JPH08218247A - Opaque yarn aggregate - Google Patents

Opaque yarn aggregate

Info

Publication number
JPH08218247A
JPH08218247A JP7022643A JP2264395A JPH08218247A JP H08218247 A JPH08218247 A JP H08218247A JP 7022643 A JP7022643 A JP 7022643A JP 2264395 A JP2264395 A JP 2264395A JP H08218247 A JPH08218247 A JP H08218247A
Authority
JP
Japan
Prior art keywords
fiber
reflectance
polyester
opacity
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7022643A
Other languages
Japanese (ja)
Other versions
JP3419578B2 (en
Inventor
Izumi Tabuchi
泉 田淵
Seiji Hirakawa
清司 平川
Yoshinuki Maeda
佳貫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP02264395A priority Critical patent/JP3419578B2/en
Publication of JPH08218247A publication Critical patent/JPH08218247A/en
Application granted granted Critical
Publication of JP3419578B2 publication Critical patent/JP3419578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE: To obtain a yarn aggregate capable of forming opaque fabric suitable for sport clothing for leisure, having see-through preventing properties, by specifying the reflectance and the voids of an aggregate of multi-leaf type polyester- based yarn. CONSTITUTION: This aggregate of multi-leaf type polyester-based yarn has >=85% reflectance R at 500nm wavelength and 20-60% voids. The reflectance can be regulated by controlling the content of white-based pigment. Three to four leaves for providing the section of yarn with a deep uneven part preferably sets the degree of modification in the range of 0.05 to 0.80 in terms of multiple layer formation of air layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不透明性に優れた繊維
集合体に関する。また該繊維集合体の織編物は、膨らみ
のある良好な風合を有し、軽量性に富んだ織編物を得る
ことができる繊維集合体に関する。
TECHNICAL FIELD The present invention relates to a fiber assembly having excellent opacity. Further, the woven or knitted fabric of the fiber aggregate relates to a fiber aggregate having a bulge, a good texture, and a lightweight woven or knitted fabric.

【0002】[0002]

【従来の技術】最近の衣料へのニーズの動向として白色
で透けない素材が求められ、レジャー用のスポーツ等に
用いられるテニスウエアー、水着、そして医療分野に用
いられる白衣等への該素材の需要が増加している。ポリ
エステルやポリアミド等の合成繊維は、その単糸繊度が
大きいこと、その横断面形状が単純であること、その表
面の内部構造が均一かつ単純であること等からプラスチ
ック的な冷たい感じがあり、薄地使いの場合透けやすい
という問題点があった。
2. Description of the Related Art Recent trends in needs for clothing require white and non-transparent materials, and demand for these materials for tennis wear and swimwear used for leisure sports and white coats used in the medical field. Is increasing. Synthetic fibers such as polyester and polyamide have a large single-filament fineness, a simple cross-sectional shape, and a uniform and simple internal structure on the surface. There was a problem that it was easy to see through when used.

【0003】そこで上記のような合成繊維の欠点を改良
するために、高屈折率を有する無機微粒子を鞘部のみに
含有させた芯鞘型複合繊維にしたり、合成繊維の横断面
を異形化したり、繊維を中空化することなどが広く行わ
れている。しかしながら、水や汗に濡れた場合において
も不透明性を発現し、軽量性、崇高性等の性能を兼ね備
えた繊維集合体を得ることは困難であった。
Therefore, in order to improve the above-mentioned drawbacks of synthetic fibers, core-sheath type composite fibers in which inorganic fine particles having a high refractive index are contained only in the sheath portion, or the cross section of the synthetic fibers is modified The hollowing of fibers is widely used. However, it is difficult to obtain a fiber assembly that exhibits opacity even when it is wet with water or sweat, and that has properties such as lightness and sublime.

【0004】芯鞘型複合繊維の鞘部に高屈折率を有する
無機微粒子を高濃度に含有させると、該複合繊維の色調
は黄味が強くなり、白生地や淡色ものへの用途は制限さ
れる。また、中空で丸断面の場合、空気層による屈折率
の差から不透明性は向上するが、撚糸等の後加工による
中空部、繊維断面のつぶれなどの問題が生じ、膨らみ等
の風合の点で不十分となる。このように、白生地や淡色
ものへの用途展開ができ、かつ膨らみ等の風合にも優れ
た繊維集合体は従来品にはなかったのである。
When the core portion of the core-sheath type composite fiber contains a high concentration of inorganic fine particles having a high refractive index, the color tone of the composite fiber becomes yellowish, and its application to white fabrics and light-colored products is restricted. It Also, in the case of a hollow and round cross section, the opacity is improved due to the difference in the refractive index due to the air layer, but problems such as hollow parts due to post-processing such as twisted yarn, crushing of the fiber cross section, etc., and the feeling of swelling etc. Is not enough. As described above, the conventional product has no fiber aggregate that can be applied to white fabrics and light-colored ones and is excellent in texture such as swelling.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、透け
防止性に優れ、かつ崇高性、膨らみ、張り、腰のある良
好な風合を有し、かつ軽量で不透明性を有する布帛を形
成し得る繊維集合体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to form a fabric which is excellent in anti-seepage property, has sublime, swelling, tensioning, good texture with elasticity, and is lightweight and opaque. To provide a possible fiber assembly.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、多
葉型ポリエステル系繊維からなる繊維集合体であって、
波長500nmにおける反射率△Rが85%以上であ
り、かつ空隙率が20〜60%であることを特徴とする
繊維集合体である。
That is, the present invention provides a fiber assembly comprising multileaf polyester fibers,
A fiber assembly having a reflectance ΔR of 85% or more at a wavelength of 500 nm and a porosity of 20 to 60%.

【0007】以下、本発明について詳細に説明する。本
発明の繊維集合体は、多葉型ポリエステル系繊維より主
として構成されており、特定の反射率および空隙率を有
することに特徴を有する。
Hereinafter, the present invention will be described in detail. The fiber assembly of the present invention is mainly composed of multi-leaf type polyester fibers and is characterized by having a specific reflectance and porosity.

【0008】本発明に係わる多葉型ポリエステル系繊維
の葉数としては、繊維断面に深い凹凸部を形成させる点
で3〜5であることが好ましい。また、かかる多葉型ポ
リエステル系繊維の集合体は、空隙率が20〜60%、
好ましくは20〜40%であることが必要である。本発
明で規定される空隙率とは、後述する方法で測定された
撚糸の断面の光学顕微鏡観察により、下記式で表される
値である。
The number of leaves of the multileaf polyester fiber according to the present invention is preferably 3 to 5 from the viewpoint of forming a deep uneven portion in the fiber cross section. The aggregate of such multileaf polyester fibers has a porosity of 20 to 60%,
It is preferably 20 to 40%. The porosity defined in the present invention is a value represented by the following formula by observing a cross section of a twisted yarn measured by a method described later with an optical microscope.

【0009】[0009]

【数2】空隙率(%)=〔(空隙部重量)/(繊維部重
量+空隙部重量)〕×100
[Equation 2] Porosity (%) = [(void weight) / (fiber weight + void weight)] × 100

【0010】該繊維集合体の繊維間の空隙率を高めるこ
とにより、見掛けの糸直径が太くなり、該繊維集合体は
軽量感、膨らみ感を有し、さらには繊維集合体は空気層
の多層化を形成することにより、反射率を高め、不透明
性の向上効果をもたらすものである。
By increasing the porosity between the fibers of the fiber assembly, the apparent thread diameter becomes thicker, the fiber assembly has a feeling of lightness and swelling, and the fiber assembly has a multi-layered air layer. By forming the opaque film, the reflectance is increased and the opacity is improved.

【0011】該空隙率が20%未満の場合、該繊維集合
体は、不透明性、軽量性、嵩高性の点から、従来の織編
物等の布帛に対する優位性は認められない。一方、空隙
率が60%を越えると、軽量化は期待できるものの繊維
密度が小さくなり、透け防止性に欠け、膨らみ感、張
り、腰等の点においても不十分なものとなる。本発明で
規定する空隙率は後述の方法により測定、算術された値
であり、本発明の繊維集合体は、該規定する空隙率に束
縛されることなく、目的とする繊維製品に即して繊維製
品(織編物等)の空隙率を変化させることができる。
When the porosity is less than 20%, the fiber aggregate is not superior to conventional woven or knitted fabrics in terms of opacity, lightness and bulkiness. On the other hand, when the porosity exceeds 60%, weight reduction can be expected, but the fiber density becomes small, the transparency preventing property is insufficient, and the swelling feeling, tension, waist, etc. are also insufficient. The porosity specified in the present invention is a value measured by the method described below, and is a value calculated, and the fiber assembly of the present invention is not bound to the specified porosity and is suitable for the target fiber product. The porosity of a textile product (woven or knitted fabric) can be changed.

【0012】上記のような空隙率を有する多葉型ポリエ
ステル系繊維の断面形状としては、図1に示されるよう
な3〜5葉のものが挙げられ、その断面形状において異
形度が高く、0.05〜0.80の範囲にあることが空
気層の多層化を発現させ、繊維の不透明性を向上させる
点で好ましい。異形度とは、下記式で表される値であ
る。
The cross-sectional shape of the multi-leaf type polyester fiber having the porosity as described above includes those having 3 to 5 leaves as shown in FIG. It is preferably in the range of 0.05 to 0.80 from the viewpoint that the air layer is made multi-layered and the opacity of the fiber is improved. The degree of irregularity is a value represented by the following formula.

【0013】[0013]

【数3】異形度=R/L ただし、繊維断面においてLは隣り合う先端部A、Bを
結ぶ線の長さABであり、Rは該隣り合う先端部の中間
に位置する窪みDから隣り合う先端部A、Bを結ぶ線へ
の垂線の長さCDを示す。
## EQU00003 ## Deformation degree = R / L However, in the fiber cross section, L is the length AB of the line connecting the adjacent tip portions A and B, and R is adjacent to the recess D located in the middle of the adjacent tip portions. The length CD of the perpendicular to the line connecting the matching tip portions A and B is shown.

【0014】異形度が0.05未満の場合、繊維断面形
状の凹凸変化が小さくなり、繊維集合体にした場合に繊
維密度が高くなることから、空気層の多層化を発現する
ことができにくい。一方、異形度が、0.8を越える
と、繊維断面形状の凹凸変化が大きくなり、繊維の製造
工程で損傷を受けやすく、フィブリル化の問題が生ずる
場合がある。
If the degree of irregularity is less than 0.05, the unevenness of the fiber cross-sectional shape will be small, and the fiber density will be high in the case of a fiber aggregate, so that it is difficult to realize a multilayered air layer. . On the other hand, if the degree of irregularity exceeds 0.8, the unevenness of the cross-sectional shape of the fiber becomes large, and the fiber is easily damaged in the manufacturing process, which may cause a problem of fibrillation.

【0015】また、本発明の繊維集合体は波長500n
mにおける反射率Rが85%以上であることにも大きな
特徴を有する。該反射率が85%未満の場合、不透明性
は不満足なものとなり、繊維集合体として白色、淡色系
の織編物とすることができない。白色、淡色系の織編物
として好適な繊維集合体の該反射率Rは90%以上であ
る。
The fiber assembly of the present invention has a wavelength of 500 n.
A great feature is that the reflectance R at m is 85% or more. If the reflectance is less than 85%, the opacity becomes unsatisfactory, and a white or light-colored woven or knitted fabric cannot be obtained as a fiber assembly. The reflectance R of the fiber assembly suitable as a white or light woven or knitted fabric is 90% or more.

【0016】上記のような特定の反射率を有するこのよ
うな繊維集合体を構成するポリエステル系繊維として、
白色系顔料を特定量含有したポリエステル系繊維を挙げ
ることができる。ポリエステル系繊維は、ポリエステル
の重合時に種々の微粒子を練り込み溶融紡糸することが
可能であり、微粒子として屈折率の高い白色系顔料を含
有させることにより、繊維表面の反射率を向上させ、不
透明度を上げることが可能となる。本発明に係わる多葉
型ポリエステル系繊維は、屈折率が1.8以上である白
色系顔料を1〜10重量%、とくに2〜5重量%含有す
ることが好ましい。白色系顔料の含有量が1重量%未満
の場合、該繊維からなる集合体は波長500nmにおけ
る反射率が85%未満となり、必然的に掛かる繊維集合
体からなる織編物は、不透明性に欠けたものとなり易
い。一方、白色系顔料の含有量が10重量%を越える
と、該顔料がポリエステル繊維中で凝集を起こし、紡糸
・延伸工程での毛羽の発生および断糸等の原因となる場
合がある。
As a polyester fiber which constitutes such a fiber assembly having the above-mentioned specific reflectance,
Examples thereof include polyester fibers containing a specific amount of white pigment. The polyester fiber can be melt-spun by kneading various fine particles during the polymerization of polyester, and by including a white pigment having a high refractive index as the fine particles, the reflectance of the fiber surface is improved and the opacity is improved. It is possible to raise. The multileaf polyester fiber according to the present invention preferably contains 1 to 10% by weight, particularly 2 to 5% by weight of a white pigment having a refractive index of 1.8 or more. When the content of the white pigment is less than 1% by weight, the aggregate composed of the fibers has a reflectance of less than 85% at a wavelength of 500 nm, and the woven or knitted fabric necessarily composed of the fiber aggregate lacks opacity. It is easy to become a thing. On the other hand, when the content of the white pigment exceeds 10% by weight, the pigment may agglomerate in the polyester fiber, which may cause fluff in the spinning / drawing process and breakage of fibers.

【0017】また白色系顔料は、屈折率が1.8以上で
あるものを使用することが好ましい。屈折率が1.8未
満である場合、ポリエステル系繊維の屈折率が1.57
5−1.643であることから、該白色顔料添加による
屈折率の向上はあまり期待できず、反射率の増大が見込
めにくい。白色系顔料の屈折率の上限はとくに限定はな
いが、屈折率が3を越える白色系顔料は、現在では得る
ことが困難である。このような白色系顔料としては、た
とば、酸化チタン、酸化亜鉛、リトポン等が挙げられ、
なかでも高屈折率であること、ポリマーへの練り込み性
および耐候性の点で酸化チタンが好ましい。該白色系顔
料の粒径はとくに限定されるものではないが、ポリエス
テルへの練り込み性、溶融紡糸性、不透明性等の点にお
いて、平均粒径は0.2μm以上であることが好まし
い。
It is preferable to use a white pigment having a refractive index of 1.8 or more. When the refractive index is less than 1.8, the polyester fiber has a refractive index of 1.57.
Since it is 5-1.643, the improvement of the refractive index due to the addition of the white pigment cannot be expected so much, and it is difficult to expect the increase of the reflectance. The upper limit of the refractive index of the white pigment is not particularly limited, but it is currently difficult to obtain a white pigment having a refractive index of more than 3. Such white pigments include, for example, titanium oxide, zinc oxide, lithopone,
Among them, titanium oxide is preferable from the viewpoints of high refractive index, kneading property into polymer and weather resistance. The particle size of the white pigment is not particularly limited, but it is preferable that the average particle size is 0.2 μm or more in view of kneading into polyester, melt spinnability, opacity and the like.

【0018】本発明に係わる多葉型ポリエステル系繊維
の断面形状の一例を図1に示す。本発明に係わる多葉型
ポリエステル系繊維は、たとえば白色系顔料を含有する
熱可塑性ポリエステルAと白色系顔料を含有しない熱可
塑性ポリエステルBとからなる複合繊維であってもよ
く、白色系顔料を含有する熱可塑性ポリエステルAのみ
からなる繊維であってもよい。このように、該繊維を構
成する熱可塑性ポリエステルは1種類でもよく、2種類
以上のポリエステルを用いてもよく、繊維集合体として
特定の波長における反射率が85%以上であって、かつ
特定の空隙率を有していることが重要である。たとえば
2種類のポリエステル、すなわち上記のポリエステルA
およびポリエステルBは、どちらが断面形状の葉部を構
成していてもよいが、不透明性を高めるためには、図1
(ニ)に示されるように白色系顔料が含有されているポ
リエステルAが葉部aを構成することが好ましい。これ
らのポリエステルの重合度は一般衣料に用いられる範囲
内であり、繊維形成が可能な範囲であればよい。なお、
これらのポリエステルには、紫外線吸収剤、酸化防止剤
等の通常の繊維用の添加剤を加えてもよい。
FIG. 1 shows an example of the cross-sectional shape of the multileaf polyester fiber according to the present invention. The multileaf polyester fiber according to the present invention may be, for example, a composite fiber composed of a thermoplastic polyester A containing a white pigment and a thermoplastic polyester B containing no white pigment, and contains a white pigment. The fiber may be made of only the thermoplastic polyester A. As described above, the thermoplastic polyester constituting the fiber may be one kind or two or more kinds of polyester, and the fiber aggregate may have a reflectance of 85% or more at a specific wavelength and a specific wavelength. Having porosity is important. For example, two types of polyester, namely the above polyester A
Either of the polyester B and the polyester B may form the leaf portion of the cross-sectional shape.
As shown in (d), it is preferable that the polyester A containing a white pigment constitutes the leaves a. The degree of polymerization of these polyesters is within the range used for general clothing, and may be within the range where fiber formation is possible. In addition,
To these polyesters, usual additives for fibers such as an ultraviolet absorber and an antioxidant may be added.

【0019】白色系顔料を含有する熱可塑性ポリエステ
ルAとしては、白色系顔料を練り込み易く溶融紡糸可能
のポリエステルが好ましい。かかるポリエステルとして
は、テレフタル酸、イソフタル酸等の芳香族ジカルボン
酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸
などのジカルボン酸成分と、エチレングリコール、プロ
ピレングリコール、1,4−ブタンジオール等の脂肪族
ジオール、ビスフェノールAまたはビスフェノールSの
エチレンオキサイド付加物、シクロヘキサンジメタノー
ル等の脂環族ジオールなどのジオール成分を用いて形成
されたポリエステルを挙げることができる。該ポリエス
テルのジカルボン酸成分およびジオール成分は、各々1
種類のみを有していてもまたは2種類以上を使用しても
よい。
The thermoplastic polyester A containing a white pigment is preferably a polyester which can be easily kneaded with a white pigment and which can be melt-spun. Such polyesters include aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, dicarboxylic acid components such as aliphatic dicarboxylic acids such as azelaic acid and sebacic acid, and fats such as ethylene glycol, propylene glycol and 1,4-butanediol. Examples of the polyester include a group diol, an ethylene oxide adduct of bisphenol A or bisphenol S, and a diol component such as an alicyclic diol such as cyclohexanedimethanol. The dicarboxylic acid component and diol component of the polyester are each 1
You may have only one kind or use two or more kinds.

【0020】熱可塑性ポリエステルAと複合して用いら
れる熱可塑性ポリエステルBは、白色系顔料を含有する
熱可塑性ポリエステルAと、紡糸、延伸、後加工工程等
の工程時に両者が剥離せず複合形態を維持し得るよう
に、相溶性、張り合わせ、接合性等の特性が良好なもの
を選択して組み合わせるのが好ましい。たとえば、上述
した熱可塑性ポリエステルAとして例示したジカルボン
酸成分およびジオ−ル成分の中から選択して複合紡糸
し、適性な延伸条件を採用することにより、目標の性能
を有する繊維集合体が得られる。熱可塑性ポリエステル
Aおよび熱可塑性ポリエステルBは、同一でも異なって
いても良い。
The thermoplastic polyester B used in combination with the thermoplastic polyester A has a composite form in which the thermoplastic polyester A containing a white pigment and the thermoplastic polyester A do not separate during spinning, stretching, post-processing and the like. It is preferable to select and combine those having good properties such as compatibility, laminating, and bondability so that they can be maintained. For example, a fiber aggregate having a target performance can be obtained by selecting from the dicarboxylic acid component and the diol component exemplified as the above-mentioned thermoplastic polyester A, performing composite spinning, and adopting appropriate drawing conditions. . The thermoplastic polyester A and the thermoplastic polyester B may be the same or different.

【0021】白色系顔料のポリエステルへの練り込み方
法については、ポリエステルの重合段階におけるエステ
ル交換前のエチレングリコール等のジオ−ル成分のスラ
リーに添加する方法などがあるが、紡糸時にポリエステ
ルに該顔料を練り込むこともできる。
The white pigment may be kneaded into the polyester by adding it to a slurry of a diol component such as ethylene glycol before transesterification in the polyester polymerization step. You can also mix in.

【0022】また、本発明に係わる多葉型ポリエステル
系繊維からなる繊維集合体は下記式〔I〕で示される不
透明度Fが85%以上であることが好ましい。特に白生
地や淡色系においてこの不透明度の判断は鋭敏であり、
より有効に判定できる。
Further, the fiber assembly comprising the multi-leaf type polyester fiber according to the present invention preferably has an opacity F represented by the following formula [I] of 85% or more. Especially in white fabrics and light colors, this opacity judgment is sensitive,
It can be judged more effectively.

【0023】[0023]

【数4】 F=(L* B /L* W )×100 〔I〕 ただし、L* B は黒素地に布帛(繊維集合体)を重ねた
時のL* 値、L* W は白素地に布帛(繊維集合体)を重
ねた時のL* 値、黒素地は黒色プラスチック板(L*
=12)、白素地は標準白板(L* 値=100)を示
す。
[Formula 4] F = (L * B / L * W ) × 100 [I] However, L * B is the L * value when the fabric (fiber assembly) is overlaid on the black base material, and L * W is the white base material. Shows a L * value when a cloth (fiber assembly) is overlaid, a black base material is a black plastic plate (L * value = 12), and a white base material is a standard white board (L * value = 100).

【0024】繊維集合体の不透明度Fが85%未満の場
合、着用時とりわけ白地や淡色系の場合には、生地を通
して内衣の着用物や肌が透けて見えやすい。一方、不透
明度Fの値が85%以上では、薄地の白物においても透
け防止効果を発揮するものとなる。
When the opacity F of the fiber assembly is less than 85%, the wearer's inner garment and the skin can be easily seen through the fabric when worn, especially in the case of a white background or a light color system. On the other hand, when the value of the opacity F is 85% or more, the sheer prevention effect is exhibited even on a thin white material.

【0025】本発明に係わる多葉型ポリエステル系繊維
は、部分延伸等によるシックアンドシン糸(斑糸)であ
ってもよい。
The multi-leaf polyester fiber according to the present invention may be thick and thin yarn (fluffy yarn) obtained by partially drawing.

【0026】本発明における「繊維」とは、長繊維、ス
テープル等の短繊維、フィラメント糸、紡績糸を示し、
「繊維集合体」とは該「繊維」と天然繊維、半合成繊
維、他の合成繊維との混紡糸、合撚糸、交絡糸及び捲縮
糸等のその他の加工糸、れらの繊維や糸をその一部また
は全部として形成された織編物、不織布、最終的な衣
類、タオル等の繊維製品等を示す。また、本発明の繊維
集合体を構成する繊維は蛍光増白剤等の染料で染色され
ていてもよい。
The "fiber" in the present invention means long fibers, short fibers such as staples, filament yarns, spun yarns,
"Fiber aggregate" means a blended yarn of the "fiber" with natural fibers, semi-synthetic fibers, other synthetic fibers, other processed yarn such as twisted yarn, entangled yarn and crimped yarn, and fibers and yarns of these A woven or knitted fabric, a nonwoven fabric, a final garment, a textile product such as a towel, etc. Further, the fibers constituting the fiber assembly of the present invention may be dyed with a dye such as a fluorescent whitening agent.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれによって限定されるものではない。
なお実施例における各物性は以下の方法により測定し
た。 (1)ポリエステルの極限粘度〔η〕(dl/g) フェノールとテトラクロロエタンの等重量混合溶媒を用
いて、対象となるポリエステルの0.25g/dl、
0.5g/dlおよび1.0g/dlの3種類の濃度の
溶液について、30℃の温度において測定した3種の還
元粘度から求めた。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto.
In addition, each physical property in an Example was measured by the following method. (1) Intrinsic viscosity of polyester [η] (dl / g) 0.25 g / dl of target polyester using an equal weight mixed solvent of phenol and tetrachloroethane,
It was calculated from the three reduced viscosities measured at a temperature of 30 ° C. for solutions of three concentrations of 0.5 g / dl and 1.0 g / dl.

【0028】(2)繊維集合体の空隙率(%) ヤーンを3本引き揃え2500T/Mの下撚をかけ、そ
れを3本合糸し、S400T/Mの上撚をかけた撚糸を
ミクロトームで切った繊維断面の光学顕微鏡写真を撮影
した。該写真を拡大し、繊維と空隙部に切り分け、その
重量比で空隙率を求めた。ただし、中空繊維等の中空部
を有する繊維については中空部も空隙率として算術し
た。 空隙率(%)=〔(空隙部重量)/(繊維重量部+空隙
部重量)〕×100
(2) Porosity (%) of fiber assembly Three yarns are aligned and subjected to 2500 T / M undertwisting, 3 of them are combined, and S400T / M overtwisting twisted yarn is microtome. An optical micrograph of the cross section of the fiber cut with was taken. The photograph was enlarged and cut into fibers and voids, and the porosity was determined by the weight ratio. However, for a fiber having a hollow portion such as a hollow fiber, the hollow portion was also calculated as the porosity. Porosity (%) = [(weight of void) / (weight of fiber + weight of void)] × 100

【0029】(3)繊維の異形度 繊維断面の光学顕微鏡写真を撮影し、上記の方法により
測定、算出した。
(3) Deformity of fiber An optical micrograph of a fiber cross section was taken, and measured and calculated by the above method.

【0030】(4)反射率R(%) 経密度114本/寸、緯密度86本/寸のタフタ織物
を、日立分光光度計U−3400にて測定し、得られた
反射曲線により波長500nmにおける反射率を求め
た。
(4) Reflectance R (%) Taffeta fabrics having a warp density of 114 filaments / dimension and a weft density of 86 filaments / dimension were measured with a Hitachi spectrophotometer U-3400, and a wavelength of 500 nm was obtained from the reflection curve obtained. The reflectance at was calculated.

【0031】(5)繊維集合体の不透明度(%) 単繊度2.2デニールの多葉型ポリエステル系繊維を経
糸および緯糸に用い、経糸114本/寸、緯糸86本/
寸を作製し、日立分光光度計(U−3400型)を用い
て、この編地のL* を測定し、下記式により算出した。 不透明度(%)=(L* B /L* W )×100 L* B :黒素地に布帛(繊維集合体)を重ねた時のL*
値 L* W :白素地に布帛(繊維集合体)を重ねた時のL*
(5) Opacity (%) of fiber assembly Using multileaf polyester fibers having a single fineness of 2.2 denier for warp and weft, 114 warps / dimension, 86 wefts /
Dimension was prepared, L * of this knitted fabric was measured using a Hitachi spectrophotometer (U-3400 type), and calculated by the following formula. Opacity (%) = (L * B / L * W) × 100 L * B: when the piled fabric (fiber aggregate) to the black matrix L *
The value L * W: when the piled fabric (fiber aggregate) in white matrix L *
value

【0032】実施例1〜3 テレフタル酸とエチレングリコールとを平均粒径0.3
μmの二酸化チタンを1重量%(実施例1)、3重量%
(実施例2)、5重量%(実施例3)となるように所定
量スラリー槽に添加し混合を行い、エステル化槽に移
し、280℃、2.5Kg/cm2 の圧力下で2時間エ
ステル化反応した後、三酸化アンチモンのエチレングリ
コール溶液を触媒として添加し、温度を240℃から2
80℃まで45分かけて昇温しながら徐々に0.1mm
Hgまで減圧にし反応させ、常法によりチップ化させ、
[η]=0.68のポリエチレンテレフタレート(PE
T)を得た。各々のPETを用いて290℃で紡糸し、
通常の延伸条件で延伸して、50デニール/24フィラ
メントの断面形状が図1(ロ)のような四枝型繊維を得
た。各々の延伸糸の異形度、延伸糸の集合体の空隙率を
表1に示す。上記で得た各々の延伸糸を経糸および緯糸
として使い、生機密度が経糸114本/寸、緯糸86本
/寸のタフタを製織した。この生機タフタをソーダ灰2
g/l、アクチノールR−100(松本油脂製)1g/
lにて100℃、30分処理して精練を行った。ついで
ピンテンターにて180℃のヒートセットを行った。こ
の各織物について前記の方法で測定し求められた反射率
△Rおよび不透明度Fを表1に示す。反射率および不透
明度は高く、また、空隙率も高いことから繊維集合体の
軽量性にも富んでいた。さらに、不透明度を測定する
際、いずれの織物についても重ねられた黒素地はほとん
ど透けて見えなかった。
Examples 1 to 3 terephthalic acid and ethylene glycol were used, and the average particle size was 0.3.
1% by Weight of Titanium Dioxide (Example 1), 3% by Weight
(Example 2) A predetermined amount of 5% by weight (Example 3) was added to a slurry tank, mixed, transferred to an esterification tank, and heated at 280 ° C. under a pressure of 2.5 Kg / cm 2 for 2 hours. After the esterification reaction, an ethylene glycol solution of antimony trioxide was added as a catalyst, and the temperature was changed from 240 ° C to 2 ° C.
Gradually 0.1mm while heating to 80 ℃ over 45 minutes
Reduce the pressure to Hg, react, and make chips by a conventional method.
[Η] = 0.68 polyethylene terephthalate (PE
T) was obtained. Spin at 290 ° C with each PET,
It was drawn under normal drawing conditions to obtain a four-branched fiber having a cross-sectional shape of 50 denier / 24 filament as shown in FIG. Table 1 shows the degree of irregularity of each drawn yarn and the porosity of the aggregate of drawn yarns. Using each of the drawn yarns obtained above as a warp yarn and a weft yarn, a taffeta having a weaving density of 114 warp yarns / dimension and 86 weft yarns / dimension was woven. This raw taffeta is soda ash 2
g / l, Actinol R-100 (Matsumoto Yushi) 1 g /
The scouring was carried out by treating with 1 for 100 minutes at 100 ° C. Then, heat setting was performed at 180 ° C. with a pin tenter. Table 1 shows the reflectance ΔR and the opacity F of each woven fabric measured by the above method. Since the reflectance and the opacity are high, and the porosity is also high, the fiber assembly was also lightweight. Furthermore, when the opacity was measured, the black base material overlaid on any of the fabrics was almost invisible.

【0033】実施例4 実施例1において、繊維断面形状を図1(イ)に示すよ
うに変えた以外は同様にして紡糸し、三枝型繊維の延伸
糸を得た。該延伸糸の異形度、延伸糸の集合体の空隙率
を表1に示す。得られた延伸糸を用いて、実施例1と同
様にしてタフタ織物を製織し、同条件にて精練、プレセ
ット等の処理を行った。該織物について前記の方法で測
定した反射率△Rおよび不透明度Fを表1に示す。繊維
の断面形状が三枝型であっても、反射率および不透明度
は高く、また、空隙率も高いことから繊維集合体の軽量
性にも富んでいた。さらに、不透明度を測定する際、該
織物に重ねられた黒素地は若干透けて見えたが実用的に
問題はなかった。
Example 4 Spinning was carried out in the same manner as in Example 1 except that the fiber cross-sectional shape was changed as shown in FIG. Table 1 shows the irregularity of the drawn yarn and the porosity of the drawn yarn aggregate. Using the obtained drawn yarn, a taffeta fabric was woven in the same manner as in Example 1 and subjected to treatments such as scouring and presetting under the same conditions. Table 1 shows the reflectance ΔR and the opacity F of the woven fabric measured by the above method. Even if the cross-sectional shape of the fiber was a trifurcation type, the reflectance and opacity were high, and the porosity was also high, so the fiber assembly was also lightweight. Further, when the opacity was measured, the black base material overlaid on the woven fabric was slightly seen through, but there was no practical problem.

【0034】実施例5 実施例1において、繊維断面形状を図1(ハ)に示すよ
うに変えた以外は同様にして紡糸し、五枝型繊維の延伸
糸を得た。該延伸糸の異形度、延伸糸の集合体の空隙率
を表1に示す。得られた延伸糸を用いて、実施例1と同
様にしてタフタ織物を製織し、同条件にて精練、、プレ
セット等の処理を行った。該織物について前記の方法で
測定した反射率△Rおよび不透明度Fを表1に示す。繊
維の断面形状が五枝型に変えることにより空隙率は高く
なり、また反射率および不透明度も高いものであった。
さらに、不透明度を測定する際、該織物に重ねられた黒
素地は透けて見えることはなかった。
Example 5 Spinning was performed in the same manner as in Example 1 except that the fiber cross-sectional shape was changed as shown in FIG. Table 1 shows the irregularity of the drawn yarn and the porosity of the drawn yarn aggregate. Using the obtained drawn yarn, a taffeta fabric was woven in the same manner as in Example 1 and subjected to treatments such as scouring and presetting under the same conditions. Table 1 shows the reflectance ΔR and the opacity F of the woven fabric measured by the above method. By changing the cross-sectional shape of the fiber to the five-branch type, the porosity was increased, and the reflectance and opacity were also high.
Furthermore, when measuring the opacity, the black substrate overlaid on the fabric did not show through.

【0035】比較例1〜3 実施例1において、二酸化チタンを1重量%(比較例
1)、3重量%(比較例2)、5重量%(比較例3)含
有させ、繊維断面形状を丸断面にする以外は同様にして
紡糸・延伸を行った。該延伸糸の集合体の空隙率を表1
に示す。空隙率は各々11%で実施例に比較して非常に
少ないものであり、軽量化にはほど遠いものであった。
得られた各々の延伸糸を用いて、実施例1と同様にして
タフタ織物を製織し、同条件にて精練、、プレセット等
の処理を行った。該織物について前記の方法で測定した
反射率△Rおよび不透明度Fを表1に示す。繊維の断面
形状が丸断面であるために繊維表面が平滑となり、繊維
表面での光の乱反射が発生しにくく、不透明性は満足で
きるものではなかった。また、不透明度を測定する際、
いずれの織物について、重ねられた黒素地は透けて見
え、実用的に問題があった。
Comparative Examples 1 to 3 In Example 1, 1% by weight of titanium dioxide (Comparative Example 1), 3% by weight (Comparative Example 2) and 5% by weight (Comparative Example 3) were added, and the fiber cross-sectional shape was round. Spinning and drawing were performed in the same manner except that the cross section was used. Table 1 shows the porosity of the aggregate of the drawn yarns.
Shown in The porosity was 11%, which was very small compared to the examples, and far from weight reduction.
Using each of the obtained drawn yarns, a taffeta fabric was woven in the same manner as in Example 1 and subjected to treatments such as scouring and presetting under the same conditions. Table 1 shows the reflectance ΔR and the opacity F of the woven fabric measured by the above method. Since the cross-sectional shape of the fiber is a round cross-section, the fiber surface becomes smooth, diffuse reflection of light is unlikely to occur on the fiber surface, and opacity was not satisfactory. Also, when measuring opacity,
For any of the fabrics, the overlapped black substrate was transparent, which was a practical problem.

【0036】比較例4 実施例2において、繊維断面形状を中空率が25%の丸
断面中空形状にした以外は同様にして紡糸・延伸した。
該延伸糸の集合体の空隙率を表1に示す。空隙率は中空
繊維であるため35%であった。得られた延伸糸を用い
て、実施例1と同様にしてタフタ織物を製織し、同条件
にて精練、、プレセット等の処理を行った。該織物につ
いて前記の方法で測定した反射率△Rおよび不透明度F
を表1に示す。中空繊維を使用しているため、空隙率に
よる軽量化は向上してはいるが、繊維表面が平滑である
ので、光の乱反射が小さく、不透明度を測定する際、該
織物に重ねられた黒素地は透けて見え、実用的に問題が
あった。
Comparative Example 4 Spinning and drawing were carried out in the same manner as in Example 2, except that the fiber cross section was changed to a hollow cross section having a hollow ratio of 25%.
Table 1 shows the porosity of the aggregate of drawn yarns. The porosity was 35% because it was a hollow fiber. Using the obtained drawn yarn, a taffeta fabric was woven in the same manner as in Example 1 and subjected to treatments such as scouring and presetting under the same conditions. The reflectance ΔR and opacity F of the woven fabric measured by the method described above.
Is shown in Table 1. Since hollow fibers are used, weight reduction due to porosity is improved, but since the fiber surface is smooth, diffuse reflection of light is small, and when measuring opacity, the black layered on the fabric The base material was transparent and there was a practical problem.

【0037】比較例5 実施例3において、繊維断面形状を中空率が50%の多
孔繊維(孔数10)形状にした以外は同様にして紡糸・
延伸した。該延伸糸の集合体の空隙率を表1に示す。空
隙率は多孔繊維であるため62%であった。得られた延
伸糸を用いて、実施例1と同様にしてタフタ織物を製織
し、同条件にて精練、、プレセット等の処理を行った。
該織物について前記の方法で測定した反射率△Rおよび
不透明度Fを表1に示す。多孔繊維を使用しているた
め、空隙率による軽量化は向上し、中空繊維に比較して
空気層の多層化による不透明性の向上は認められたが、
繊維表面が平滑であるため、光の乱反射が小さく、不透
明度を測定する際、該織物に重ねられた黒素地は実施例
で得られた織物に比較して透けて見え、実用的に問題が
あった。
Comparative Example 5 Spinning was carried out in the same manner as in Example 3, except that the fiber cross-sectional shape was changed to the shape of porous fiber (10 holes) having a hollowness of 50%.
It was stretched. Table 1 shows the porosity of the aggregate of drawn yarns. The porosity was 62% because it was a porous fiber. Using the obtained drawn yarn, a taffeta fabric was woven in the same manner as in Example 1 and subjected to treatments such as scouring and presetting under the same conditions.
Table 1 shows the reflectance ΔR and the opacity F of the woven fabric measured by the above method. Since porous fibers are used, weight reduction due to porosity is improved, and improvement in opacity due to the multi-layered air layer is recognized as compared with hollow fibers,
Since the fiber surface is smooth, the diffuse reflection of light is small, and when measuring the opacity, the black base material laminated on the woven fabric is seen through as compared with the woven fabrics obtained in the examples, and there is a practical problem. there were.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】多葉型ポリエステル系繊維で構成される
繊維集合体は高い空隙率を有することから軽量性、崇高
性に優れ、また反射率が高いことから、白色、淡色系の
染料で染色しても透けて見えることがなく、不透明性に
非常に優れている。
EFFECTS OF THE INVENTION A fiber assembly composed of multileaf type polyester fibers has a high porosity and is therefore excellent in lightness and sublime, and also has a high reflectance, so that it is dyed with a white or light color dye. Even though it does not show through, it has excellent opacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の係わる多葉型ポリエステル系繊維の断
面形状の一例を示す図である。
FIG. 1 is a diagram showing an example of a cross-sectional shape of a multileaf polyester fiber according to the present invention.

【符号の説明】[Explanation of symbols]

a:葉部 a: leaf

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D01F 8/14 D01F 8/14 B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // D01F 8/14 D01F 8/14 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多葉型ポリエステル系繊維であって、波長
500nmにおける反射率Rが85%以上であり、かつ
空隙率が20〜60%であることを特徴とする繊維集合
体。
1. A multi-leaf type polyester fiber having a reflectance R at a wavelength of 500 nm of 85% or more and a porosity of 20 to 60%.
【請求項2】下記式〔I〕で示される不透明度Fが85
%以上であることを特徴とする請求項1記載の繊維集合
体。 【数1】 F=(L* B /L* W )×100 〔I〕 ただし、L* B は黒素地に布帛(繊維集合体)を重ねた
時のL* 値、 L* W は白素地に布帛(繊維集合体)を重ねた時のL*
値、 黒素地は黒色プラスチック板(L* 値=12)、 白素地は標準白板(L* 値=100)を示す。
2. The opacity F represented by the following formula [I] is 85.
% Or more, The fiber assembly according to claim 1. [Formula 1] F = (L * B / L * W ) × 100 [I] However, L * B is the L * value when the fabric (fiber assembly) is overlaid on the black base material, and L * W is the white base material. L * when fabric (fiber assembly) is layered on
Values, the black substrate shows a black plastic plate (L * value = 12), and the white substrate shows a standard white plate (L * value = 100).
JP02264395A 1995-02-10 1995-02-10 Opaque fiber aggregate Expired - Fee Related JP3419578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02264395A JP3419578B2 (en) 1995-02-10 1995-02-10 Opaque fiber aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02264395A JP3419578B2 (en) 1995-02-10 1995-02-10 Opaque fiber aggregate

Publications (2)

Publication Number Publication Date
JPH08218247A true JPH08218247A (en) 1996-08-27
JP3419578B2 JP3419578B2 (en) 2003-06-23

Family

ID=12088537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02264395A Expired - Fee Related JP3419578B2 (en) 1995-02-10 1995-02-10 Opaque fiber aggregate

Country Status (1)

Country Link
JP (1) JP3419578B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322095A (en) * 2005-05-17 2006-11-30 Mitsubishi Rayon Co Ltd Knitted fabric
JP2012136810A (en) * 2010-12-28 2012-07-19 Kuraray Co Ltd Polyester fiber and fiber assembly with excellent dyeability
JP2014189915A (en) * 2013-03-26 2014-10-06 Toray Ind Inc Polyester drawn false-twisted yarn
CN105332070A (en) * 2014-06-24 2016-02-17 东丽纤维研究所(中国)有限公司 Textile
CN105463596A (en) * 2014-06-24 2016-04-06 东丽纤维研究所(中国)有限公司 Thermoplastic resin false twist processed filament

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207638A (en) * 1985-03-11 1986-09-16 カネボウ株式会社 Fabric excellent in opacity
JPS6257920A (en) * 1985-09-06 1987-03-13 Teijin Ltd Polyester conjugated yarn
JPH02175917A (en) * 1988-12-28 1990-07-09 Teijin Ltd Polyester fiber having low dust-generating property and modified cross section
JPH05331706A (en) * 1992-05-25 1993-12-14 Toray Ind Inc Production of modified cross-section yarn and combined filament yarn having difference in shrinkage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207638A (en) * 1985-03-11 1986-09-16 カネボウ株式会社 Fabric excellent in opacity
JPS6257920A (en) * 1985-09-06 1987-03-13 Teijin Ltd Polyester conjugated yarn
JPH02175917A (en) * 1988-12-28 1990-07-09 Teijin Ltd Polyester fiber having low dust-generating property and modified cross section
JPH05331706A (en) * 1992-05-25 1993-12-14 Toray Ind Inc Production of modified cross-section yarn and combined filament yarn having difference in shrinkage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322095A (en) * 2005-05-17 2006-11-30 Mitsubishi Rayon Co Ltd Knitted fabric
JP2012136810A (en) * 2010-12-28 2012-07-19 Kuraray Co Ltd Polyester fiber and fiber assembly with excellent dyeability
JP2014189915A (en) * 2013-03-26 2014-10-06 Toray Ind Inc Polyester drawn false-twisted yarn
CN105332070A (en) * 2014-06-24 2016-02-17 东丽纤维研究所(中国)有限公司 Textile
CN105463596A (en) * 2014-06-24 2016-04-06 东丽纤维研究所(中国)有限公司 Thermoplastic resin false twist processed filament

Also Published As

Publication number Publication date
JP3419578B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
KR100334487B1 (en) Fiber having optical interference function and its utilization
TWI551742B (en) Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber
EP4043623A1 (en) Sheath-core composite fiber and multifilament
US6099962A (en) Fabric having shape stability and/or water resistance, and core-sheath composite yarn used in the same
JP2888489B2 (en) Composite fiber
JP3419578B2 (en) Opaque fiber aggregate
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JP2808829B2 (en) Composite filament yarn of polyester filament yarn and wool
JP2002105796A (en) Light-shielding woven fabric
JP2016113714A (en) False-twisted hollow multifilament yarn, and woven or knitted fabric
JPH05247723A (en) Conjugate fiber having excellent opacity, heat-shielding property and color-developing property
JP6538340B2 (en) Hollow multifilament yarn, false twist hollow multifilament yarn, and woven and knitted fabric
Okamoto et al. Shingosen: past, present, and future
JP2849424B2 (en) Woven and knitted fabric
JP5324360B2 (en) Fabrics and textile products including core-sheath type composite false twisted yarn
JPH0625918A (en) Easy-raising polyester fiber and its production
JP3638707B2 (en) Polyester multifilament patch and method for producing the same
JP2014177716A (en) Core-sheath irregular shape cross section composite fiber excellent in heat shield property and permeability protecting property
JP3665171B2 (en) Composite split filament and assembly comprising the same
JP3021116B2 (en) Fiber and fabric having cool feeling
JP3689994B2 (en) Polyester composite fiber and method for producing the same
KR102276508B1 (en) Athleisure fabrics using weft insertion process and manufacturing method thereof
JPH108345A (en) Lightweight heat insulating fabric
JP3097967B2 (en) Titanium oxide-containing fiber having good light resistance and method for producing the same
JPS6045610A (en) Composite fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees