JP4119143B2 - 可変容量コンプレッサの駆動トルク算出装置 - Google Patents

可変容量コンプレッサの駆動トルク算出装置 Download PDF

Info

Publication number
JP4119143B2
JP4119143B2 JP2002080113A JP2002080113A JP4119143B2 JP 4119143 B2 JP4119143 B2 JP 4119143B2 JP 2002080113 A JP2002080113 A JP 2002080113A JP 2002080113 A JP2002080113 A JP 2002080113A JP 4119143 B2 JP4119143 B2 JP 4119143B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
driving torque
refrigerant
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002080113A
Other languages
English (en)
Other versions
JP2003278663A (ja
Inventor
圭俊 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2002080113A priority Critical patent/JP4119143B2/ja
Publication of JP2003278663A publication Critical patent/JP2003278663A/ja
Application granted granted Critical
Publication of JP4119143B2 publication Critical patent/JP4119143B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車に搭載される空調装置の冷凍サイクルに採用された可変容量コンプレッサの駆動トルク算出装置の技術分野に属する。
【0002】
【従来の技術】
従来、可変容量コンプレッサの駆動トルク算出装置としては、例えば、特開平5−99156号公報に記載のものが知られている。
【0003】
この従来公報には、外気温度と回転速度と高圧側圧力と車速に基づいて可変容量コンプレッサの可変領域にある容量を計算し、この計算した容量と高圧側圧力とを用いて可変領域にある駆動トルクを計算すると共に、最大容量と高圧側圧力とを用いて最大容量に達した後の駆動トルクを計算する。そして、計算した両駆動トルクのうちで小さい方を最終的な駆動トルクと決定する装置が記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の可変容量コンプレッサの駆動トルク算出装置にあっては、コンプレッサ容量と高圧側圧力とを用いてコンプレッサ駆動トルクを推定するものであるため、コンプレッサ駆動トルクを推定するのに重要な冷媒流量が何ら考慮されていなく、計算されたコンプレッサ駆動トルクは推定精度の低い情報になってしまうという問題があった。
【0005】
本発明は、上記問題点に着目してなされたもので、冷凍サイクルのコンデンサを流れる冷媒流量を考慮することで、高い推定精度によりコンプレッサ駆動トルクを算出することができる可変容量コンプレッサの駆動トルク算出装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明では、車両用空調装置の冷凍サイクルに設けられ、外部からの信号により任意に単位時間当たりの理論吐出容量を制御することができる可変容量コンプレッサにおいて、冷凍サイクルの低圧側に設けられるコンデンサを流れる冷媒流量を推定し、推定された冷媒流量を用いてコンプレッサ駆動トルクを算出するコンプレッサ駆動トルク算出手段を設け、前記コンプレッサ駆動トルク算出手段は、コンデンサの入口側冷媒圧力と出口側冷媒圧力の差圧に基づいてコンデンサを流れる冷媒流量を算出する冷媒流量算出部と、コンプレッサ吐出側圧力を算出するコンプレッサ吐出側圧力算出部と、コンプレッサ回転数を算出するコンプレッサ回転数算出部と、算出されたコンプレッサ吐出側圧力とコンプレッサ回転数と冷媒流量とを用いてコンプレッサ駆動トルクを算出するコンプレッサ駆動トルク算出部と、を有し、設定回転数以下領域のコンプレッサ回転数を変動パラメータとし、冷媒流量に対するコンプレッサ駆動トルクの比例特性を設定したコンプレッサ駆動トルクマップを、コンプレッサ吐出側圧力が異なる毎に複数設定したコンプレッサ駆動トルクマップ設定手段を設け、前記コンプレッサ駆動トルク算出部は、算出されたコンプレッサ吐出側圧力により複数のコンプレッサ駆動トルクマップから最適マップを選択し、選択したマップにてコンプレッサ駆動回転数により比例特性を特定し、この比例特性と冷媒流量によりコンプレッサ駆動トルクを算出するようにした。
【0007】
【発明の効果】
本発明の可変容量コンプレッサの駆動トルク算出装置にあっては、コンデンサを流れる冷媒流量を推定し、推定された冷媒流量を用いてコンプレッサ駆動トルクを算出するようにしたため、冷媒流量が考慮された高い推定精度によりコンプレッサ駆動トルクを算出することができる。
【0008】
【発明の実施の形態】
以下、本発明の可変容量コンプレッサの駆動トルク算出装置を実現する実施の形態を、請求項1〜4に係る発明に対応する第1実施例に基づいて説明する。
【0009】
(第1実施例)
まず、構成を説明する。
図1は第1実施例の可変容量コンプレッサの駆動トルク算出装置が適用された車両用空調システム図である。図1において、1はエンジン、2はラジエータ、3は外部制御型コンプレッサ(可変容量コンプレッサ)、4はコンデンサ、5はリキッドタンク、6は温度式自動膨張弁、7はエバポレータ、8はオルタネータ、9は冷却電動ファン、10はファンモータ、11はコントロールバルブ、12はブロワファン、13はブロワファンモータ、14はフューエルインジェクタである。
【0010】
前記エンジン1は、燃料噴射のためのフューエルインジェクタ14を有し、エンジン1とラジエータ2とは、エンジン冷却水入口管とエンジン冷却水出口管により連結されている。
【0011】
第1実施例装置におけるエアコンサイクルは、外部制御型コンプレッサ3とコンデンサ4とリキッドタンク5と温度式自動膨張弁6とエバポレータ7とにより構成される。以下、各構成要素について説明する。
【0012】
前記外部制御型コンプレッサ3は、前記エンジン1により駆動され、エバポレータ7から送られる低温低圧の気体による冷媒を高圧高温の気体にしてコンデンサ4に送る。この外部制御型コンプレッサ3は、内蔵されたコントロールバルブ11に対するデューティ信号によりコンプレッサ容量が外部から可変に制御される。なお、外部制御型コンプレッサ3の詳しい構成は後述する。
【0013】
前記コンデンサ4は、前記ラジエータ2の前面に配置され、走行風や冷却電動ファン9によって得られる風で、高圧高温の冷媒を凝縮点まで冷却し高圧中温の液体にしリキッドタンク5へ送る。
【0014】
前記リキッドタンク5は、コンデンサ4から送られる高圧中温の液体による冷媒に含まれる水分やゴミを取り除き、冷媒が円滑に供給できるように溜めて、温度式自動膨張弁6へ送る。
【0015】
前記温度式自動膨張弁6は、リキッドタンク5から送られる高圧中温の液体による冷媒を急激に膨張させ、低温低圧の液体(霧状)にし、エバポレータ7に送る。
【0016】
前記エバポレータ7は、温度式自動膨張弁6から送られる霧状の冷媒を、ブロワファン12により送られる車内空気からの熱を奪いながら蒸発させることで低圧低温の気体とし、この低圧低温の気体による冷媒を外部制御型コンプレッサ3に送る。
【0017】
前記冷却電動ファン9は、前記エンジン1により駆動されるオルタネータ8の端子電圧を電源として作動されるファンモータ10を有する。このファンモータ10は、モータ駆動電圧がPWM制御(PWM=Pulse Width Modulationの略称)され、ファンモータ10の作動によるコンデンサ冷却能力が可変に制御される。
【0018】
前記ブロワファン12は、ブロワファンモータ13により駆動され、車室内の空気である内気を吸い込み、前記エバポレータ7に圧送し、冷たくなった空気を車室内に送り出す。
【0019】
次に、電子制御系について説明する。図1において、20は空調コントロールユニット、20aはコンプレッサ駆動トルク算出部(コンプレッサ駆動トルク算出手段)、20bはファンモータ制御部、20cはコンプレッサ容量制御部、21は空調制御入力センサ系、22はPWMモジュール、23はエンジンコントロールユニット、24はエンジン制御入力センサ系である。
【0020】
前記空調コントロールユニット20は、冷凍サイクルの高圧側(コンデンサ4)の冷媒流量Grに基づいてコンプレッサ駆動トルクTcompを算出するコンプレッサ駆動トルク算出部20aと、PWMモジュール22に対し出力するデューティ信号を演算するファンモータ制御部20bと、コントロールバルブ11へ出力するデューティ信号を演算するCOMP容量制御部20cと、を有する。
【0021】
前記空調制御入力センサ系21として、エアコンスイッチ21-1、モードスイッチ21-2、デフスイッチ21-3、オートスイッチ21-4、FREスイッチ21-5、RECスイッチ21-6、温度調整スイッチ21-7、オフスイッチ21-8、内気温度センサ21-9、外気温度センサ21-10、日射センサ21-11、吸込温度センサ21-12、水温センサ21-13、高圧圧力センサ21-14(高圧側冷媒圧力検出手段)が設けられている。
【0022】
これら既設の空調制御入力センサ系21に、コンデンサ4の入口圧と出口圧との差圧を検出する差圧センサ21-15(コンデンサ差圧検出手段)が追加されている。すなわち、前記コンデンサ4は、図4に示すように、パラレルフロー式で、サブクール部(過冷却部)を有するコンデンサ4と、リキッドタンク5とを一体化し、一端部に外部制御型コンプレッサ3からの冷媒入口管15と、リキッドタンク5への冷媒出口管16を配置し、冷媒入口管15に高圧圧力センサ21-14を設けると共に、冷媒入口管15と冷媒出口管16の冷媒差圧を受ける位置に差圧センサ21-15を設けている。
【0023】
前記エンジンコントロールユニット23は、双方通信線を介して空調コントロールユニット20に接続され、エンジン制御入力センサ系24として、車速センサ24-1、エンジン回転数センサ24-2(エンジン回転数検出手段)、アクセル開度センサ24-3、アイドルスイッチ24-4等が設けられている。
【0024】
図2は外部制御型コンプレッサ3を示す断面図であり、図3は外部制御型コンプレッサ3のコントロールバルブ11に対するデューティ信号によるコンプレッサ容量(吐出側圧力)の制御作用説明図である。
【0025】
前記外部制御型コンプレッサ3は、多気筒斜板式であり、コンプレッサケース30と、プーリ31と、駆動軸32と、斜板駆動体33と、斜板34と、ピストン35と、高圧ボール弁36と、コントロールバルブ11と、高圧室37と、クランク室38と、を有して構成されている。
【0026】
この外部制御型コンプレッサ3は、内蔵された斜板34の傾きを変化させることにより、吐出容量の制御を行う。つまり、外部制御型コンプレッサ3内に組み込まれたコントロールバルブ11に対するデューティ信号により、高圧ボール弁36のリフト量を変化させる。これにより、高圧室37(=吐出側圧力Pd)から高圧ボール弁36を経過してクランク室38へ流れ込む冷媒流量を制御し、コンプレッサ3内のクランク室38の圧力(=クランク室圧力Pc)を変え、斜板34の傾きを変化させる。
【0027】
高圧ボール弁36のリフト量は、図3に示すように、コントロールバルブ11のダイヤフラムに係る低圧圧力(=吸込側圧力Ps)とセットスプリングのバネ荷重と電磁コイルに発生する磁力のバランスにより決まる。
【0028】
前記コントロールバルブ11内の電磁コイルには、コンプレッサ容量制御部20cから、例えば、400HzのパルスON-OFF信号(デューティ信号)が送られ、デューティ比による実効電流により発生する磁力の変化で高圧ボール弁36のリフト量を制御する。
【0029】
次に、作用を説明する。
【0030】
図5はエアコンコントロールユニット20のコンプレッサ駆動トルク算出部20aにて実行される駆動トルク算出処理の流れを示すフローチャートであり、このフローチャートに沿って外部制御型コンプレッサ3の駆動トルク算出作用を説明する。
【0031】
なお、この駆動トルク算出処理は、クーラ作動中において常時実行するようにしても良いし、また、減速時フューエルカット制御やアイドル回転数制御等においてエンジンコントロールユニット23から要求により実行するようにしても良い。
【0032】
[入力情報の読み込み]
まず、ステップS1では、高圧圧力センサ21-14により検出された高圧圧力センサ値Pcondinと、差圧センサ21-15により検出された差圧センサ値△Pと、エンジン回転数センサ24-2により検出されたエンジン回転数センサ値Neが読み込まれる。
【0033】
これらのセンサ値Pcondin,△P,Neは、センサ信号の変動を滑らかにする遅延補正やフィルタ処理等が施され、高圧圧力センサ認識値Pcondin、差圧センサ認識値△P,エンジン回転数センサ認識値Neとして、以後の処理に用いられる。
【0034】
[冷媒流量の算出]
ステップS2では、差圧センサ認識値△P(=圧力損失)に基づいてコンデンサ4を流れる冷媒流量Grが算出される(冷媒流量算出部)。
【0035】
すなわち、コンデンサ4での圧力損失△P(cond)は、冷媒流量Grを用いた下記の式であらわされる。
△P(cond)=k×Gr ...(1)
ここで、k,nは係数であり、適用されるコンデンサを用いて台上実験を行うことにより求めることができる。
【0036】
この(1)式の圧力損失△P(cond)として差圧センサ認識値△Pを代入すると共に、係数k,nとして実験により決められた値を代入することにより、冷媒流量Grを算出することができる。
【0037】
[コンプレッサ吐出側圧力とコンプレッサ回転数の算出]
ステップS3では、コンプレッサ吐出側圧力Pdとコンプレッサ回転数Ncompとが算出される(コンプレッサ吐出側圧力算出部およびコンプレッサ回転数算出部)。
【0038】
すなわち、高圧圧力センサ21-14は、コンデンサ4の冷媒入口管15に設けられ、しかも、この冷媒入口管15は外部制御型コンプレッサ3の吐出側配管と連通しているため、高圧圧力センサ21-14による圧力検出により得られる高圧圧力センサ認識値Pcondinをそのままコンプレッサ吐出側圧力Pdとして算出することができる(Pd=Pcondin)。
【0039】
或いは、外部制御型コンプレッサ3の吐出側配管の圧力損失△P(comp)を考慮し、Pd=Pcondin+△P(comp)の式により、コンプレッサ吐出側圧力Pdを算出するようにしても良い。なお、圧力損失△P(comp)は、冷媒流量Grに比例して発生する。この場合、コンプレッサ吐出側圧力Pdを、より精度良く求めることができる。
【0040】
また、第1実施例の外部制御型コンプレッサ3は、エンジン1により駆動されているため、プーリ比iが1:1の場合には、エンジン回転数センサ認識値Neをそのままコンプレッサ回転数Ncompとして算出することができる(Ncomp=Ne)。
【0041】
なお、プーリ比iが1:1でない場合には、エンジン回転数センサ認識値Neにプーリ比iを掛けた値をコンプレッサ回転数Ncompとして算出することができる(Ncomp=Ne×i)。
【0042】
[コンプレッサ駆動トルクの算出]
ステップS4では、コンプレッサ吐出側圧力Pdとコンプレッサ回転数Ncompと冷媒流量Grを用いて、コンプレッサ駆動トルクTcompが算出される(コンプレッサ駆動トルク算出部)。
【0043】
まず、本発明者は、冷媒流量とコンプレッサ動力との関係を、コンプレッサ吐出側圧力Pd(=22k)が同一で、コンプレッサ吸入側圧力Psを、Ps=2k,Ps=2.5k,Ps=3kと異ならせて測定した。この測定結果が図6である。
【0044】
また、冷媒流量とコンプレッサ動力との関係を、コンプレッサ吸入側圧力Psが同一で、コンプレッサ吐出側圧力Pdを、Pd=12k,Pd=14k,Pd=16k,Pd=18k,Pd=20k,Pd=22k,Pd=24kと異ならせて測定した。この測定結果が図7である。
【0045】
この図6と図7の測定結果により、PdベースでもPsベースでも、冷媒流量が分かっていれば、コンプレッサ動力を略推定できるといえる。ところが、コンプレッサ動力の推定精度の向上を目指すと、図6のグラフから明らかなように、同じPdベースでもコンプレッサ吸入側圧力Psによってコンプレッサ動力がPsの多項式(例えば、二次式)によりあらわされる。図7のグラフから明らかなように、同じPsベースでもコンプレッサ吐出側圧力Pdによってコンプレッサ動力がPdの多項式(例えば、二次式)によりあらわされる。
【0046】
よって、コンプレッサ吐出側圧力Pdとコンプレッサ吸入側圧力Psとを、精度良く推定することができれば、コンプレッサ動力の推定精度の向上を図ることが可能である。
【0047】
しかし、コンプレッサ吐出側圧力Pdとコンプレッサ吸入側圧力Psのうち、コンプレッサ吸入側圧力Psを精度良く推定、或いは、測定することはコスト、レイアウト条件等でかなり難しいものがある。
【0048】
そこで、推定したいコンプレッサ駆動トルク情報を、エンジン制御側で利用しようとした場合、減速時のフューエルカット制御やアイドル回転数制御が行われるのは、エンジン回転数が、例えば、1800rpm以下の低回転数領域に限られることから、コンプレッサ吐出側圧力Pd(=22k)を一定とし、エンジン回転数(=コンプレッサ回転数)を800rpm, 1200rpm, 1800rpmというように変え、各エンジン回転数にてコンプレッサ吸入側圧力Psを、Ps=2k,Ps=2.5k,Ps=3kと異ならせて測定した。冷媒流量とコンプレッサ動力との関係を測定した。この測定結果が図8である。
【0049】
この図8の測定結果により、コンプレッサ回転数をベースにみると、コンプレッサ吐出側圧力Pdが一定値の場合、コンプレッサ吸入側圧力Psの変化にかかわらず、冷媒流量とコンプレッサ動力とには、比例関係にあることが判明した。
【0050】
言い換えると、コンプレッサ回転数とコンプレッサ吐出側圧力Pdと冷媒流量が分かっていれば、コンプレッサ吸入側圧力Psを推定したり測定することなく、コンプレッサ動力を高い精度により推定できるということを意味する。
【0051】
そこで、ステップS4では、図8の測定グラフに基づいて、コンプレッサ吐出側圧力Pdを一定とし、コンプレッサ回転数Ncomp(例えば、1800rpm以下の回転数域)をパラメータとし、冷媒流量Grに対するコンプレッサ駆動トルクTcompの比例特性によるコンプレッサ駆動トルクマップ(あるいは、コンプレッサ駆動トルク演算式)を設定する。このコンプレッサ駆動トルクマップは、コンプレッサ吐出側圧力Pdを、Pd=A1, Pd=A2, Pd=A3,...,Pd=Anというように、段階的に変えて複数マップ設定しておく。なお、代表的な1つのコンプレッサ駆動トルクマップを設定しておき、コンプレッサ吐出側圧力Pdによる換算にて、無数のマップが存在するような設定としても良い(コンプレッサ駆動トルクマップ設定手段)。
【0052】
そして、測定されたコンプレッサ吐出側圧力Pdにより複数設定しておいたマップから最適マップを選択(例えば、PdがA1±αの範囲に入る場合には、Pd=A1のマップを選択)し、この選択したマップにおいて、コンプレッサ回転数Ncompにより1つの比例特性を特定し、この特定した比例特性と冷媒流量Grによりコンプレッサ駆動トルクTcompを算出する。
【0053】
[コンプレッサ駆動トルク情報の利用]
ステップS5では、ステップS4で算出されたコンプレッサ駆動トルクTcompを、エンジンコントロールユニット23やコンプレッサ容量制御部20cに送信する。
【0054】
このエンジンコントロールユニット23への送信により、エンジン制御側でコンプレッサ負荷を正確に把握することができ、例えば、減速時フューエルカット制御やアイドル回転数制御等の様々なエンジン制御にコンプレッサ駆動トルク情報を活用することができる。すなわち、エンジン制御側では、エンジンストールが生じないように、最大コンプレッサ駆動トルクを想定して制御に用いるしきい値や目標値を設定していたのに対し、これらの値をコンプレッサ駆動トルク情報に応じた値により与えることができる。
【0055】
さらに、コンプレッサ容量制御部20cへの送信により、例えば、減速時フューエルカット制御やアイドル回転数制御が行われる時には、要求冷房能力が低ければ空調制御側でコンプレッサ容量を下げるというように、空調制御とエンジン制御とを協調させた総合制御を行うこともできる。
【0056】
次に、効果を説明する。
【0057】
第1実施例の可変容量コンプレッサの駆動トルク算出装置にあっては、下記に列挙する効果を得ることができる。
【0058】
(1) 車両用空調装置の冷凍サイクルに設けられ、外部からの信号により任意に単位時間当たりの理論吐出容量を制御することができる外部制御型コンプレッサ3において、冷凍サイクルの高圧側に設けられるコンデンサ4を流れる冷媒流量Grを推定し、推定された冷媒流量Grを用いてコンプレッサ駆動トルクTcompを算出するコンプレッサ駆動トルク算出部20aを空調コントロールユニット20に設けたため、冷凍サイクルのコンデンサ4を流れる冷媒流量Grを考慮した高い推定精度によりコンプレッサ駆動トルクTcompを算出することができる。
【0059】
(2) コンプレッサ駆動トルク算出部20aは、差圧センサ認識値△Pに基づいてコンデンサ4を流れる冷媒流量Grを算出する冷媒流量算出ステップ(ステップS2)、コンプレッサ吐出側圧力Pdを算出するコンプレッサ吐出側圧力算出ステップ(ステップS3)と、コンプレッサ回転数Ncompを算出するコンプレッサ回転数算出ステップ(ステップS3)と、算出されたコンプレッサ吐出側圧力Pdとコンプレッサ回転数Ncompと冷媒流量Grとを用いてコンプレッサ駆動トルクTcompを算出するコンプレッサ駆動トルク算出ステップ(ステップS4)と、を有するため、少ない算出処理ステップ数により簡単に精度良くコンプレッサ駆動トルクTcompを算出することができる。
【0060】
(3) コンデンサ4の入口側冷媒圧力と出口側冷媒圧力の差圧△Pを検出する差圧センサ21-15を設け、冷媒流量算出ステップ(ステップS2)は、差圧センサ認識値△Pに基づいてコンデンサ4を流れる冷媒流量Grを算出するようにしたため、測定値のみに基づく冷媒流量Grの算出となり、高い精度でコンデンサ4を流れる冷媒流量Grを算出することができる。
【0061】
(4) 冷凍サイクルの高圧側圧力を検出する高圧圧力センサ21-14を設け、コンプレッサ吐出側圧力算出ステップ(ステップS3)は、高圧圧力センサ認識値Pcondinに基づいてコンプレッサ吐出側圧力Pdを算出するようにしたため、測定値に基づいて精度良く簡単にコンプレッサ吐出側圧力Pdを算出することができる。
【0062】
(5) エンジン回転数を検出するエンジン回転数センサ24-2を設け、コンプレッサ回転数算出ステップ(ステップS3)は、エンジン回転数センサ認識値Neに基づいてコンプレッサ回転数Ncompを算出するようにしたため、測定値に基づいて精度良く簡単にコンプレッサ回転数Ncompを算出することができる。
【0063】
(6) 線形特性が確保される設定回転数以下領域のコンプレッサ回転数Ncompを変動パラメータとし、冷媒流量Grに対するコンプレッサ駆動トルクTcompの比例特性を設定したコンプレッサ駆動トルクマップを、コンプレッサ吐出側圧力Pdが異なる毎に複数設定し、コンプレッサ駆動トルク算出ステップ(ステップS4)は、算出されたコンプレッサ吐出側圧力Pdにより複数のコンプレッサ駆動トルクマップから最適マップを選択し、選択したマップにてコンプレッサ駆動回転数Ncompにより比例特性を特定し、この比例特性と冷媒流量Grによりコンプレッサ駆動トルクTcompを算出するようにしたため、エンジン低回転数域にてエンジン制御系で省燃費のために用いられる精度の高いコンプレッサ駆動トルク情報を、推定や測定が難しいコンプレッサ吐出側圧力Psを用いない簡単な演算により提供することができる。
【0064】
以上、本発明の可変容量コンプレッサの駆動トルク算出装置を第1実施例に基づき説明してきたが、具体的な構成については、この第1実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
【0065】
例えば、第1実施例では、コンプレッサとしてエンジン駆動による外部制御型コンプレッサを用いる例を示したが、モータにより駆動される可変容量の電動コンプレッサを備えた冷凍サイクルにも適用できる。この場合、コンプレッサ駆動回転数は、モータ回転数の検出に基づいて算出されることになる。
【0066】
第1実施例では、コンデンサ差圧検出手段として、コンデンサの入口側において高圧圧力センサと共に差圧センサを設けた例を示したが、コンデンサの入口側と出口側にそれぞれ圧力センサを設け、両センサからの検出値の差を算出する圧力差算出手段をコンデンサ差圧検出手段としても良い。また、コンデンサの出口側において高圧圧力センサと共に差圧センサを設けても良い。
【0067】
第1実施例では、高圧側冷媒圧力検出手段として、コンデンサの入口側に設けた高圧圧力センサの例を示したが、コンデンサの出口側に設けた高圧圧力センサとしても良いし、また、コンプレッサの吐出ポートの近くに設けた高圧圧力センサとしても良い。
【図面の簡単な説明】
【図1】第1実施例の可変容量コンプレッサの駆動トルク算出装置が適用された車両用空調システム図である。
【図2】第1実施例装置が適用された冷凍サイクルに有する外部制御型コンプレッサを示す断面図である。
【図3】第1実施例装置に適用された冷凍サイクルに有する外部制御型コンプレッサでの容量可変制御作用の説明図である。
【図4】第1実施例装置の高圧圧力センサと差圧センサとが設けられたコンデンサの入口冷媒配管部を示す図である。
【図5】第1実施例のエアコンコントロールユニットのコンプレッサ駆動トルク算出部にて実行される駆動トルク算出処理の流れを示すフローチャートである。
【図6】同一コンプレッサ吐出側圧力をベースとする冷媒流量−コンプレッサ動力の測定グラフを示す図である。
【図7】同一コンプレッサ吸入側圧力をベースとする冷媒流量−コンプレッサ動力の測定グラフを示す図である。
【図8】同一コンプレッサ吐出側圧力をベースとしコンプレッサ駆動回転数をパラメータとする冷媒流量−コンプレッサ動力の測定グラフを示す図である。
【符号の説明】
1 エンジン
2 ラジエータ
3 外部制御型コンプレッサ(可変容量コンプレッサ)
4 コンデンサ
5 リキッドタンク
6 温度式自動膨張弁
7 エバポレータ
8 オルタネータ
9 冷却電動ファン
10 ファンモータ
11 コントロールバルブ
12 ブロワファン
13 ブロワファンモータ
14 フューエルインジェクタ
20 空調コントロールユニット
20a コンプレッサ駆動トルク算出部(コンプレッサ駆動トルク算出手段)
20b ファンモータ制御部
20c コンプレッサ容量制御部
21 空調制御入力センサ系
21-14 高圧圧力センサ(高圧冷媒圧力検出手段)
21-15 差圧センサ(コンデンサ差圧検出手段)
22 PWMモジュール
23 エンジンコントロールユニット
24 エンジン制御入力センサ系
24-2 エンジン回転数センサ(エンジン回転数検出手段)

Claims (4)

  1. 車両用空調装置の冷凍サイクルに設けられ、外部からの信号により任意に単位時間当たりの理論吐出容量を制御することができる可変容量コンプレッサにおいて、
    冷凍サイクルの高圧側に設けられるコンデンサを流れる冷媒流量を推定し、推定された冷媒流量を用いてコンプレッサ駆動トルクを算出するコンプレッサ駆動トルク算出手段を設け
    前記コンプレッサ駆動トルク算出手段は、
    コンデンサの入口側冷媒圧力と出口側冷媒圧力の差圧に基づいてコンデンサを流れる冷媒流量を算出する冷媒流量算出部と、
    コンプレッサ吐出側圧力を算出するコンプレッサ吐出側圧力算出部と、
    コンプレッサ回転数を算出するコンプレッサ回転数算出部と、
    算出されたコンプレッサ吐出側圧力とコンプレッサ回転数と冷媒流量とを用いてコンプレッサ駆動トルクを算出するコンプレッサ駆動トルク算出部と、
    を有し、
    設定回転数以下領域のコンプレッサ回転数を変動パラメータとし、冷媒流量に対するコンプレッサ駆動トルクの比例特性を設定したコンプレッサ駆動トルクマップを、コンプレッサ吐出側圧力が異なる毎に複数設定したコンプレッサ駆動トルクマップ設定手段を設け、
    前記コンプレッサ駆動トルク算出部は、算出されたコンプレッサ吐出側圧力により複数のコンプレッサ駆動トルクマップから最適マップを選択し、選択したマップにてコンプレッサ駆動回転数により比例特性を特定し、この比例特性と冷媒流量によりコンプレッサ駆動トルクを算出することを特徴とする可変容量コンプレッサの駆動トルク算出装置。
  2. 請求項1に記載された可変容量コンプレッサの駆動トルク算出装置において、
    コンデンサの入口側冷媒圧力と出口側冷媒圧力の差圧を検出するコンデンサ差圧検出手段を設け、
    前記冷媒流量算出部は、コンデンサ差圧検出値に基づいてコンデンサを流れる冷媒流量を算出することを特徴とする可変容量コンプレッサの駆動トルク算出装置。
  3. 請求項1または請求項2の何れかに記載された可変容量コンプレッサの駆動トルク算出装置において、
    冷凍サイクルの高圧側圧力を検出する高圧側冷媒圧力検出手段を設け、
    前記コンプレッサ吐出側圧力算出部は、高圧側冷媒圧力検出値に基づいてコンプレッサ吐出側圧力を算出することを特徴とする可変容量コンプレッサの駆動トルク算出装置。
  4. 請求項1ないし請求項3の何れかに記載された可変容量コンプレッサの駆動トルク算出装置において、
    エンジン回転数を検出するエンジン回転数検出手段を設け、
    前記コンプレッサ回転数算出部は、エンジン回転数検出値に基づいてコンプレッサ回転数を算出することを特徴とする可変容量コンプレッサの駆動トルク算出装置。
JP2002080113A 2002-03-22 2002-03-22 可変容量コンプレッサの駆動トルク算出装置 Expired - Fee Related JP4119143B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080113A JP4119143B2 (ja) 2002-03-22 2002-03-22 可変容量コンプレッサの駆動トルク算出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080113A JP4119143B2 (ja) 2002-03-22 2002-03-22 可変容量コンプレッサの駆動トルク算出装置

Publications (2)

Publication Number Publication Date
JP2003278663A JP2003278663A (ja) 2003-10-02
JP4119143B2 true JP4119143B2 (ja) 2008-07-16

Family

ID=29229283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080113A Expired - Fee Related JP4119143B2 (ja) 2002-03-22 2002-03-22 可変容量コンプレッサの駆動トルク算出装置

Country Status (1)

Country Link
JP (1) JP4119143B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978484B2 (en) 2011-12-15 2015-03-17 Valeo Japan Co., Ltd. Drive torque estimation device for compressor and condenser used for the device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862573B1 (fr) * 2003-11-25 2006-01-13 Valeo Climatisation Installation de climatisation de vehicule
JP2006152982A (ja) * 2004-12-01 2006-06-15 Valeo Thermal Systems Japan Corp 圧縮機のトルク推定装置
JP2006273027A (ja) * 2005-03-28 2006-10-12 Calsonic Kansei Corp 車両用空調装置のコンプレッサ制御装置及びエンジンの燃料噴射量制御システム
JP5149580B2 (ja) * 2007-09-26 2013-02-20 サンデン株式会社 可変容量圧縮機のための容量制御弁、容量制御システム及び可変容量圧縮機
JP5394047B2 (ja) * 2007-11-26 2014-01-22 高砂熱学工業株式会社 パッケージ型空調機による空調システムの冷房能力測定方法及びその装置
JP4558060B2 (ja) * 2008-04-22 2010-10-06 トヨタ自動車株式会社 冷凍サイクル装置
JP2010047149A (ja) * 2008-08-22 2010-03-04 Sanden Corp 車両用空調装置
JP5413956B2 (ja) 2009-05-20 2014-02-12 サンデン株式会社 可変容量圧縮機の駆動トルク演算装置、及び、車両用空調システム
JP2011031679A (ja) * 2009-07-30 2011-02-17 Sanden Corp 車両用空調装置
JP2011031678A (ja) * 2009-07-30 2011-02-17 Sanden Corp 冷凍サイクル
JP2017088139A (ja) * 2015-11-17 2017-05-25 株式会社ヴァレオジャパン 車両用空調装置及びそれを備えた車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978484B2 (en) 2011-12-15 2015-03-17 Valeo Japan Co., Ltd. Drive torque estimation device for compressor and condenser used for the device

Also Published As

Publication number Publication date
JP2003278663A (ja) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3329275B2 (ja) 車両用空調装置
JP3959305B2 (ja) 車両用空調制御装置
JP4119143B2 (ja) 可変容量コンプレッサの駆動トルク算出装置
JP4053327B2 (ja) 車両用空調制御装置
EP1726829B1 (en) Control apparatus for variable capacity compressor and method of calculating torque of variable capacity compressor
US7676331B2 (en) Torque estimating device of compressor
JP4682904B2 (ja) 圧縮機駆動トルク推定装置および圧縮機駆動源制御装置。
US8434315B2 (en) Compressor driving torque estimating apparatus
US7891204B2 (en) Refrigeration cycle device for vehicle
US7841197B2 (en) Torque calculation apparatus and torque calculation method of variable capacitance compressor
KR101209724B1 (ko) 차량용 압축기 제어 장치 및 제어 방법
JP4119142B2 (ja) 可変容量コンプレッサの駆動トルク算出装置
JP2009008063A (ja) 可変容量コンプレッサの制御装置
JP2004249897A (ja) 車両用空調装置
JP2004115012A (ja) 制御装置を備える空調機
JPH1038717A (ja) 車両用空調装置の可変容量コンプレッサトルク検出方法
JP4011994B2 (ja) 車両用制御装置
JP4804797B2 (ja) 空調装置用可変容量圧縮機の制御方法及び可変容量圧縮機のトルク算出装置
JP3961107B2 (ja) 外部制御式可変容量コンプレッサのトルク予測装置およびこれを用いた自動車エンジン制御装置
JP3839627B2 (ja) 車両用空調装置
JP2004231097A (ja) 車両用空調制御装置
KR20120062412A (ko) 차량용 공조장치의 전동압축기 제어방법
US10538146B2 (en) Reducing externally variable displacement compressor (EVDC) start-up delay
JP2004224205A (ja) 車両用空調制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees