Co Ltd Led array head
JP2000196137A (en) * 1998-12-25 2000-07-14 Kyocera Corp Semiconductor light emitting device and its manufacture
JP2001177150A (en) * 1999-12-17 2001-06-29 Hitachi Cable Ltd Light emitting diode array
JP2001339103A (en) * 2000-05-29 2001-12-07 Ricoh Co Ltd Led array, print head and electrophotographic printer
JP2002064222A (en) * 2000-08-22 2002-02-28 Kyocera Corp Led array
JP2002076437A (en) * 2000-08-29 2002-03-15 Kyocera Corp Led array

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199073A (en) * 1986-02-27 1987-09-02 Yokogawa Medical Syst Ltd Light emitting diode array
JPH0738148A (en) * 1993-07-19 1995-02-07 Hitachi Cable Ltd Compound semiconductor optical element, and light emitting diode and manufacture thereof
JPH0738151A (en) * 1993-07-22 1995-02-07 Sharp Corp Optical semiconductor device
JPH0818097A (en) * 1994-06-28 1996-01-19 Sharp Corp Light emitting diode
JPH09186367A (en) * 1995-12-28 1997-07-15 Oki Electric Ind Co Ltd Optical print head
JPH1174565A (en) * 1997-06-27 1999-03-16 Kyocera Corp Light-emission diode array
JPH11220162A (en) * 1998-01-30 1999-08-10 Ricoh Co Ltd Led array head
JP2000196137A (en) * 1998-12-25 2000-07-14 Kyocera Corp Semiconductor light emitting device and its manufacture
JP2001177150A (en) * 1999-12-17 2001-06-29 Hitachi Cable Ltd Light emitting diode array
JP2001339103A (en) * 2000-05-29 2001-12-07 Ricoh Co Ltd Led array, print head and electrophotographic printer
JP2002064222A (en) * 2000-08-22 2002-02-28 Kyocera Corp Led array
JP2002076437A (en) * 2000-08-29 2002-03-15 Kyocera Corp Led array

Similar Documents

Publication Publication Date Title
KR102323686B1 (en) Light emitting device and method of fabricating the same
JP5989810B2 (en) Semiconductor device and manufacturing method thereof
JP4371029B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4804485B2 (en) Nitride semiconductor light emitting device and manufacturing method
US20160247972A1 (en) Light-emitting diode chip
KR101259969B1 (en) Light emitting device
KR101226706B1 (en) Semiconductor light emimitting device
US20090273003A1 (en) Light emitting device and method for manufacturing the same
JP6087096B2 (en) Semiconductor light emitting device and manufacturing method thereof
US11916178B2 (en) Display device
KR20030007061A (en) Light-emitting diode array
CN110268587A (en) Surface-emitting laser and electronic equipment
KR20110053064A (en) Light emitting diode chip and light emitting diode package each having distributed bragg reflector
JP4126454B2 (en) LED array
US20200135799A1 (en) Display device
KR20130007030A (en) Light emitting diode with anti-reflective film and method of manufacturing the same
KR20150101783A (en) Light emitting diode and method of fabricating the same
US20220199599A1 (en) Display device and manufacturing method thereof
JP2008153681A (en) Led array
JP3854073B2 (en) LED array and LED head
TW202207491A (en) Light-emitting device and display device having the same
KR20230010157A (en) Pixel and display device including the same
CN113130713A (en) Light emitting element and method for manufacturing the same
JP2005310937A (en) Light emitting diode array
JP7492666B2 (en) Light emitting element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327