JP4123226B2 - Silk-like polyester fibers and fabrics and methods for producing them - Google Patents

Silk-like polyester fibers and fabrics and methods for producing them Download PDF

Info

Publication number
JP4123226B2
JP4123226B2 JP2004345428A JP2004345428A JP4123226B2 JP 4123226 B2 JP4123226 B2 JP 4123226B2 JP 2004345428 A JP2004345428 A JP 2004345428A JP 2004345428 A JP2004345428 A JP 2004345428A JP 4123226 B2 JP4123226 B2 JP 4123226B2
Authority
JP
Japan
Prior art keywords
polyester
component
fiber
alkali
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004345428A
Other languages
Japanese (ja)
Other versions
JP2005060923A (en
Inventor
澄男 菱沼
邦明 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004345428A priority Critical patent/JP4123226B2/en
Publication of JP2005060923A publication Critical patent/JP2005060923A/en
Application granted granted Critical
Publication of JP4123226B2 publication Critical patent/JP4123226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Description

本発明は、絹様ポリエステル繊維及びポリエステル布帛並びにそれらの製造方法に関する。詳しくは、優れた特性をもつポリエステル繊維もしくはポリエステル布帛に、天然の絹が有する風合いに同等、もしくは優れるとも劣らない魅力的な風合いを付加しようとするものである。     The present invention relates to silk-like polyester fibers and polyester fabrics and methods for producing them. Specifically, the present invention intends to add an attractive texture equivalent to or superior to the texture of natural silk to a polyester fiber or polyester fabric having excellent characteristics.

従来から、絹様のポリエステル繊維もしくは布帛を得るために、絹のもつ優雅な真珠様のつや(光沢)、きしみ(絹布帛同志の接触によって発生する特有の摩擦音、絹鳴り)、高発色性などを付与する様々な試みがなされた。たとえば、つやを絹に近付ける手段としては、前記布帛に使用されるポリエステル繊維に透明な基質を用い、絹に近い三角断面糸にする手段がとられた。また、絹様のきしみ感を得るために花弁の頂点に1μm程度の微小な切込みを入れた三花弁断面糸が登場した。微粒子を添加して繊維表面を粗面化したり、表面に樹脂加工を施して低屈折率化したり、細繊度糸を用いたりして布帛の色の深みを増すことも行われている。さらに、鮮やかな発色を得るためにはカチオン可染糸やアニオン可染糸を用いる手段も提案された。     Traditionally, to obtain silk-like polyester fibers or fabrics, silky pearly luster (gloss), squeaks (specific frictional noise generated by contact between silk fabrics, silkiness), high color development, etc. Various attempts have been made to grant. For example, as a means for bringing the gloss closer to silk, a means was adopted in which a transparent substrate is used for the polyester fiber used in the fabric, and a triangular cross-section thread close to silk is obtained. In addition, in order to obtain a silky squeaky feeling, a three-petal cross-section thread with a fine cut of about 1 μm at the top of the petal appeared. It is also practiced to increase the color depth of the fabric by adding fine particles to roughen the fiber surface, applying a resin treatment to the surface to lower the refractive index, or using fine yarns. Furthermore, in order to obtain a vivid color, a means using a cation dyeable yarn or an anion dyeable yarn has been proposed.

特開昭59−021723号公報JP 59-021723 繊維学会編.「繊維便覧」.第2版.丸善(株).平成6年3月. p132−135Edited by Textile Society. “Fiber Handbook”. Second edition. Maruzen Co., Ltd. March 1994. p132-135

前記の各手段により、ポリエステル繊維もしくは布帛は可なり改良されて絹の感性に近いものが得られるようになってきた。しかし、いずれも満足な光沢が得られなかったり、反射光が強すぎたり、また、十分なきしみ感が得られなかったり、つやがなくなったり、色が浅すぎたり、強度低下により耐磨耗性が劣化するなどの問題があって、風合や外観などの点でまだまだ絹に及ぶものではなかった。本発明者は、絹と同様に、もしくはそれ以上に優れた風合や外観などを有するポリエステル布帛を課題に研究した結果、本発明を完成したものである。     By each means described above, polyester fibers or fabrics have been considerably improved, and it has become possible to obtain silk fibers that are close to the sensitivity of silk. However, none of them has a satisfactory gloss, the reflected light is too strong, the feeling of sufficient squeak is not obtained, the luster is lost, the color is too shallow, or the strength is reduced, resulting in wear resistance. There was a problem such as deterioration, and the texture and appearance did not reach the silk yet. The present inventor has completed the present invention as a result of studying a polyester fabric having a texture, appearance, and the like superior to silk as well as silk.

本発明は、前記の課題を解決する手段として、実質的に溶液ヘイズ(ポリマーの曇値パラメータ)が15を超えないポリエステル成分(A1)を用いて製造された、繊維断面が実質的に偏平度1.3ないし6の楕円に形成され、透過光量が少なくとも190%であるポリエステル繊維及び前記繊維を含むポリエステル布帛が絹様であって優れた風合いを有することを見出し、それらの製造方法とともに完成されたものである。本発明における偏平度に関し、「実質的に」の意味は、断面形状が完全な楕円形状を形成しているとは限らないので、その形状を楕円に近似させて求めた偏平度を意味する。     In the present invention, as a means for solving the above-mentioned problems, the fiber cross section produced using a polyester component (A1) having a solution haze (polymer haze parameter) substantially not exceeding 15 is substantially flat. It has been found that polyester fibers formed into ellipses of 1.3 to 6 and having a transmitted light amount of at least 190% and polyester fabrics containing the fibers are silky and have an excellent texture, and have been completed together with their production methods. It is a thing. Regarding the flatness in the present invention, the meaning of “substantially” means the flatness obtained by approximating the shape of an ellipse because the cross-sectional shape does not necessarily form a complete ellipse.

具体的には、本発明の絹様ポリエステル繊維は、繊維断面が、溶液ヘイズが15を超えないアルカリ難溶解性のポリエステル成分(A1)と前記成分(A1)に比較すればアルカリ溶解速度が若干大きな難溶解性の共重合ポリエステル成分(A2)とをブレンドした、アルカリ難溶解性成分(A)からなる領域、及び前記アルカリ難溶解性成分(A)の少なくとも2倍の速度でアルカリに溶解され除去されるアルカリ易溶性成分(B)からなる領域から構成され、かつ、断面形状が実質的に偏平度1.5ないし3.5の楕円であって、アルカリ難溶解性成分(A)領域の形状が実質的に偏平度1.3ないし6の楕円に形成されたポリエステル複合繊維から、成分(B)を溶解・除去し共重合ポリエステル成分(A2)を溶出することによって得られる、繊維断面の形状が実質的に偏平度1.3ないし6の楕円であって透過光量が少なくとも190%であることを特徴とする絹様ポリエステル繊維である。また、絹様の布帛は、前記の絹様ポリエステル繊維を30重量%以上含む布帛である。前記ポリエステル複合繊維の断面形状は、成分(B)の領域が連続相を形成する中に、前記楕円形状の成分(A)領域が複数に分散して形成されていてもよい。なお、本発明でいうアルカリ溶解・除去、アルカリ易溶性等の意には、アルカリによるポリエステエルの加水分解を含む。   Specifically, the silk-like polyester fiber of the present invention has a slightly higher alkali dissolution rate when compared with the component (A1) and the hardly alkali-soluble polyester component (A1) in which the fiber cross-section does not exceed 15 in solution haze. A region consisting of a hardly alkaline soluble component (A) blended with a large hardly soluble copolyester component (A2) and dissolved in an alkali at a rate at least twice that of the hardly alkaline soluble component (A). It is composed of a region composed of the easily soluble alkali component (B) to be removed, and the cross-sectional shape is substantially an ellipse having a flatness of 1.5 to 3.5, and the region of the hardly alkaline soluble component (A) region By dissolving and removing the component (B) and eluting the copolymerized polyester component (A2) from the polyester composite fiber formed into an ellipse having a substantially flatness of 1.3 to 6 Is, the amount of transmitted light shape of the fiber cross section is a substantially flatness 1.3 to 6 ellipse is silk-like polyester fiber characterized in that at least 190%. The silk-like fabric is a fabric containing 30% by weight or more of the silk-like polyester fiber. The cross-sectional shape of the polyester conjugate fiber may be formed by dispersing the elliptical component (A) region in plural while the component (B) region forms a continuous phase. The meanings of alkali dissolution / removal and alkali solubility in the present invention include hydrolysis of polyester by alkali.

本発明に係る絹様のポリエステル繊維及び布帛は、ポリエステル繊維の優れた特性を維持しつつ、天然の絹に優れるとも劣らない優雅な風合、外観的な良さを有する。とくに、絹様の色の深みや鮮やかさ、優雅なつや、きしみなどに特長がある。     The silk-like polyester fiber and fabric according to the present invention have an elegant texture and good appearance that are not inferior to natural silk while maintaining the excellent properties of the polyester fiber. In particular, it has features such as silky color depth and vividness, elegant luster and squeak.

はじめに、本発明を説明するに際して用いる、布帛もしくは布帛を構成する繊維等の特性値の内容を以下に説明しておく。   First, the contents of the characteristic values of the fabric or the fibers constituting the fabric used to describe the present invention will be described below.

(1)溶液ヘイズ
ポリエステルチップまたはポリエステル繊維を十分に洗浄して油剤を除去した試料1gを、フェノール:四塩化炭素の容量比が3:2の混合液10mlに100℃で溶解し、直読式のヘイズメータ(スガ試験機(株)製)で10mmのセルを用いて測定した数値から次式により算出した。
(1) Solution haze 1 g of a sample from which a polyester chip or polyester fiber was sufficiently washed to remove the oil was dissolved in 10 ml of a phenol: carbon tetrachloride volume ratio of 3: 2 at 100 ° C. It calculated by the following formula from the numerical value measured using a 10 mm cell with a haze meter (manufactured by Suga Test Instruments Co., Ltd.).

HAZE=(Td/Tk)×100
ただし、Td:拡散光透過率 Tk:全光線透過率
(2)アルカリ溶解速度
ホモポリマーからなるポリエステル糸または布帛を基準物質とした。秤量した基準物質および測定対象物質のサンプルを、液温度98℃に保持した3重量%水酸化ナトリウム水溶液中に、浴比1:50で90分間、浸漬し、浸漬開始後10分ごとにサンプルを取り出して水洗、乾燥、秤量してサンプルの減量を測定した。10分単位でサンプルの減量速度を求め、各時間単位ごとに基準物質の減量速度を100%として測定物質の減量速度を%で表示し、90分間の平均値を測定物質の減量速度とした。
HAZE = (Td / Tk) × 100
However, Td: Diffuse light transmittance Tk: Total light transmittance (2) Alkali dissolution rate A polyester yarn or fabric made of a homopolymer was used as a reference substance. The sample of the weighed reference substance and the substance to be measured is immersed in a 3 wt% aqueous sodium hydroxide solution maintained at a liquid temperature of 98 ° C. for 90 minutes at a bath ratio of 1:50, and the sample is added every 10 minutes after the start of immersion. The sample was taken out, washed with water, dried and weighed to measure the weight loss of the sample. The rate of weight loss of the sample was determined in units of 10 minutes, the rate of weight loss of the reference substance was displayed as 100% for each time unit, and the weight loss rate of the measured substance was displayed in%, and the average value for 90 minutes was taken as the weight loss rate of the measured substance.

(3)透過光量
40mmに切断した未染色のポリエステル単糸(原糸または布帛の分解糸)を10本準備し、デニール当り0.1gの荷重をかけた状態で、両端を40mm角、中抜部が30mm角の紙枠に並べて接着した。顕微光沢計(MODEL JSL−11:城南製作所(株)製)を用いて単糸の表面に光を当てて通過させ、通過光量(%)を1本ごとに測定した。10本の平均値を透過光量とした。
(3) Amount of transmitted light 10 undyed polyester yarns (original yarn or fabric decomposition yarn) cut to 40 mm were prepared, and a load of 0.1 g per denier was applied, and both ends were 40 mm square and hollowed out. The parts were aligned and bonded to a 30 mm square paper frame. Using a microgloss meter (MODEL JSL-11: manufactured by Jonan Seisakusho Co., Ltd.), the surface of the single yarn was allowed to pass through, and the amount of light passing through (%) was measured one by one. The average value of 10 was taken as the amount of transmitted light.

(4)偏平度
顕微鏡を用いて測定した単糸断面の短軸長さに対する長軸長さの比率を偏平度とした。対象断面形状が完全な楕円でない場合には、楕円に近似させて測定した。
(4) Flatness The ratio of the long axis length to the short axis length of the single yarn cross section measured using a microscope was defined as flatness. When the target cross-sectional shape was not a perfect ellipse, the measurement was performed by approximating the ellipse.

さて、本発明に係る絹様ポリエステル繊維及び絹様の布帛並びにそれらの製造方法を実施形態例をあげつつ、具体的に説明する。本発明に係る絹様ポリエステル繊維及び布帛は、所要のポリマーを直接紡糸して製造し布帛に加工するのではなく、以下に説明する製造方法、すなわち一旦複数のポリエステル成分からなるポリエステル複合繊維を紡糸して本発明ポリエステル繊維の基本的形態を形成した後、必要があればさらにポリエステル複合繊維のまま布帛に加工した後、紡糸に利用した複合繊維の不要部分を溶解・除去して製造することにより、容易に製造することができる。   Now, silk-like polyester fibers and silk-like fabrics according to the present invention and methods for producing them will be specifically described with reference to embodiments. The silk-like polyester fiber and fabric according to the present invention are not produced by directly spinning a required polymer and processed into a fabric, but a production method described below, that is, a polyester composite fiber composed of a plurality of polyester components is once spun. After forming the basic form of the polyester fiber of the present invention, if necessary, the polyester composite fiber is further processed into a fabric, and then the unnecessary part of the composite fiber used for spinning is dissolved and removed. Can be manufactured easily.

まず、前記のポリエステル複合繊維は、繊維断面が、溶液ヘイズが15を超えないアルカリ難溶解性のポリエステル成分A1と前記成分A1に比較すればアルカリ溶解速度が若干大きなアルカリ難溶解性の共重合ポリエステル成分A2とをブレンドした、アルカリ難溶解性成分Aからなる領域、及び前記アルカリ難溶解性成分Aの少なくとも2倍の速度でアルカリに溶解され除去されるアルカリ易溶性成分Bからなる領域から構成されている。そして、前記複合繊維の断面形状は実質的に偏平度1.5ないし3.5の楕円であって、アルカリ難溶解性成分A領域の形状は実質的に偏平度1.3ないし6の楕円に形成されている。   First, the polyester composite fiber has a fiber cross-section, a hardly alkaline soluble copolyester having a slightly higher alkali dissolution rate than the hardly alkaline alkaline polyester component A1 whose solution haze does not exceed 15 and the aforementioned component A1. It is composed of a region composed of a hardly alkali-soluble component A blended with component A2 and a region composed of a readily alkali-soluble component B which is dissolved and removed in alkali at a rate at least twice that of the hardly alkali-soluble component A. ing. The cross-sectional shape of the composite fiber is substantially an ellipse with a flatness of 1.5 to 3.5, and the shape of the hardly alkaline soluble component A region is substantially an ellipse with a flatness of 1.3 to 6. Is formed.

このポリエステル複合繊維から、アルカリ溶液を用いて成分Bを溶解・除去し共重合ポリエステル成分(A2)を溶出するすることによって、繊維断面の形状が実質的に偏平度1.3ないし6の楕円であって透過光量が少なくとも190%の絹様ポリエステル繊維を製造することができる。   By dissolving / removing component B using an alkaline solution and eluting copolymer polyester component (A2) from this polyester composite fiber, the cross-sectional shape of the fiber is substantially an ellipse with a flatness of 1.3 to 6. Thus, a silk-like polyester fiber having a transmitted light amount of at least 190% can be produced.

まず、前記のポリエステル複合繊維を構成する各成分について説明する。本発明のポリエステル複合繊維に成分Aとして使用するポリエステル成分A1は、実質的に本発明のポリエステル繊維あるいはポリエステル布帛を構成する成分でもある。ポリエステル成分A1としては、通常、要求されるのと同様の製糸性、強度特性などのほかに、他方の複合成分Bに較べてアルカリ処理により溶解され難く、溶液ヘイズが15を超えないものを使用する。溶液ヘイズの下限は一般的に1程度である。溶液ヘイズは低いほど、繊維あるいは布帛に加工した後、鮮やかな色に染色される傾向があり、一般的には鮮明性やつやがよくなる10以下のホモポリマーポリエステルを好ましく用いることができる。代表的なポリエステル成分A1として具体的には、ポリエステルフィルムやペットボトルの素材に使用される高透明性のポリエステルがあげられる。   First, each component which comprises the said polyester composite fiber is demonstrated. The polyester component A1 used as the component A in the polyester composite fiber of the present invention is also a component that substantially constitutes the polyester fiber or polyester fabric of the present invention. As the polyester component A1, in addition to the same yarn-making properties and strength properties as are normally required, a polyester component A1 that is less soluble by alkali treatment than the other composite component B and whose solution haze does not exceed 15 is used. To do. The lower limit of the solution haze is generally about 1. The lower the solution haze, the more likely it is to be dyed in vivid colors after processing into fibers or fabrics. Generally, 10 or less homopolymer polyesters with improved clarity and gloss can be preferably used. Specific examples of the typical polyester component A1 include highly transparent polyester used for polyester film and plastic bottle materials.

つぎに、ポリエステル成分A1にポリマーブレンドして用いられることのできる共重合系ポリエステルポリマーA2としては、ポリエステル成分A1と比較して若干アルカリ溶解速度が速い他は同じ様な特性が求められ、従って成分Bに較べてアルカリ溶解速度が半分以下の共重合ポリエステルの殆どを使用することができる。とくに、ポリエステル成分A1との相溶性にすぐれ、製糸性、糸物性が安定する点において、ナトリウムスルホイソフタル酸またはポリテトラメチレングリコールをポリエチレンテレフタレートに対し4〜8モル%含む共重合ポリエステルが好適である。ブレンドには通常のポリマーメルトブレンド方式、チップブレンド方式などを利用すればよい。ポリエステル成分A1に、成分A1よりもアルカリ溶解速度が若干速いポリエステルポリマーA2をブレンドすることにより、アルカリ処理によってポリエステルポリマーA2部分が溶出し、得られるポリエステル繊維の表面に繊維軸方向のシャープな条痕を形成することができる。透過光量は大きい程よいが、通常、ブレンド量が少ないので、ポリエステル成分A1程には高透明度でなくともよい。   Next, the copolymer polyester polymer A2 that can be used by blending with the polyester component A1 is required to have the same characteristics except that the alkali dissolution rate is slightly higher than that of the polyester component A1. Most of the copolyester having an alkali dissolution rate less than half that of B can be used. In particular, a copolymer polyester containing 4 to 8 mol% of sodium sulfoisophthalic acid or polytetramethylene glycol with respect to polyethylene terephthalate is preferable in terms of excellent compatibility with the polyester component A1 and stable yarn production and yarn properties. . A normal polymer melt blend method, a chip blend method, or the like may be used for blending. By blending polyester component A1 with polyester polymer A2, which has a slightly higher alkali dissolution rate than component A1, the polyester polymer A2 portion is eluted by alkali treatment, and sharp streaks in the fiber axis direction are formed on the surface of the resulting polyester fiber. Can be formed. The larger the amount of transmitted light, the better, but usually the amount of blending is small, so it may not be as highly transparent as the polyester component A1.

また、ポリエステル複合繊維を構成する他方の複合成分Bは、アルカリ溶解速度において同時に使用する成分Aの少なくとも2倍必要であり(ただし、成分Bが複数の場合には成分A中アルカリ溶解速度の最も早い成分に対する成分B中の最も遅い成分の倍率)、4倍以上が好ましい。複合成分Bの成分Aに対するアルカリ溶解速度の上限は1000倍程度である。成分Bとして具体的には、たとえば、ナトリウムスルホイソフタル酸、イソフタル酸、アジピン酸、ダイマー酸、セバシン酸、アゼライン酸などの酸成分、ポリエチレングリコール、ポリテトラメチレングリコール、ブタンジオールなどのジオール、ビスフェノールなどを、ポリエステルに対して、少なくとも2モル%共重合させた共重合ポリエステルをあげることができる。これらの共重合ポリエステルは、他のポリエステル成分と複合紡糸しやすい点から好ましく用いられる。とくにナトリウムスルホイソフタル酸またはポリエチレングリコールを3〜8モル%共重合したものが、製糸性、強度、伸度の点で好ましく用いられる。これらの共重合ポリエステルの複数種を混合して用いることもできる。   Further, the other composite component B constituting the polyester composite fiber is required to be at least twice the component A used simultaneously at the alkali dissolution rate (however, when there are a plurality of components B, the highest alkali dissolution rate in the component A) The magnification of the slowest component in component B with respect to the fast component) is preferably 4 times or more. The upper limit of the alkali dissolution rate for the component A of the composite component B is about 1000 times. Specific examples of component B include acid components such as sodium sulfoisophthalic acid, isophthalic acid, adipic acid, dimer acid, sebacic acid and azelaic acid, diols such as polyethylene glycol, polytetramethylene glycol and butanediol, and bisphenol. A copolymerized polyester obtained by copolymerizing at least 2 mol% with respect to the polyester. These copolyesters are preferably used from the viewpoint of easy composite spinning with other polyester components. In particular, a copolymer obtained by copolymerizing sodium sulfoisophthalic acid or polyethylene glycol in an amount of 3 to 8 mol% is preferably used from the viewpoints of yarn production, strength, and elongation. A mixture of a plurality of these copolyesters can also be used.

前記のポリエステル複合繊維には、必要により、本発明に係るポリエステル繊維の透過光量が190%を下回るようなことのない範囲で、他の成分を添加することもできる。   If necessary, other components can be added to the polyester composite fiber as long as the transmitted light amount of the polyester fiber according to the present invention does not fall below 190%.

次に、前記ポリエステル複合繊維の代表的な断面形状について、図面を参照して説明する。図1ないし図4は、いずれもポリエステル複合繊維の断面を示す模式図である。ポリエステル複合繊維の断面形状は、実質的に偏平度が1.5ないし3.5の楕円である。好ましくは1.6ないし3の楕円に形成する。楕円形状を採用することにより、繊維断面に方向性を生じ、図5(a)に示されるように、織物などの布帛に加工した際、長軸方向が布帛面に平行になりやすく繊維断面を所望の方向を揃えることができるからである。偏平度が小さすぎると繊維断面の方向を揃えるのが困難になり、深い色も得られにくく、大きすぎると偏平な風合になって好ましくない。   Next, a typical cross-sectional shape of the polyester composite fiber will be described with reference to the drawings. 1 to 4 are schematic views each showing a cross section of a polyester composite fiber. The cross-sectional shape of the polyester conjugate fiber is substantially an ellipse with a flatness of 1.5 to 3.5. Preferably, it is formed in an ellipse of 1.6 to 3. By adopting an elliptical shape, the fiber cross section is directional, and as shown in FIG. 5 (a), when processed into a fabric such as a woven fabric, the long axis direction tends to be parallel to the fabric surface. This is because the desired direction can be aligned. If the flatness is too small, it becomes difficult to align the direction of the fiber cross section, it is difficult to obtain a deep color, and if it is too large, a flat texture is unfavorable.

ポリエステル複合繊維の単糸繊度は、通常、2ないし10デニールであり、好ましくは、3ないし8デニールである。繊度が小さすぎると十分な発色性が得られにくく、風合も通常の用途には柔らか過ぎる。繊度が大きすぎると、風合が硬くなって好ましくない。これらのポリエステル複合繊維は、一般にマルチフィラメントとして使用される。   The single yarn fineness of the polyester composite fiber is usually 2 to 10 denier, preferably 3 to 8 denier. If the fineness is too small, it is difficult to obtain sufficient color developability, and the texture is too soft for normal use. If the fineness is too large, the texture becomes hard, which is not preferable. These polyester composite fibers are generally used as multifilaments.

さらに、成分A領域の好ましい断面形状や配列について説明する。本発明のポリエステル複合繊維では、通常、成分B領域を連続相に、成分A領域を分散相に形成する。成分A領域の断面形状は、好ましくは、実質的に偏平度1.3ないし6の、さらに好ましくは1.5ないし4.5の楕円形状に形成する。成分A領域は、一ヶ所に設けても(図4に例示)、数ヶ所に分散して設けても(図1ないし3に例示)よい。これらの断面形状や配列を適宜に選択し、設計することにより、後述のように、ポリエステル複合繊維から、成分Bを溶解、除去して得られるポリエステル繊維あるいはポリエステル布帛に、所望の絹様の風合を付与することができるのである。なかでも、図1又は図4に例示される形態のものが、絹様の風合を付与するのに好適である。   Furthermore, the preferable cross-sectional shape and arrangement | sequence of a component A area | region are demonstrated. In the polyester conjugate fiber of the present invention, the component B region is usually formed in the continuous phase and the component A region is formed in the dispersed phase. The cross-sectional shape of the component A region is preferably formed in an elliptical shape having a substantially flatness of 1.3 to 6, more preferably 1.5 to 4.5. The component A region may be provided at one place (illustrated in FIG. 4) or may be provided at several places (illustrated in FIGS. 1 to 3). By appropriately selecting and designing these cross-sectional shapes and arrangements, the polyester fiber or the polyester fabric obtained by dissolving and removing the component B from the polyester composite fiber as described later can have a desired silk-like wind. Can be given. Especially, the thing of the form illustrated by FIG. 1 or FIG. 4 is suitable for providing a silk-like texture.

たとえば、成分B領域を連続相として複数の成分A領域を分散して繊維断面の長軸方向と成分A領域の長軸方向とが交差するように配列したポリエステル複合繊維を用いて製織し、成分B領域を除去することにより、細繊度による光学的な効果を得つつ、腰のある絹様のポリエステル織物にすることができる。すなわち、図5に模式的に示されるように、楕円形状のポリエステル複合繊維を使用して製織すると、織物中の楕円断面繊維は自然に長軸を織物面に平行な状態にして落着く性質がある。従って、成分A領域を楕円に形成してその長軸方向をポリエステル複合繊維断面の長軸方向に交差して配列しておけば、アルカリ処理を施して、成分Bを溶解、除去することにより、楕円形状のA成分が長軸方向を織物面に交差した状態で残され、絹様であって曲げに対し腰のあるポリエステル織物にすることができる。本発明ポリエステル繊維は、断面が楕円形状であるためソフトな割に腰のある布帛を得ることができる。   For example, a plurality of component A regions are dispersed using the component B region as a continuous phase, and weaving is performed using polyester composite fibers arranged so that the major axis direction of the fiber cross section and the major axis direction of the component A region intersect. By removing the B region, it is possible to obtain a silky polyester woven fabric with waist while obtaining an optical effect due to fineness. That is, as schematically shown in FIG. 5, when weaving using an elliptical polyester composite fiber, the elliptical cross-section fiber in the fabric naturally has a property of being settled with its long axis parallel to the fabric surface. is there. Therefore, if the component A region is formed into an ellipse and the long axis direction is arranged so as to intersect the long axis direction of the polyester composite fiber cross section, the alkali treatment is performed to dissolve and remove the component B, The oval A component is left in a state where the major axis direction intersects the fabric surface, and can be made into a polyester fabric that is silky and has a waist against bending. Since the polyester fiber of the present invention has an elliptical cross section, a soft cloth can be obtained.

本発明ポリエステル繊維の偏平度は1.3ないし6であって、なかでも1.5ないし4.5が好適である。偏平度が小さすぎると深い色が得られにくく、大きすぎると偏平な風合になる。単糸繊度は、通常、1.5ないし8デニール、好ましくは2.5ないし6.5デニールのものを用いる。繊度が小さすぎると発色性が十分でなくなり、柔らかすぎる風合になる。大きすぎると剛性が大きくなって硬い風合になる。前記の範囲内では風合が絹に近くなる特長があり、絹様の布帛を得るのに好適である。前記のポリエステル複合繊維を利用して構成成分のうちの成分Bの部分をアルカリ処理により除去すれば、この様なポリエステル繊維を容易に製造することができる。   The flatness of the polyester fiber of the present invention is 1.3 to 6, and 1.5 to 4.5 is particularly preferable. If the flatness is too small, it is difficult to obtain a deep color, and if it is too large, a flat texture is obtained. The single yarn fineness is usually 1.5 to 8 denier, preferably 2.5 to 6.5 denier. If the fineness is too small, the color developability will be insufficient and the texture will be too soft. If it is too large, the rigidity becomes large and the texture becomes hard. Within the above range, the texture is close to that of silk, which is suitable for obtaining a silk-like fabric. If the component B of the constituent components is removed by alkali treatment using the polyester composite fiber, such a polyester fiber can be easily produced.

また、絹様のポリエステル繊維として好ましく利用するためには、透過光量が少なくとも190%であることが望ましい。一般に透過光量が高ければ染色した色が鮮やかになる傾向がある。220%に達するものは鮮明性とつやにすぐれ、とくに230ないし250%のものが好ましい。   Moreover, in order to utilize preferably as a silk-like polyester fiber, it is desirable that the amount of transmitted light is at least 190%. In general, if the amount of transmitted light is high, the dyed color tends to be vivid. Those reaching 220% are excellent in sharpness and gloss, and those having 230 to 250% are particularly preferable.

さらに絹様の風合いを強くするために、前記のポリエステル繊維の表面に幅が0.08ないし1.5μm、深さが0.08ないし0.9μmの、好ましくは、幅が0.15ないし1μm、深さが0.18ないし0.7μmの条痕を繊維軸方向に形成しておくことが望ましい。絹のきしみ感を生じやすくする。布帛に加工し使用したときに単糸が相互に触れ合う際のミクロ的な摩擦効果が増大するためと考えられる。表面に前記の条痕を形成するには、成分Aに、ポリエステルA1と共重合ポリエステルA2とをブレンドした成分を用いたポリエステル複合繊維を利用し、適当なアルカリ処理を施して、成分Bを溶解・除去し領域A表面部分の成分A2を溶出させれば、容易に製造することができる。きしみ感・条痕の程度は、多くの場合経験的に、ブレンド成分A1、A2及び成分Bの種類、成分Aにおける成分A2の含有率、アルカリ処理条件等を調整することによって決められる。本発明ポリエステル繊維は、短繊維としても、長繊維としても利用することができるが、通常、マルチフィラメントの形態で布帛にする。   In order to further strengthen the silky texture, the surface of the polyester fiber has a width of 0.08 to 1.5 μm and a depth of 0.08 to 0.9 μm, preferably a width of 0.15 to 1 μm. It is desirable to form a striation having a depth of 0.18 to 0.7 μm in the fiber axis direction. Makes silky squeaky. This is considered to be because the microscopic friction effect when the single yarns come into contact with each other when processed into a fabric is used. In order to form the above-mentioned streak on the surface, the component B is dissolved in the component B by applying an appropriate alkali treatment using a polyester composite fiber using a component in which the polyester A1 and the copolymer polyester A2 are blended. -If it removes and the component A2 of the surface part of the area | region A is eluted, it can manufacture easily. In many cases, the degree of squeakiness and streaking is empirically determined by adjusting the types of blend components A1, A2 and B, the content of component A2 in component A, alkali treatment conditions, and the like. The polyester fiber of the present invention can be used as a short fiber or a long fiber, but is usually made into a fabric in the form of a multifilament.

布帛に前記の本発明絹様ポリエステル繊維を用いて絹様の風合いを奏させるためには、布帛の少なくとも30重量%、好ましくは40ないし100重量%含有させるとよい。本発明ポリエステル布帛は、絹様の風合とポリエステルの機能性とを併せもつので、極めて優れた布帛として各種の用途に広く使用することができる。残りの繊維としては、合成繊維、天然繊維を問わず、使用目的によって、従来のポリエステル、ポリアミド、ポリアクリル、綿、羊毛、絹などの中から選んで用いることができる。   In order to give the fabric a silky texture using the above-described silk-like polyester fiber of the present invention, at least 30% by weight, preferably 40 to 100% by weight of the fabric may be contained. Since the polyester fabric of the present invention has both a silky texture and the functionality of polyester, it can be widely used for various applications as an extremely excellent fabric. The remaining fibers can be selected from conventional polyester, polyamide, polyacryl, cotton, wool, silk and the like depending on the purpose of use, regardless of whether they are synthetic fibers or natural fibers.

本発明のポリエステル繊維、もしくは布帛を製造するには、まず、溶液ヘイズが15を超えないアルカリ溶液には難溶解性のポリエステル成分A1と前記成分A1に比較すればアルカリ溶解速度が若干大きな共重合ポリエステルA2とをブレンドした、アルカリ処理により溶解され難いポリエステル成分A、及び前記成分Aの少なくとも2倍の速度でアルカリに溶解される成分Bを複合紡糸して、ポリエステル複合繊維を製造する。前記のポリエステル複合繊維は、断面形状を実質的に偏平度1.5ないし3.5の楕円とし、繊維断面における成分A領域の形状を実質的に偏平度1.3ないし6の楕円に形成しておく。前記複合繊維の製造方法に特別な制限はない。   In order to produce the polyester fiber or fabric of the present invention, first, a copolymer having a slightly higher alkali dissolution rate compared to the component A1 and the polyester component A1 which is hardly soluble in an alkaline solution having a solution haze not exceeding 15. Polyester component A blended with polyester A2 and hardly dissolved by alkali treatment and component B dissolved in alkali at a rate at least twice that of component A are composite-spun to produce a polyester composite fiber. The polyester composite fiber has an elliptical shape with a cross-section of substantially flatness 1.5 to 3.5, and a shape of the component A region in the cross-section of the fiber is substantially elliptical with a flatness of 1.3 to 6. Keep it. There is no special restriction | limiting in the manufacturing method of the said composite fiber.

このポリエステル複合繊維をアルカリ溶液を用いてアルカリ易溶性成分(B)を溶解、除去し必要な程度に成分A2を溶出させれば、繊維断面の形状が実質的に偏平度1.3ないし6の楕円であって透過光量が少なくとも190%の本発明ポリエステル繊維を製造し、所要の布帛に加工することができる。しかし、通常は、前記のポリエステル複合繊維を用い必要があれば他の繊維と交織、交編して目的の形状の布帛に加工しておく。そして、加工された布帛にアルカリ水溶液を用い、アルカリ処理を施してアルカリ易溶性成分Bを溶解、除去し必要な程度に成分A2を溶出させれば、実質的にポリエステル成分A1で構成された本発明ポリエステル繊維を含む布帛を製造する。絹様の効果を奏させるためにこれらの布帛における本発明ポリエステル繊維の含有率は30重量%以上にしておくことが望ましい。   If this polyester composite fiber is dissolved and removed by using an alkaline solution to dissolve and remove component A2 to the required extent, the shape of the fiber cross section is substantially flatness 1.3 to 6. The polyester fiber of the present invention having an ellipse and a transmitted light amount of at least 190% can be produced and processed into a required fabric. However, usually, the polyester composite fiber is used, and if necessary, it is woven or knitted with other fibers and processed into a desired shape fabric. Then, an alkaline aqueous solution is used for the processed fabric, and an alkali treatment is applied to dissolve and remove the readily alkali-soluble component B, so that the component A2 is eluted to the required extent. Invention Fabrics comprising polyester fibers are produced. In order to produce a silk-like effect, the content of the polyester fiber of the present invention in these fabrics is preferably 30% by weight or more.

さらに、本発明を具体的に、図1ないし4に記載の実施形態例について説明する。なお、各図中、(a)は本発明ポリエステル複合繊維の例、(b)は(a)をアルカリ処理して得られる本発明ポリエステル繊維(ポリエステル布帛として評価した)の断面を示す。また、説明中に示した成分比率などの数値は、発明者が実施した試験例を参考にして示したものであって、本発明の範囲を限定するものではない。   Furthermore, the present invention will be specifically described with reference to the embodiments shown in FIGS. In each figure, (a) shows an example of the polyester composite fiber of the present invention, and (b) shows a cross section of the polyester fiber of the present invention (evaluated as a polyester fabric) obtained by subjecting (a) to an alkali treatment. In addition, numerical values such as component ratios shown in the description are shown with reference to test examples conducted by the inventors, and do not limit the scope of the present invention.

(1)図1−(a)および(b)
(a)の例は、高透明性ポリエステル成分A1(ホモポリエステル)を90〜60重量%に共重合ポリエステル成分A2を10〜40重量%をポリマブレンドさせたものを成分Aとして80〜60重量部と、A2よりもアルカリ溶解速度が40〜80倍速いアルカリ易溶解性ポリエステルの成分Bを20〜40重量部とを複合紡糸して得られたポリエステル複合繊維であって、平均偏平度は約1.8であった。
(1) FIGS. 1- (a) and (b)
The example of (a) is 80 to 60 parts by weight of a component A obtained by polymer blending 90 to 60% by weight of highly transparent polyester component A1 (homopolyester) and 10 to 40% by weight of copolymerized polyester component A2. And a polyester composite fiber obtained by subjecting 20 to 40 parts by weight of component B of a readily alkali-soluble polyester having an alkali dissolution rate 40 to 80 times faster than A2 and an average flatness of about 1 .8.

(b)は、前記(a)のポリエステル複合繊維を布帛にした後、3重量%水酸化ナトリウム水溶液を用いてアルカリ処理し、選択的に成分Bを溶解・除去し成分A2を溶出して得られたポリエステル繊維を示す。なお、A成分領域の偏平度は約1.4であった。本形態例では、成分A領域が2体直立しているので、両者の間に上部からの光が取り入れられ、光のトンネルができることになり、立毛効果(ビロード効果)を生じ、色の深みが最大限に発揮された。なお、高透明性ポリマA1を用いることにより、色の彩やかさと絹様のつやが、また共重合ポリエステルA2をポリマブレンドすることにより、表面に軸方向の微細な条痕が形成されて、絹様のキシミ感、風合を得ることができた。   (B) is obtained by forming the polyester composite fiber of (a) above into a fabric, treating with alkali using a 3% by weight aqueous sodium hydroxide solution, and selectively dissolving and removing component B to elute component A2. The obtained polyester fiber is shown. The flatness of the A component region was about 1.4. In this embodiment, since the two component A regions are upright, light from the upper part is taken in between them, and a tunnel of light can be created, resulting in a napped effect (velvet effect) and a color depth. It was demonstrated to the fullest. By using the highly transparent polymer A1, color vibrancy and silk-like gloss, and by polymer blending the copolymer polyester A2, fine axial streaks are formed on the surface. I was able to get the same feeling of creaking and feeling.

(2)図2−(a)(b)
図1の例と同様にしてB成分を溶解、除去後のポリエステル布帛(図2−(b))では、平均偏平度が大きく、約2.5であったために、サラサラした清涼感が得られた。
(2) Fig. 2- (a) (b)
In the polyester fabric after dissolving and removing the component B in the same manner as in the example of FIG. 1 (FIG. 2- (b)), the average flatness was large, about 2.5, so that a refreshing refreshing feeling was obtained. It was.

(3)図3−(a)(b)
同様にして得られた本例ではデニールミックス効果により単糸の染色性が異なり、優雅な色合いと微妙な絹様風合を表現できるものが得られた。
(3) Fig. 3 (a) (b)
In the present example obtained in the same manner, the dyeability of the single yarn was different due to the denier mix effect, and an elegant color and a delicate silky texture could be expressed.

(4)図4−(a)(b)
成分A領域表面に0.8〜1.0μmの条痕をもつ13花弁のグループ複合繊維(a)を製造した。成分Bをアルカリ溶解、除去し成分A2を溶出して得られたポリエステル布帛は、この条痕の間に光が吸収され、色の深みが大きく発揮できるものであった。さらに、細かな条痕が形成されているので、キシミ感のほかに真珠様のつやが創出されていた。
(4) FIGS. 4- (a) and (b)
A 13-petal group composite fiber (a) having 0.8 to 1.0 μm streaks on the surface of the component A region was produced. The polyester fabric obtained by dissolving and removing the component B with alkali and eluting the component A2 absorbed light between the streaks and exhibited a great color depth. In addition, since fine streaks were formed, a pearly luster was created in addition to the feeling of creaking.

さらに本発明の実施例と比較例をあげで具体的に詳しく説明する。まず、これらの実施例において用いた評価方法を説明する。     Further, the present invention will be described in detail with reference to examples and comparative examples. First, the evaluation methods used in these examples will be described.

(1)反射光量
3次元変角光度計(MODEL JSG−21:城南製作所(株)製)を用いて測定した。入射角45度、反射角45度の条件で測定し、マグネシウム白板の反射光量を100%とする、未染色ポリエステル布帛の反射光量(%)を表示した。光沢の度合いが大きい布帛は反射光量が大きくなる。
(1) Amount of reflected light Measured using a three-dimensional variable angle photometer (MODEL JSG-21: manufactured by Jonan Seisakusho Co., Ltd.). Measurement was performed under conditions of an incident angle of 45 degrees and a reflection angle of 45 degrees, and the reflected light amount (%) of the unstained polyester fabric, with the reflected light amount of the magnesium white plate as 100%, was displayed. A fabric with a high degree of gloss increases the amount of reflected light.

(2)色の深み
色差計(カラーコンピュータSM−3:スガ試験機(株)製)を用いてポリエステル布帛の明度;L値(%)を測定した。色が深いほど値は小さくなる。
(2) Color depth Using a color difference meter (color computer SM-3: manufactured by Suga Test Instruments Co., Ltd.), the lightness; L value (%) of the polyester fabric was measured. The deeper the color, the smaller the value.

(3)色の鮮かさ
色差計(カラーコンピュータSM−3:スガ試験機(株)製)を用いてポリエステル布帛のa値とb値とを測定し、(a2+b2)1/2の値を算出して、彩度(%)とした。色が鮮やかになるほど彩度は大きくなる。
(3) Color freshness Using a color difference meter (color computer SM-3: manufactured by Suga Test Instruments Co., Ltd.), the a value and b value of the polyester fabric are measured, and the value of (a2 + b2) 1/2 is calculated. And saturation (%). The saturation increases as the color becomes brighter.

(4)風合
a)キシミ感
ポリエステル布帛をたて糸方向に、幅4.5cm、長さ12cmに切断した布帛片をサンプルS1とし、幅5cm、長さ15cmに切断した布帛片をサンプルS2とした。サンプルS2を測定台に固定してサンプルS1をのせ、さらにサンプルS1 に1cm当り30gの測定荷重(板)をのせ、荷重をのせたままサンプルS1 をインストロン引張試験機(インストロンジャパン(株)製)を用いて水平方向に5mm/分の速度で引張り、摩擦抵抗応力を測定した。付着(スティック)と滑り(スリップ)とが交互に繰返されるために、摩擦抵抗応力の測定値をチャート上に記録すると鋸歯状の波形になった。波形の安定部分で波の頂部と底部との差、すなわちスティック−スリップ値(g)を測定した。布帛と布帛との間の摩擦、すなわちキシミ感が大きいほど、スティック−スリップ値が大きくなる。
(4) Texture a) A feeling of creaking A piece of fabric obtained by cutting a polyester fabric in a warp yarn direction into a width of 4.5 cm and a length of 12 cm was designated as sample S1, and a piece of fabric cut into a width of 5 cm and a length of 15 cm was designated as sample S2. . The sample S2 is fixed to the measuring table, the sample S1 is placed, and a measurement load (plate) of 30 g per 1 cm 2 is further placed on the sample S1, and the sample S1 is placed on the Instron tensile testing machine (Instron Japan Co., Ltd.) )), And was pulled at a rate of 5 mm / min in the horizontal direction to measure the frictional resistance stress. Since adhesion (stick) and slip (slip) were repeated alternately, when the measured value of the frictional resistance stress was recorded on the chart, a sawtooth waveform was obtained. The difference between the top and bottom of the wave at the stable part of the waveform, ie the stick-slip value (g), was measured. The greater the friction between the fabric and the fabric, i.e., the feeling of squeaking, the greater the stick-slip value.

b)触感風合
5人の測定者に、布帛に触ってソフトで高反発性(こし)のある布帛を良とする5段階評価をさせ、その平均値を求めた。
b) Tactile Feeling Five measurers were allowed to make a five-step evaluation by touching the fabric to make the fabric soft and highly repellent (strained), and the average value was obtained.

(6)繊維の表面溝の観察
アルカリ処理し仕上げた繊維の表面を走査型電子顕微鏡(SEM−S2300:日立製作所(株)製)を用い、倍率1500〜2000で、10か所における条痕の幅(μm)と深さ(μm)とを測定し、その平均値を求めた。
(6) Observation of fiber surface groove Using a scanning electron microscope (SEM-S2300: manufactured by Hitachi, Ltd.), the surface of the fiber that has been subjected to alkali treatment is used to observe the striations at 10 locations at a magnification of 1500 to 2000. The width (μm) and depth (μm) were measured, and the average value was determined.

実施例1
成分Aとして、溶液ヘイズが2.7の高透明性ポリエステルホモポリマーチップ(成分A1)70重量部に、5−ナトリウムスルホイソフタル酸4.2モル%をポリエチレンテレフタレートに共重合した共重合ポリエステルチップ(成分A2)30重量部をポリマーブレンドしたポリエステルを用いた。この成分A75重量部に、成分A(A1+A2)に対し、アルカリ溶解度が45倍速いアルカリ易溶性ポリエステル(5−ナトリウムスルホイソフタル酸を4.8モル%とイソフタル酸を2.0モル%とをポリエチレンテレフタレートに共重合させた共重合物)を成分Bとして25重量部を用い、複合紡糸して繊維断面が図1−(a)のような複合繊維を得た。複合紡糸には、偏平度が2の楕円断面の口金孔を用い、成分Aを2ヶ個の楕円の吐出口から、成分Bを成分Aの吐出口の周囲から同時に吐出させ(ホール数15)、紡糸温度289℃、紡糸速度1300m/分で複合紡糸した。さらに、紡糸した未延伸糸を、延伸速度800m/分で90℃のホットロールと130℃の熱板の方式により、4倍に延伸した。
Example 1
As a component A, a copolymer polyester chip obtained by copolymerizing 4.2 mol% of 5-sodium sulfoisophthalic acid with polyethylene terephthalate on 70 parts by weight of a highly transparent polyester homopolymer chip (component A1) having a solution haze of 2.7 ( Component A2) A polyester obtained by polymer blending 30 parts by weight was used. In 75 parts by weight of this component A, an alkali-soluble polyester (4.8 mol% of 5-sodium sulfoisophthalic acid and 2.0 mol% of isophthalic acid are added to polyethylene A) having an alkali solubility 45 times faster than that of component A (A1 + A2). A copolymer obtained by copolymerizing with terephthalate) as a component B was used in an amount of 25 parts by weight, and composite spinning was performed to obtain a composite fiber having a fiber cross section as shown in FIG. For composite spinning, a mouthpiece having an elliptical cross section with a flatness of 2 is used, and component A is simultaneously discharged from two elliptical discharge ports and component B is simultaneously discharged from the periphery of the component A discharge port (number of holes: 15). Composite spinning was performed at a spinning temperature of 289 ° C. and a spinning speed of 1300 m / min. Further, the spun undrawn yarn was drawn four times by a method of a hot roll at 90 ° C. and a hot plate at 130 ° C. at a drawing speed of 800 m / min.

延伸したポリエステル複合糸(繊維)の特性は、総繊度75デニール、フィラメント数15、単糸繊度5デニール(ただし、成分A領域の単糸繊度:1.88デニール、フィラメント数:2)であった。また、沸騰水収縮率(JIS−L1013B法による)は8.5%、乾熱収縮率(160℃:JIS−L1013B法による)は12.4%、複合糸の透過光量は238%であった。   The properties of the drawn polyester composite yarn (fiber) were a total fineness of 75 denier, a filament number of 15, a single yarn fineness of 5 denier (however, the single yarn fineness of the component A region: 1.88 denier, the number of filaments: 2). . Moreover, the boiling water shrinkage rate (according to JIS-L1013B method) was 8.5%, the dry heat shrinkage rate (160 ° C .: according to JIS-L1013B method) was 12.4%, and the transmitted light amount of the composite yarn was 238%. .

ついで、得られたポリエステル複合糸75デニールをたて糸に、よこ糸には得られたポリエステル複合糸を双糸(150デニール)にして、たて糸密度120本/インチ、よこ糸密度82本/インチの平織物に製織した。得られた平織物を常法でリラックス精練して中間セットし、アルカリ減量加工した。アルカリ処理には、水酸化ナトリウム3重量%水溶液を用い、浴比を1:50にして90℃、30分の処理を行い、乾燥し、本発明のポリエステル布帛を製造した。アルカリ減量率は27.2重量%、複合繊維中の成分B(25%含有)は完全に溶解、除去されていた。さらに、製造したポリエステル布帛を、赤の分散染料(Sumikaron Brill. Red S−2BL:住友化学(株)製)4.8%owfを用い、180℃下、60分間染色し、仕上げた。仕上た布帛は、たて密度131本/インチ、よこ密度89本/インチであった。   Next, the obtained polyester composite yarn 75 denier is used as a warp yarn, and the obtained polyester composite yarn is used as a double yarn (150 denier) for a weft yarn to form a plain fabric having a warp density of 120 yarns / inch and a weft yarn density of 82 yarns / inch. Weaved. The obtained plain fabric was relaxed and scoured by a conventional method, set in an intermediate position, and subjected to alkali weight reduction processing. In the alkali treatment, a 3% by weight aqueous solution of sodium hydroxide was used, the treatment was performed at 90 ° C. for 30 minutes at a bath ratio of 1:50, and dried to produce the polyester fabric of the present invention. The alkali weight loss rate was 27.2% by weight, and component B (containing 25%) in the composite fiber was completely dissolved and removed. Further, the produced polyester fabric was dyed and finished for 60 minutes at 180 ° C. using a red disperse dye (Sumikaron Brill. Red S-2BL: manufactured by Sumitomo Chemical Co., Ltd.) at 4.8% owf. The finished fabric had a warp density of 131 / inch and a weft density of 89 / inch.

染色し、仕上げたポリエステル布帛を評価したので、結果を表1に示す。なお、透過光量および反射光量は染色前のポリエステル布帛で評価し、その他は染色仕上後の布帛で評価した。表1から明らかなように、本発明ポリエステル布帛は、透過光量が高く、反射光量が適宜に制御されていて、絹様のつやがあり、また、色が深く、色が鮮やかな素晴らしい発色を呈していた。そして、絹様のキシミ感がありソフトで反発性にすぐれた、機能と風合を兼備する赤色ポリエステル平織物であった。   The dyed and finished polyester fabric was evaluated and the results are shown in Table 1. The amount of transmitted light and the amount of reflected light were evaluated with a polyester fabric before dyeing, and the others were evaluated with a fabric after dyeing finish. As is clear from Table 1, the polyester fabric of the present invention has a high amount of transmitted light, the amount of reflected light is appropriately controlled, has a silk-like gloss, has a deep color, and exhibits an excellent color with a bright color. It was. And it was a red polyester plain fabric that had a silky feel, softness and resilience, and had both function and texture.

比較例1
溶液ヘイズが43のホモポリマーポリエステルを用いて製造した、従来タイプの三角断面のポリエステル単独糸(シルック:東レ(株)製)の75デニール、36フィラメント(単糸繊度2.1デニール)をたて糸に用い、よこ糸にも同じ単独糸を双糸(150デニール)に用いた他は実施例1と同様にしてポリエステル平織物を製織した。ついで、水酸化ナトリウム5重量%水溶液を用い、98℃、45分間アルカリ減量処理を施した以外は、実施例1と同様にして染色し仕上げた。アルカリ減量率は20.2%であった。評価した結果を表1に示す。表1から明らかなように、比較例1で得られた布帛は、ギラギラした金属調の光沢を有し、発色性および風合は平凡なものであった。
Comparative Example 1
A 75-denier, 36-filament (single yarn fineness of 2.1 denier) of a single-sided polyester with a triangular cross-section (Silook: manufactured by Toray Industries, Inc.) manufactured using a homopolymer polyester having a solution haze of 43 is used as the warp yarn. A polyester plain fabric was woven in the same manner as in Example 1 except that the same single yarn was used as the double yarn (150 denier). Subsequently, dyeing and finishing were carried out in the same manner as in Example 1 except that a 5% by weight aqueous solution of sodium hydroxide was used and an alkali reduction treatment was performed at 98 ° C. for 45 minutes. The alkali weight loss rate was 20.2%. The evaluation results are shown in Table 1. As is apparent from Table 1, the fabric obtained in Comparative Example 1 had a lustrous metallic luster, and the color development and texture were mediocre.

実施例2
ポリエステル複合繊維の成分A領域の断面形状を、図5−(a)に示される13花弁にしたことを除いて、実施例1と同じ成分を使用し、複合紡糸した。紡糸し未延伸糸を、延伸速度80m/分、90℃のホットロールと140℃の熱板方式により、3.8倍に延伸した。得られたポリエステル複合繊維の特性は、総繊度50デニール、12フィラメント、単糸繊度4.2デニール、沸騰水収縮率が9.2%、乾熱収縮率が13.4%、透過光量が232%であった。
Example 2
A composite spinning was performed using the same components as in Example 1 except that the cross-sectional shape of the component A region of the polyester composite fiber was changed to 13 petals shown in FIG. The spun and undrawn yarn was drawn 3.8 times by a hot roll at 90 ° C. and a hot plate method at 140 ° C. at a drawing speed of 80 m / min. The resulting polyester composite fiber has the following characteristics: total fineness of 50 denier, 12 filaments, single yarn fineness of 4.2 denier, boiling water shrinkage of 9.2%, dry heat shrinkage of 13.4%, and transmitted light quantity of 232 %Met.

ついで、得られた50デニールの複合糸をたて糸およびよこ糸に用いてツイル織物に製織した。生機密度はたて糸密度が115本/インチ、よこ糸密度が103本/インチであった。さらに、常法により、リラックス精練、中間セットし、アルカリ減量加工を行った。処理条件は、水酸化ナトリウム3重量%水溶液を用い、98℃、25分、浴比1:50で行い、乾燥し、本発明のポリエステル布帛を製造した。アルカリ減量率は27.3%であった。複合繊維の成分Bは完全に溶解、除去されていることを確認した。   The resulting 50 denier composite yarn was then woven into a twill fabric using warp and weft. The green density was 115 warps / inch and the weft density was 103 / inch. Furthermore, relaxation scouring, intermediate setting, and alkali weight reduction processing were performed by a conventional method. Treatment conditions were as follows: a 3% by weight aqueous solution of sodium hydroxide was used at 98 ° C. for 25 minutes at a bath ratio of 1:50 and dried to produce a polyester fabric of the present invention. The alkali weight loss rate was 27.3%. It was confirmed that component B of the composite fiber was completely dissolved and removed.

次に、このポリエステル布帛に、黒の分散染料(Dianix Black BG−FS:ダイスタージャパン(株)製)13%owfを用いて、135℃、30分間染色し、洗浄し、仕上げた。仕上げた染色布帛のたて糸密度は129本/インチ、よこ糸密度は113本/インチであった。染色布帛の単糸断面形状は13花弁であって、大きな凹凸部の溝幅は0.92μm、溝の深さは0.98μmであった。大きな凹凸の他に繊維の周囲には微細な条痕が観察された。条痕の寸法を、評価結果とともに表1に併記した。染色したツイル織物は、絹並もしくはそれ以上のつやと高発色性の黒色が得られていた。風合はキシミ感のほかに、花弁断面による清涼なドライな風合で、特長のある織物であった。   Next, this polyester fabric was dyed with a black disperse dye (Dianix Black BG-FS: manufactured by Dystar Japan) 13% owf at 135 ° C. for 30 minutes, washed and finished. The finished dyed fabric had a warp yarn density of 129 yarns / inch and a weft yarn density of 113 yarns / inch. The single yarn cross-sectional shape of the dyed fabric was 13 petals, the groove width of the large uneven portion was 0.92 μm, and the groove depth was 0.98 μm. In addition to the large irregularities, fine streaks were observed around the fibers. The dimensions of the striations are shown in Table 1 together with the evaluation results. The dyed twill fabric had a silk-like or higher gloss and a high coloring black. In addition to the feeling of creaking, the texture is a cool, dry texture with a petal cross-section, and is a distinctive fabric.

比較例2
高透明ポリエステル成分A1のみを用いて成分A領域を形成させた以外は、実施例2と同様にしてポリエステル複合繊維の複合紡糸し、延伸した。得られたポリエステル複合繊維は、沸騰収縮が8.6%、乾燥収縮が12.4%、透過光量が239%であった他は、実施例2で得られたポリエステル繊維と同じであった。実施例2と同様にツイル織物に製織し、得られた布帛にアルカリ減量処理を施した。その結果、アルカリ減量率は26.2%であった。さらに、実施例2と同様にして黒色に染色し、黒色ポリエステルサテン織物に仕上げた。仕上げた染色布帛のたて糸密度は127本/インチ、よこ糸密度は110本/インチであった。
Comparative Example 2
A polyester composite fiber was composite-spun and stretched in the same manner as in Example 2 except that only the highly transparent polyester component A1 was used to form the component A region. The obtained polyester composite fiber was the same as the polyester fiber obtained in Example 2, except that the boiling shrinkage was 8.6%, the drying shrinkage was 12.4%, and the amount of transmitted light was 239%. The twill fabric was woven in the same manner as in Example 2, and the resulting fabric was subjected to alkali weight reduction treatment. As a result, the alkali weight loss rate was 26.2%. Furthermore, it dye | stained black similarly to Example 2, and was finished in the black polyester satin fabric. The finished dyed fabric had a warp yarn density of 127 yarns / inch and a weft yarn density of 110 yarns / inch.

染色布帛の単糸断面形状は13花弁であって、大きな凹凸部の溝幅は0.92μm、溝の深さは0.98μmであった。しかし、実施例2で得られたポリエステル布帛の繊維表面に見られた微細な条痕は観察されなかった。   The single yarn cross-sectional shape of the dyed fabric was 13 petals, the groove width of the large uneven portion was 0.92 μm, and the groove depth was 0.98 μm. However, the fine streak seen on the fiber surface of the polyester fabric obtained in Example 2 was not observed.

比較例3
実施例2と同じ成分を使用し、断面形状を実施例2の楕円断面に代えて、丸断面、成分A領域を13花弁としたポリエステル複合繊維を紡糸し、延伸してポリエステル複合繊維を製造した。このポリエステル複合繊維を実施例2と同じようにサテン織物に製織し、アルカリ減量処理を施し、ポリエステルサテン織物に加工した。得られたポリエステルサテン織物に実施例2と同じく黒色染色を行い、仕上げた。布帛の評価結果を表1に示す。
Comparative Example 3
Using the same components as in Example 2, the cross-sectional shape was changed to the elliptical cross section of Example 2, and a polyester composite fiber having a round cross section and a component A region having 13 petals was spun and drawn to produce a polyester composite fiber. . This polyester composite fiber was woven into a satin woven fabric in the same manner as in Example 2, subjected to alkali weight loss treatment, and processed into a polyester satin woven fabric. The obtained polyester satin fabric was black-dyed as in Example 2 and finished. The evaluation results of the fabric are shown in Table 1.

比較例4
成分A領域に成分A1を単独で用いたほかは、比較例3と同様にして、丸断面、成分A領域を13花弁としたポリエステル複合繊維を紡糸し、延伸し、実施例2と同様に製織し、アルカリ減量処理を施し、ポリエステルサテン織物に加工した。得られたポリエステルサテン織物に実施例2と同じく黒色染色を行い、仕上げた。布帛の評価結果を表1に示す。
Comparative Example 4
A polyester composite fiber having a round cross section and 13 petals in the component A region was spun and drawn in the same manner as in Comparative Example 3 except that the component A1 was used alone in the component A region, and woven in the same manner as in Example 2. Then, it was subjected to an alkali weight loss treatment and processed into a polyester satin fabric. The obtained polyester satin fabric was black-dyed as in Example 2 and finished. The evaluation results of the fabric are shown in Table 1.

Figure 0004123226
Figure 0004123226

本発明のポリエステル繊維を少なくとも30重量%、好ましくは40ないし100重量%含有する本発明ポリエステル布帛は、絹様の風合とポリエステルの機能性とを併せもつので、極めて優れた布帛として各種の用途に広く使用することができる。残りの繊維としては、合成繊維、天然繊維を問わず、使用目的のよって、従来のポリエステル、ポリアミド、ポリアクリル、綿、羊毛、絹などの中から選んで用いることができる。     The polyester fabric of the present invention containing at least 30% by weight, preferably 40 to 100% by weight of the polyester fiber of the present invention has both silk-like texture and polyester functionality, so that it can be used for various applications as an extremely excellent fabric. Can be widely used for. The remaining fibers can be selected from conventional polyester, polyamide, polyacryl, cotton, wool, silk, etc., depending on the purpose of use, regardless of whether they are synthetic fibers or natural fibers.

(a)本発明ポリエステル複合繊維の断面形状例 (b)アルカリ減量処理後の断面形状(A) Example of cross-sectional shape of the polyester composite fiber of the present invention (b) Cross-sectional shape after alkali weight loss treatment 同上Same as above 同上Same as above 同上Same as above (a)本発明ポリエステル複合繊維からなる織物の断面形状と(b)アルカ リ減量処理後の織物の断面形状の一例(A) An example of a cross-sectional shape of a woven fabric comprising the polyester composite fiber of the present invention, and (b) an example of a cross-sectional shape of the woven fabric after alkali weight reduction treatment

符号の説明Explanation of symbols

A:アルカリ処理により溶解され難い成分領域
A1:高透明度ポリエステル
A2:共重合ポリエステル
B:アルカリ処理により溶解され難い成分領域
A: Component region that is hardly dissolved by alkali treatment A1: Highly transparent polyester A2: Copolyester B: Component region that is hardly dissolved by alkali treatment

Claims (5)

繊維断面が、溶液ヘイズが15を超えないアルカリ難溶解性のポリエステル成分(A1)と前記成分(A1)に比較すればアルカリ溶解速度が大きなアルカリ難溶解性の共重合ポリエステル成分(A2)とをブレンドした、アルカリ難溶解性成分(A)からなる領域、及び前記アルカリ難溶解性成分(A)の少なくとも2倍の速度でアルカリに溶解され除去されるアルカリ易溶性成分(B)からなる領域から構成され、かつ、断面形状が実質的に偏平度1.5ないし3.5の楕円であって、アルカリ難溶解性成分(A)領域の形状が実質的に偏平度1.3ないし6の楕円に形成されているポリエステル複合繊維から、アルカリ溶液を用いて成分(B)を溶解・除去し、成分(A2)を溶出させることによって得られた、繊維断面の形状が実質的に偏平度1.3ないし6の楕円であって透過光量が少なくとも190%であることを特徴とする絹様ポリエステル繊維。     Compared with the component (A1) and the hardly alkali-soluble polyester component (A1) having a fiber cross-section having a solution haze of not more than 15, the hardly-soluble alkali-soluble polyester component (A2) having a large alkali dissolution rate is obtained. From the blended region consisting of the hardly alkaline soluble component (A) and the region consisting of the easily alkaline soluble component (B) which is dissolved and removed in the alkali at a rate at least twice that of the hardly alkaline soluble component (A). An ellipse having a cross-sectional shape substantially having a flatness of 1.5 to 3.5 and having a shape of an alkali hardly soluble component (A) region having a flatness of substantially 1.3 to 6 The shape of the cross section of the fiber obtained by dissolving and removing the component (B) from the polyester composite fiber formed by using an alkaline solution and eluting the component (A2) is substantially Silk-like polyester fiber characterized in that the amount of transmitted light a flatness 1.3 to 6 ellipse is at least 190% to. 幅が0.08ないし1.5μm、深さが0.08ないし0.9μmの条痕が、繊維表面の繊維軸方向に形成されていることを特徴とする請求項1に記載の絹様ポリエステル繊維。     2. The silk-like polyester according to claim 1, wherein striations having a width of 0.08 to 1.5 [mu] m and a depth of 0.08 to 0.9 [mu] m are formed in the fiber axis direction of the fiber surface. fiber. 請求項1又は2に記載の絹様ポリエステル繊維が、30重量%以上含まれていることを特徴とする絹様のポリエステル布帛。     A silk-like polyester fabric comprising 30% by weight or more of the silk-like polyester fiber according to claim 1 or 2. 溶液ヘイズが15を超えないアルカリ溶液には難溶解性のポリエステル成分(A1)と前記成分(A1)に比較すればアルカリ溶解速度が若干大きな共重合ポリエステル成分(A2)とをブレンドした、アルカリ処理により溶解され難いポリエステル成分(A)、及び前記成分(A)の少なくとも2倍の速度でアルカリに溶解される成分(B)を複合紡糸して、断面形状が実質的に偏平度1.5ないし3.5の楕円に、繊維断面における成分(A)領域の形状が実質的に偏平度1.3ないし6の楕円に形成されたポリエステル複合繊維を製造し、前記のポリエステル複合繊維をアルカリ溶液を用いてアルカリ易溶性成分(B)を溶解、除去し共重合ポリエステル(A2)を溶出させて、繊維断面の形状が実質的に偏平度1.3ないし6の楕円であって透過光量が少なくとも190%の繊維とすることを特徴とする絹様ポリエステル繊維の製造方法。     Alkaline treatment in which an alkali solution having a solution haze not exceeding 15 is blended with a hardly soluble polyester component (A1) and a copolymer polyester component (A2) having a slightly higher alkali dissolution rate than the component (A1). The polyester component (A) that is hardly dissolved by the above-mentioned method and the component (B) that is dissolved in the alkali at a rate at least twice that of the component (A) are composite-spun, and the cross-sectional shape has a substantially flatness of 1.5 to A polyester composite fiber having an elliptical shape in which the shape of the component (A) region in the cross section of the fiber is substantially formed into an ellipse having a flatness of 1.3 to 6 is manufactured. Using this, the alkali-soluble component (B) is dissolved and removed to elute the copolyester (A2), and the cross section of the fiber is an ellipse having a substantially flatness of 1.3 to 6. Method of manufacturing silk-like polyester fibers had been transmitted light amount, characterized in that at least 190% of the fibers. 溶液ヘイズが15を超えないアルカリ溶液には難溶解性のポリエステル成分(A1)と前記成分(A1)に比較すればアルカリ溶解速度が若干大きな共重合ポリエステル成分(A2)とをブレンドした、アルカリ処理により溶解され難いポリエステル成分(A)、及び前記成分(A)の少なくとも2倍の速度でアルカリに溶解される成分(B)を複合紡糸して、断面形状が実質的に偏平度1.5ないし3.5の楕円に、繊維断面における成分(A)領域の形状が実質的に偏平度1.3ないし6の楕円に形成されたポリエステル複合繊維を製造し、製造したポリエステル複合繊維を布帛に加工した後、前記布帛にアルカリ処理を施してポリエステル複合繊維中のアルカリ易溶性成分(B)を溶解、除去し共重合ポリエステル成分(A2)を溶出させて、繊維断面の形状が実質的に偏平度1.3ないし6の楕円であって透過光量が少なくとも190%のポリエステル繊維を30重量%以上含む布帛にすることを特徴とする絹様ポリエステル布帛の製造方法。
Alkaline treatment in which an alkali solution having a solution haze not exceeding 15 is blended with a hardly soluble polyester component (A1) and a copolymer polyester component (A2) having a slightly higher alkali dissolution rate than the component (A1). The polyester component (A) that is hardly dissolved by the above-mentioned method and the component (B) that is dissolved in the alkali at a rate at least twice that of the component (A) are composite-spun, and the cross-sectional shape has a substantially flatness of 1.5 to Manufacture a polyester conjugate fiber in which the shape of the component (A) region in the cross section of the fiber is formed into an ellipse having a flatness of 1.3 to 6 on the ellipse of 3.5, and process the manufactured polyester conjugate fiber into a fabric Then, the fabric is subjected to alkali treatment to dissolve and remove the alkali-soluble component (B) in the polyester composite fiber, and the copolymerized polyester component (A2) is eluted. A silk-like polyester fabric characterized in that the cross-sectional shape of the fiber is substantially an ellipse having a flatness of 1.3 to 6 and the amount of transmitted light is at least 190%, and the fabric contains 30% by weight or more of polyester fibers. Manufacturing method.
JP2004345428A 2004-11-30 2004-11-30 Silk-like polyester fibers and fabrics and methods for producing them Expired - Fee Related JP4123226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345428A JP4123226B2 (en) 2004-11-30 2004-11-30 Silk-like polyester fibers and fabrics and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345428A JP4123226B2 (en) 2004-11-30 2004-11-30 Silk-like polyester fibers and fabrics and methods for producing them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23914996A Division JP3689994B2 (en) 1996-09-10 1996-09-10 Polyester composite fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005060923A JP2005060923A (en) 2005-03-10
JP4123226B2 true JP4123226B2 (en) 2008-07-23

Family

ID=34373945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345428A Expired - Fee Related JP4123226B2 (en) 2004-11-30 2004-11-30 Silk-like polyester fibers and fabrics and methods for producing them

Country Status (1)

Country Link
JP (1) JP4123226B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864604A (en) * 2009-04-15 2010-10-20 东丽纤维研究所(中国)有限公司 Double-component fiber and production method thereof

Also Published As

Publication number Publication date
JP2005060923A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP2006307379A (en) Woven or knitted fabric
WO2009150745A1 (en) Water-absorbing rapidly dryable woven or knitted fabric
WO2009072642A1 (en) Process for production of fabrics, fabrics and textile goods
JPH0357984B2 (en)
JP5034412B2 (en) Fabric comprising nanofiber and method for producing the same
JP4123226B2 (en) Silk-like polyester fibers and fabrics and methods for producing them
JP3689994B2 (en) Polyester composite fiber and method for producing the same
EP4043623A1 (en) Sheath-core composite fiber and multifilament
JP2006249585A (en) Conjugated textured yarn and woven or knitted fabric thereof
JP2002138372A (en) Woven or knitted fabric and method for producing the same
JP3912065B2 (en) Polyester blended yarn and false twisted yarn
JP5324360B2 (en) Fabrics and textile products including core-sheath type composite false twisted yarn
JP5850783B2 (en) Polyester latent crimp multifilament yarn manufacturing method
JP2008150728A (en) Water-absorbing/quick-drying woven and knitted fabrics
JP5089863B2 (en) Low gloss acetate multifilament yarn and its woven / knitted fabric
JP2021066965A (en) Atmospheric pressure cation-dyeable polyester flat fiber and fabric using the same
JPS61152849A (en) Pile cloth for interior
JP2019123970A (en) Woven fabric
JP2005320654A (en) Piled fabric having new appearance and car seat
JP4202210B2 (en) Mixed yarn, woven and knitted fabric, and sewn products with an worn appearance
JP2935008B2 (en) Polyester core-sheath composite fiber and method for producing the same
JPH08218247A (en) Opaque yarn aggregate
JP2009155791A (en) Process for production of fabric, fabric and textile good
JP5260376B2 (en) Fabrics and textile products
JP7172258B2 (en) Knitted fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees