JP4118496B2 - Power semiconductor device and overcurrent protection circuit - Google Patents

Power semiconductor device and overcurrent protection circuit Download PDF

Info

Publication number
JP4118496B2
JP4118496B2 JP2000274417A JP2000274417A JP4118496B2 JP 4118496 B2 JP4118496 B2 JP 4118496B2 JP 2000274417 A JP2000274417 A JP 2000274417A JP 2000274417 A JP2000274417 A JP 2000274417A JP 4118496 B2 JP4118496 B2 JP 4118496B2
Authority
JP
Japan
Prior art keywords
voltage
terminal
sense
output signal
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000274417A
Other languages
Japanese (ja)
Other versions
JP2002084173A (en
Inventor
高志 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000274417A priority Critical patent/JP4118496B2/en
Publication of JP2002084173A publication Critical patent/JP2002084173A/en
Application granted granted Critical
Publication of JP4118496B2 publication Critical patent/JP4118496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Power Conversion In General (AREA)
  • Logic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、インバータ装置等の電力変換装置においてスイッチング素子として用いられるパワートランジスタを含む電力用半導体装置に関するものであり、特に負荷乃至は主回路の過負荷や短絡に応じて当該パワートランジスタに流れる過電流を検出してパワートランジスタを保護する技術に関している。
【0002】
【従来の技術】
図3は、IGBTの過電流検出回路を含む従来の電力用半導体装置の一部を示す回路図である。同図中、ITは主回路(図示せず)に接続された電力用半導体装置の入力端子であり、101は入力端子ITに接続されたコレクタ端子TCを有する主IGBTであり、ターンオン時に主電流Icから後述するセンス電流Isを除く電流Icoが主IGBT101のコレクタ端子TCからエミッタ端子TEへと流れる。又、102は補助IGBTであり、ターンオン時に主電流Icの一部であるセンス電流Isが補助IGBT102のコレクタ端子TCからセンス端子TSへと流れる。尚、主IGBT101と補助IGBT102とは一つの半導体ウエハ内に一体的に形成されているので、両者101、102を単にIGBT100と総称する。
【0003】
他方、センス抵抗103と、センス抵抗103に並列に接続されたコンデンサ113と、基準電圧Vrefを生成する電源111と、センス抵抗103で生じるセンス電圧Vsを+側入力とし且つ上記基準電圧Vrefを−側入力とする比較器210と、過電流検出出力端子310とは、IGBT100の過電流検出回路を構成している。
【0004】
次に、図3の回路の動作について説明する。今、主IGBT101がオンし、しかも補助IGBT102もオンしている状態にあるとする。このとき、主回路からIGBT100のコレクタ端子TCに流れ込む主電流Icの大部分は電流Icoとして主IGBT101内を流れ、その一部はセンス電流Isとして補助IGBT102内を流れてセンス抵抗103によってセンス電圧Vsとして検出される。そして、比較器210はセンス電圧Vsと基準電圧Vrefとを比較し、センス電圧Vsが基準電圧Vrefを越えるときに出力を“L”レベルから“H”レベルへと変更する。これにより、過電流状態の検出を示す“H”レベルの信号が、過電流検出出力端子310から外部に出力される。
【0005】
又、他の従来の技術例としては、特開平11−299218号公報の図1に開示されたものもある。この従来技術でも、センス抵抗で補助IGBTを流れるセンス電流を検出し、得られたセンス電圧と基準電圧とを比較器で比較することで過電流状態を検出している点は、既述した図3の従来技術例と同一である。
【0006】
【発明が解決しようとする課題】
従来の過電流検出回路では、センス抵抗でセンス電流を検出して得られたセンス電圧と基準電圧とを比較器で比較することで過電流状態の発生の有無を検出している。ところが、補助IGBTがターンオンする際には、そのリカバリー段階でセンス電流の電流増加率(dIs/dt)に極大・極小を有する局所的な変化が生じる。そのため、このセンス電流の変動分がセンス抵抗によってセンス電圧のノイズとして検出されることとなる。そして、通常は比較器の基準電圧は例えば0.5Vと小さいため、センス電圧のノイズ分の重畳によってセンス電圧が基準電圧を越えてしまうという状態が容易に発生する。その結果、実際には過電流状態ではないのに、比較器が過電流状態にあると誤判定してしまい、誤った過電流保護が働いてしまうという問題点が生じている。
【0007】
本発明はこの様な問題点を克服すべく成されたものであり、その目的は、センス電流をセンス抵抗によって検出して得られるセンス電圧にノイズが発生しても何ら誤判定を生じさせることなく、真に過電流状態が発生したのを確実に検出して過電流状態からパワートランジスタを確実に保護することが出来る技術を確立することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、電力用半導体装置であって、主回路に接続された第1主電極端子と、第2主電極端子と、制御電極端子と、センス端子とを備え、前記制御電極端子に印加される制御電圧がしきい値電圧以上のときに前記第1主電極端子と前記第2主電極端子との間に電流を流し且つ前記第1主電極端子と前記センス端子との間にセンス電流を流すパワートランジスタと、前記パワートランジスタの前記制御電極端子に接続された出力端子と、制御端子とを備え、前記制御電圧を生成して前記出力端子より出力する駆動回路と、前記パワートランジスタの前記第1主電極端子と前記センス端子とにそれぞれ接続された第1及び第2入力端子と、前記駆動回路の前記制御端子に接続された出力端子とを備え、前記第1主電極端子の電圧と前記センス端子のセンス電圧とをそれぞれモニターし、前記センス電圧が第1基準電圧を越えると共に前記第1主電極端子電圧のモニター結果も第2基準電圧を越えるときにのみ前記パワートランジスタが過電流状態にあると判定して、前記過電流状態を示す出力信号を前記制御端子に出力する過電流保護回路とを備え、前記駆動回路は前記過電流状態を示す出力信号の受信に応じて前記制御電圧を前記しきい値電圧未満に設定して前記パワートランジスタをターンオフさせることを特徴とする。
【0011】
【発明の実施の形態】
(実施の形態1)
図1は、この発明の実施の形態1に係る電力用半導体装置の主要部を示す回路図である。同図中、図3に示された記号及び符号と同一のものは、同一の回路構成要素を示す。
【0012】
本電力用半導体装置は、大別して、センス端子付きパワートランジスタ100と、過電流保護回路200と、駆動回路213とより成る。これらの内で、パワートランジスタ100は、ここではIGBTより構成されているが、これに限定されるものでは無く、例えば縦型パワーMOSFETの様な他の電力用半導体スイッチング素子で構成されていても良い。
【0013】
先ず、センス端子付きパワートランジスタないしはIGBT100は、同一の半導体基板内に一体的に形成された、主IGBT101と補助IGBT102とより成る。即ち、本電力用半導体装置の入力端子ITは、主回路(図示せず)に接続されていると共に、フリーホイールダイオード(図示せず)を介して駆動電源(図示せず:電源電位Vcc)にも接続されている。更に、主IGBT101は、オン時に入力端子ITを介して主回路から主電流Icが流れ込むコレクタ端子(第1主電極端子に相当)TCと、制御電圧が印加されるゲート端子(制御電極端子に相当)TGと、接地されたエミッタ端子(第2主電極端子に相当)TEとを有する。又、補助IGBT102は、主IGBT101と共有するコレクタ端子TC及びゲート端子TGと、センス電流Isを出力するセンス端子TSとを有する。そして、正常動作時に於けるIGBT100のターンオン以後のオン時には(制御電圧VGEがIGBT100のしきい値電圧以上のとき)、主電流Icからセンス電流Isを除いたコレクタ−エミッタ間電流Icoが主IGBT101のコレクタ端子TCからエミッタ端子TEへと流れると共に、主電流Icの一部であるセンス電流Isが補助IGBT102のコレクタ端子TCからセンス端子TSへと流れる。尚、110はフリーホイールダイオードである。
【0014】
次に、過電流保護回路200は、(A)第1モニター回路部ないしはセンス電圧モニター回路部(103、113、111、210)と、(B)第2モニター回路部ないしはコレクタ電圧(第1主電極端子電圧)モニター回路部(104、106、107、105、108、211)と、(C)過電流判定回路212とに、大別される。即ち、過電流保護回路200は、IGBT100のコレクタ端子TCに接続された第1入力端子(分圧抵抗104の一端に相当)と、センス端子TSに接続された第2入力端子(センス抵抗103の一端に相当)と、駆動回路213の制御端子(図示せず)に接続された出力端子(AND回路212の出力端に相当)とを備えており、コレクタ電圧VCEとセンス電圧Vsとをそれぞれモニターし、センス電圧Vsが第1基準電圧Vref1を越えると共に、コレクタ電圧VCEのモニター結果ないしはモニター電圧VCSも第2基準電圧Vref2を越えるときにのみ主電流IcないしはIGBT100が過電流状態にあると判定して、過電流状態を示す出力信号VT を上記制御端子に出力する機能を有する。
【0015】
(A) 特に、センス電圧モニター回路部は、(1)センス端子TSをその入力端子とし、センス電圧Vsを検出するセンス電圧検出部と、(2)第1比較器210とより成る。これらの内で、(1)センス電圧検出部は、互いに並列接続されたセンス抵抗103とコンデンサ113とより成り、他方、(2)第1比較器210は、センス電圧Vsが印加される一方の入力端と、電源111が作る第1基準電圧Vref1が印加される他方の入力端とを有し、センス電圧Vsと第1基準電圧Vref1とを比較して、センス電圧Vsが第1基準電圧Vref1以下のときには第1レベル(例えば“L”レベルの信号)の出力信号Vcom1を出力し、センス電圧Vsが第1基準電圧Vref1を越えるときには第2レベル(例えば“H”レベルの信号)の出力信号Vcom1を出力する機能を具備する。
【0016】
尚、異常動作時のセンス電圧Vsが実際に第1基準電圧Vref1よりも大きくなる様に、第1基準電圧Vref1に対して、センス抵抗103の抵抗値が設定される。
【0017】
(B) 加えて、コレクタ電圧モニター回路部は、(1)コレクタ端子TCをその入力端子とし、IGBT100のターンオン時に於けるコレクタ電圧VCEの上昇変化を検出して当該検出結果をモニター電圧VCSとして出力するコレクタ電圧モニター部と、(2)第2比較器211とより成る。これらの内で、(1)コレクタ電圧モニター部は、i)コレクタ端子TCとエミッタ端子TE間にIGBT100と並列に配置され且つコレクタ端子TC側から順次に直列に接続された第1及び第2分圧抵抗104、106と、ii)第1分圧抵抗104と第2分圧抵抗106間の節点に一端が接続されたコンデンサ107とコンデンサ107の他端とエミッタ端子TE間に配置された抵抗105とから成る微分回路と、iii)抵抗105で生じる電圧降下が負の値に成るのを回避するための保護用ダイオード108とから成る。他方、(2)第2比較器211は、モニター電圧VCSが印加される一方の入力端と、電源112が作る第2基準電圧Vref2が印加される他方の入力端とを有し、モニター電圧VCSと第2基準電圧Vref2とを比較して、モニター電圧VCSが第2基準電圧Vref2以下のときには第1レベル(例えば“L”レベルの信号)の出力信号Vcom2を出力し、モニター電圧VCSが第2基準電圧Vref2を越えるときには第2レベル(例えば“H”レベルの信号)の出力信号Vcom2を出力する機能を奏する。
【0018】
尚、第1及び第2分圧抵抗104、106の抵抗値比率は、ii)の微分回路(107、106)の出力値であるモニター電圧VCSのピーク値が実際に第2基準電圧Vref2よりも大きくなる様に、設定されている。
【0019】
加えて、ii)の微分回路を成すコンデンサ107の容量値と抵抗105の抵抗値とで定まる時定数は、IGBT100のターンオフ時及び異常動作時におけるIGBT100のターンオン時のコレクタ電圧VCEの上昇変化分(dVCE/dt)ないしは両抵抗104、106間の節点電圧の上昇変化分に含まれる周波数成分が微分回路によって確実に微分される様に、設定されている。
【0020】
(C) 更に、過電流判定回路212は、第1比較器210の出力信号Vcom1が印加される一方の入力端と、第2比較器211の出力信号Vcom2とが印加される他方の入力端とを有し、出力信号Vcom1と出力信号Vcom2とが共に上記第2レベルの信号であるときにみ過電流状態を示す出力信号VT を駆動回路213の上記制御端子に出力する機能を有する。ここでは、第1レベルが“L”レベルに、第2レベルが“H”レベルにそれぞれ設定されているので、過電流判定回路212はAND回路として構成されている。勿論、第1レベルと第2レベルとを逆に設定しても良く、そのときには過電流判定回路212の論理回路構成をその設定に応じて変更すれば良い。
【0021】
次に、駆動回路213は、上記制御端子と、抵抗109を介してIGBT100のゲート端子TGに接続された出力端子とを有しており、制御電圧VGEを生成して上記出力端子より出力する機能を有する。特に、同回路213は、過電流状態の発生を示す出力信号VT の受信に応じて、制御電圧VGEをしきい値電圧未満に設定してIGBT100をターンオフさせ得る。
【0022】
以下では、既述した構成の説明を踏まえて、図2を参照しつつ、本電力用半導体装置の動作を説明する。
【0023】
(I) 正常動作時
IGBT100ないしは主IGBT101のオン動作時(ターンオンからターンオフ迄の期間)においては、主電流Icの一部であるセンス電流Isが補助IGBT102側に流れ、センス電圧検出用のセンス抵抗103の両端にセンス電圧Vsが発生する。しかしながら、正常動作時にはセンス電圧Vsが第1基準電圧Vref1よりも小さいため、出力信号Vcom1は“L”レベルのままである。
【0024】
他方、主IGBT101のオン動作中は、コレクタ電圧VCEは接地電位にあるため、第1及び第2分圧抵抗104、106より成るコレクタ電圧モニター用経路には電流は流れないので、モニター電圧Vcsもまた接地電位に等しく、出力信号Vcom2は“L”レベルのままである。
【0025】
その結果、主IGBT101のターンオンからオン動作中は、過電流判定回路212の出力信号VT は“L”レベルにあり、主IGBT101の過電流保護機能は働かない。
【0026】
又、主IGBT101がターンオフする際には、コレクタ電圧VCEは接地電位から電源電位Vccにまで上昇するので(正の電圧勾配dVCE/dtがコレクタ端子TCに印加されるので)、コレクタ電圧モニター用経路に電流Icaが流れてコンデンサ107が充電動作を開始する結果、両分圧抵抗104、106間の節点電圧は微分される。このため、微分波形を示すモニタ電圧VCSのピーク値が瞬間的に第2基準電圧Vref2よりも大きくなり、出力信号Vcom2は“H”レベルとなる。しかし、出力信号Vcom1は“L”レベルのままであり、従って過電流判定回路212の出力信号VT も依然として“L”レベルにあるので、この場合にも主IGBT101の過電流保護機能は働かない。
【0027】
尚、次の主IGBT101のターンオン時には、コンデンサ107は第2分圧抵抗106を介して接地側へ電荷を放電する。
【0028】
(II) 異常動作時
主IGBT101のターンオン時に異常動作により主電流Icが過電流状態となっているときには、センス抵抗103の両端に発生するセンス電圧Vsが第1基準電圧Vref1よりも大きくなるため、出力信号Vcom1は“H”レベルとなる。
【0029】
しかも、このときにはコレクタ電圧モニター用経路にも電流Icaが流れる。即ち、ターンオン開始時の一瞬は正常動作と同様にコレクタ電圧VCEの下降(負の電圧勾配dVCE/dt)が生じるが、その直後に電源電位Vccを越えるコレクタ電圧VCEの上昇(正の電圧勾配dVCE/dt)が発生するので、電流Icaが流れて両分圧抵抗104、106間の節点電圧は微分される。このため、第2基準電圧Vref2を越えるモニタ電圧VCSのピーク値が発生し、出力信号Vcom2は“H”レベルとなる。その結果、過電流判定回路212の出力信号VT は“H”レベルとなり、主IGBT101の過電流保護機能が働き、駆動回路213は主IGBT101のゲート電圧を絞って主IGBT101の動作をオフ状態に制御(保護)する。
【0030】
以上の通り、本装置の過電流判定回路212は、センス電圧のモニター結果に加えてコレクタ側経路に流れる電流Icaのモニター結果をも受信して両結果の双方に異常が生じているか否かという観点から主電流Icの過電流状態の発生を検出しているので、センス電圧に生じるノイズによって誤って過電流保護動作を働かせてしまう事態を有効に防止し得ると共に、真に過電流状態が発生しているのを正確に検出して有効に過電流保護動作を機能させることが出来る。
【0031】
(実施の形態1の変形例)
実施の形態1で説明した構成を、インバータ回路等に於ける高電位側のIGBTの過電流保護回路にも適用可能である。
【0032】
【発明の効果】
請求項1に係る発明によれば、センス電圧に発生するノイズによって仮にセンス電圧が第1基準電圧を越える状態が生じても、第1主電極端子電圧のモニター電圧もまた第2基準電圧を越える状態が生じない限りは、過電流保護回路はパワートランジスタが過電流状態にあるとは判定しないので、センス電圧のノイズに起因した過電流状態の検出という誤動作を防止することが出来る。
【0033】
請求項2に係る発明によれば、パワートランジスタに流れ込む電流(主電流)が過電流であるときにはパワートランジスタのターンオン時に第1主電極端子電圧に上昇変化が発生するという現象の検出を利用しているので、主電流が定格内にある通常電流状態であるのか、それとも過電流状態であるのかを確実に識別することができ、確実に過電流状態からパワートランジスタを保護することが出来る。
【0034】
請求項3に係る発明によれば、両モニター結果に応じて過電流状態にあるか否かを判定しているので、センス電圧のノイズによる誤判定の発生を有効に防止することが出来る。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る電力用半導体装置の主要部を示す回路図である。
【図2】 この発明の実施の形態1に係る電力用半導体装置の動作を示すタイミングチャートである。
【図3】 従来の電力用半導体装置を示す回路図である。
【符号の説明】
100 IGBT、101 主IGBT、102 補助IGBT、103 センス抵抗、107 コンデンサ、105 抵抗、200 過電流保護回路、210 第1比較器、211 第2比較器、212 過電流判定回路、213 駆動回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power semiconductor device including a power transistor used as a switching element in a power conversion device such as an inverter device. The present invention relates to a technique for protecting a power transistor by detecting a current.
[0002]
[Prior art]
FIG. 3 is a circuit diagram showing a part of a conventional power semiconductor device including an IGBT overcurrent detection circuit. In the figure, IT is an input terminal of a power semiconductor device connected to a main circuit (not shown), and 101 is a main IGBT having a collector terminal TC connected to the input terminal IT. A current Ico excluding a sense current Is described later from Ic flows from the collector terminal TC of the main IGBT 101 to the emitter terminal TE. Reference numeral 102 denotes an auxiliary IGBT, and a sense current Is, which is a part of the main current Ic, flows from the collector terminal TC of the auxiliary IGBT 102 to the sense terminal TS at the time of turn-on. Since the main IGBT 101 and the auxiliary IGBT 102 are integrally formed in one semiconductor wafer, both 101 and 102 are simply referred to as an IGBT 100.
[0003]
On the other hand, the sense resistor 103, the capacitor 113 connected in parallel to the sense resistor 103, the power supply 111 that generates the reference voltage Vref, and the sense voltage Vs generated in the sense resistor 103 is set to the + side input, and the reference voltage Vref is − The comparator 210 as the side input and the overcurrent detection output terminal 310 constitute an overcurrent detection circuit of the IGBT 100.
[0004]
Next, the operation of the circuit of FIG. 3 will be described. Now, assume that the main IGBT 101 is on and the auxiliary IGBT 102 is also on. At this time, most of the main current Ic flowing from the main circuit to the collector terminal TC of the IGBT 100 flows in the main IGBT 101 as the current Ico, and a part of the main current Ic flows in the auxiliary IGBT 102 as the sense current Is and is sensed by the sense resistor 103. Detected as The comparator 210 compares the sense voltage Vs with the reference voltage Vref, and changes the output from the “L” level to the “H” level when the sense voltage Vs exceeds the reference voltage Vref. As a result, an “H” level signal indicating detection of an overcurrent state is output from the overcurrent detection output terminal 310 to the outside.
[0005]
Another example of the prior art is disclosed in FIG. 1 of JP-A-11-299218. Also in this prior art, the sense current flowing through the auxiliary IGBT is detected by the sense resistor, and the overcurrent state is detected by comparing the obtained sense voltage and the reference voltage with a comparator. 3 is the same as the prior art example 3.
[0006]
[Problems to be solved by the invention]
In a conventional overcurrent detection circuit, the presence or absence of an overcurrent state is detected by comparing a sense voltage obtained by detecting a sense current with a sense resistor and a reference voltage with a comparator. However, when the auxiliary IGBT is turned on, a local change in which the current increase rate (dIs / dt) of the sense current has a maximum and a minimum occurs at the recovery stage. Therefore, the fluctuation amount of the sense current is detected as sense voltage noise by the sense resistor. Usually, since the reference voltage of the comparator is as small as 0.5 V, for example, a state in which the sense voltage exceeds the reference voltage easily occurs due to superposition of noise of the sense voltage. As a result, there is a problem that the comparator is erroneously determined to be in an overcurrent state although it is not actually in an overcurrent state, and erroneous overcurrent protection is activated.
[0007]
The present invention has been made to overcome such problems, and its purpose is to cause erroneous determination even if noise occurs in a sense voltage obtained by detecting a sense current with a sense resistor. In other words, it is necessary to establish a technique that can reliably detect that an overcurrent state has occurred and can reliably protect the power transistor from the overcurrent state.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a power semiconductor device comprising a first main electrode terminal connected to a main circuit, a second main electrode terminal, a control electrode terminal, and a sense terminal, the control electrode When a control voltage applied to the terminal is equal to or higher than a threshold voltage, a current is passed between the first main electrode terminal and the second main electrode terminal and between the first main electrode terminal and the sense terminal A drive transistor for generating a control voltage and outputting the control voltage from the output terminal, and a power circuit for supplying a sense current to the power transistor, an output terminal connected to the control electrode terminal of the power transistor, and a control terminal. A first and second input terminal connected to the first main electrode terminal and the sense terminal of the transistor, respectively, and an output terminal connected to the control terminal of the drive circuit; With the voltage of The sense voltage of each sense terminal is monitored, and the power transistor is in an overcurrent state only when the sense voltage exceeds the first reference voltage and the monitoring result of the first main electrode terminal voltage also exceeds the second reference voltage. An overcurrent protection circuit that outputs an output signal indicating the overcurrent state to the control terminal, and the drive circuit receives the output signal indicating the overcurrent state in response to receiving the output signal. Is set to be less than the threshold voltage to turn off the power transistor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
1 is a circuit diagram showing a main part of a power semiconductor device according to Embodiment 1 of the present invention. In the figure, the same symbols and symbols shown in FIG. 3 indicate the same circuit components.
[0012]
The power semiconductor device is roughly composed of a power transistor 100 with a sense terminal, an overcurrent protection circuit 200, and a drive circuit 213. Among these, the power transistor 100 is composed of an IGBT here, but is not limited thereto, and may be composed of another power semiconductor switching element such as a vertical power MOSFET. good.
[0013]
First, a power transistor or IGBT 100 with a sense terminal includes a main IGBT 101 and an auxiliary IGBT 102 that are integrally formed in the same semiconductor substrate. That is, the input terminal IT of the power semiconductor device is connected to a main circuit (not shown) and connected to a drive power supply (not shown: power supply potential Vcc) via a freewheel diode (not shown). Is also connected. Further, the main IGBT 101 has a collector terminal (corresponding to the first main electrode terminal) TC into which the main current Ic flows from the main circuit via the input terminal IT when turned on, and a gate terminal (corresponding to the control electrode terminal) to which a control voltage is applied. ) TG and a grounded emitter terminal (corresponding to the second main electrode terminal) TE. The auxiliary IGBT 102 includes a collector terminal TC and a gate terminal TG shared with the main IGBT 101, and a sense terminal TS that outputs a sense current Is. When the IGBT 100 is turned on after the turn-on in normal operation (when the control voltage V GE is equal to or higher than the threshold voltage of the IGBT 100), the collector-emitter current Ico obtained by removing the sense current Is from the main current Ic is the main IGBT 101. Current from the collector terminal TC to the emitter terminal TE, and a sense current Is that is a part of the main current Ic flows from the collector terminal TC of the auxiliary IGBT 102 to the sense terminal TS. Reference numeral 110 denotes a free wheel diode.
[0014]
Next, the overcurrent protection circuit 200 includes (A) a first monitor circuit unit or sense voltage monitor circuit unit (103, 113, 111, 210) and (B) a second monitor circuit unit or collector voltage (first main circuit). Electrode terminal voltage) monitor circuit section (104, 106, 107, 105, 108, 211) and (C) overcurrent determination circuit 212 are roughly divided. That is, the overcurrent protection circuit 200 includes a first input terminal (corresponding to one end of the voltage dividing resistor 104) connected to the collector terminal TC of the IGBT 100, and a second input terminal (of the sense resistor 103) connected to the sense terminal TS. And an output terminal (corresponding to an output terminal of the AND circuit 212) connected to a control terminal (not shown) of the drive circuit 213, and a collector voltage VCE and a sense voltage Vs, respectively. monitored, along with the sense voltage Vs exceeds the first reference voltage Vref1, the main current Ic or IGBT100 is in an overcurrent state only when the even monitoring results or monitor voltage V CS of the collector voltage V CE exceeds the second reference voltage Vref2 determined to a has a function of outputting an output signal V T which indicates the overcurrent state to the control terminal.
[0015]
(A) In particular, the sense voltage monitor circuit unit includes (1) a sense voltage detection unit that detects the sense voltage Vs using the sense terminal TS as an input terminal, and (2) a first comparator 210. Among these, (1) the sense voltage detection unit is composed of a sense resistor 103 and a capacitor 113 connected in parallel to each other, and (2) the first comparator 210 is one of the ones to which the sense voltage Vs is applied. The input terminal and the other input terminal to which the first reference voltage Vref1 generated by the power supply 111 is applied are compared. The sense voltage Vs is compared with the first reference voltage Vref1, and the sense voltage Vs is compared with the first reference voltage Vref1. The output signal Vcom1 of the first level (eg, “L” level signal) is output in the following cases, and the output signal of the second level (eg, “H” level signal) when the sense voltage Vs exceeds the first reference voltage Vref1. A function of outputting Vcom1 is provided.
[0016]
Note that the resistance value of the sense resistor 103 is set with respect to the first reference voltage Vref1 so that the sense voltage Vs during the abnormal operation is actually larger than the first reference voltage Vref1.
[0017]
(B) In addition, the collector voltage monitor circuit section (1) uses the collector terminal TC as its input terminal, detects an increase in the collector voltage V CE when the IGBT 100 is turned on, and detects the detection result as the monitor voltage V CS And (2) a second comparator 211. Among these, (1) the collector voltage monitor section is i) the first and second components arranged in parallel with the IGBT 100 between the collector terminal TC and the emitter terminal TE and sequentially connected in series from the collector terminal TC side. And ii) a capacitor 107 having one end connected to a node between the first voltage dividing resistor 104 and the second voltage dividing resistor 106, and a resistor 105 disposed between the other end of the capacitor 107 and the emitter terminal TE. And iii) a protective diode 108 for avoiding a negative voltage drop caused by the resistor 105. On the other hand, (2) the second comparator 211 has one input terminal to which the monitor voltage V CS is applied and the other input terminal to which the second reference voltage Vref2 generated by the power source 112 is applied, and the monitor voltage V CS is compared with the second reference voltage Vref2, and when the monitor voltage V CS is equal to or lower than the second reference voltage Vref2, an output signal Vcom2 of the first level (eg, “L” level signal) is output, and the monitor voltage V When CS exceeds the second reference voltage Vref2, the output signal Vcom2 of the second level (eg, “H” level signal) is output.
[0018]
The resistance value ratio of the first and second voltage dividing resistors 104 and 106 is such that the peak value of the monitor voltage V CS that is the output value of the differentiation circuit (107, 106) of ii) is actually higher than the second reference voltage Vref2. Is set to be larger.
[0019]
In addition, the time constant determined by the capacitance value of the capacitor 107 and the resistance value of the resistor 105 forming the differentiating circuit of ii) is the amount of increase in the collector voltage V CE when the IGBT 100 is turned off and when the IGBT 100 is turned on during abnormal operation. It is set so that the frequency component contained in (dV CE / dt) or the rising change in the node voltage between the resistors 104 and 106 is surely differentiated by the differentiating circuit.
[0020]
(C) Further, the overcurrent determination circuit 212 has one input terminal to which the output signal Vcom1 of the first comparator 210 is applied and the other input terminal to which the output signal Vcom2 of the second comparator 211 is applied. have, it has a function of outputting an output signal V T which indicates the overcurrent state observed when the output signal Vcom1 and output signal Vcom2 are both the second level signal to the control terminal of the drive circuit 213. Here, since the first level is set to the “L” level and the second level is set to the “H” level, the overcurrent determination circuit 212 is configured as an AND circuit. Of course, the first level and the second level may be set in reverse, and in that case, the logic circuit configuration of the overcurrent determination circuit 212 may be changed according to the setting.
[0021]
Next, the drive circuit 213 has the control terminal and an output terminal connected to the gate terminal TG of the IGBT 100 via the resistor 109, generates the control voltage V GE and outputs it from the output terminal. It has a function. In particular, the circuit 213, in response to receipt of the output signal V T which indicates the occurrence of an overcurrent condition, can the control voltage V GE turning off IGBT100 set below the threshold voltage.
[0022]
In the following, based on the description of the configuration described above, the operation of the power semiconductor device will be described with reference to FIG.
[0023]
(I) During normal operation, when the IGBT 100 or the main IGBT 101 is turned on (period from turn-on to turn-off), a sense current Is that is a part of the main current Ic flows to the auxiliary IGBT 102 side, and a sense resistor for detecting a sense voltage A sense voltage Vs is generated at both ends of 103. However, since the sense voltage Vs is smaller than the first reference voltage Vref1 during normal operation, the output signal Vcom1 remains at the “L” level.
[0024]
On the other hand, during the ON operation of the main IGBT 101, since the collector voltage V CE is at the ground potential, no current flows through the collector voltage monitoring path formed by the first and second voltage dividing resistors 104 and 106. Therefore, the monitor voltage Vcs Is also equal to the ground potential, and the output signal Vcom2 remains at "L" level.
[0025]
As a result, during the turn-on operation of the main IGBT 101, the output signal V T of the overcurrent determination circuit 212 is at the “L” level, and the overcurrent protection function of the main IGBT 101 does not work.
[0026]
When the main IGBT 101 is turned off, the collector voltage V CE rises from the ground potential to the power supply potential Vcc (since the positive voltage gradient dV CE / dt is applied to the collector terminal TC), the collector voltage monitor As a result of the current Ica flowing through the working path and the capacitor 107 starting the charging operation, the node voltage between the voltage dividing resistors 104 and 106 is differentiated. For this reason, the peak value of the monitor voltage V CS showing the differential waveform instantaneously becomes larger than the second reference voltage Vref2, and the output signal Vcom2 becomes “H” level. However, since the output signal Vcom1 remains at the “L” level, and the output signal V T of the overcurrent determination circuit 212 is still at the “L” level, the overcurrent protection function of the main IGBT 101 does not work in this case as well. .
[0027]
When the next main IGBT 101 is turned on, the capacitor 107 discharges the electric charge to the ground side via the second voltage dividing resistor 106.
[0028]
(II) At the time of abnormal operation When the main current Ic is in an overcurrent state due to an abnormal operation when the main IGBT 101 is turned on, the sense voltage Vs generated at both ends of the sense resistor 103 becomes larger than the first reference voltage Vref1. The output signal Vcom1 becomes “H” level.
[0029]
In addition, at this time, the current Ica also flows through the collector voltage monitoring path. That is, the collector voltage V CE decreases (negative voltage gradient dV CE / dt) as in the normal operation for an instant at the start of turn-on, but immediately after that, the collector voltage V CE increases (positive) exceeding the power supply potential Vcc. Since a voltage gradient dV CE / dt) is generated, the current Ica flows and the node voltage between the voltage dividing resistors 104 and 106 is differentiated. For this reason, a peak value of the monitor voltage V CS exceeding the second reference voltage Vref2 is generated, and the output signal Vcom2 becomes “H” level. As a result, the output signal V T of the overcurrent determination circuit 212 becomes “H” level, the overcurrent protection function of the main IGBT 101 operates, and the drive circuit 213 reduces the gate voltage of the main IGBT 101 to turn off the operation of the main IGBT 101. Control (protect).
[0030]
As described above, the overcurrent determination circuit 212 of this apparatus receives not only the monitor result of the sense voltage but also the monitor result of the current Ica flowing through the collector side path, and whether or not an abnormality has occurred in both the results. Since the occurrence of the overcurrent state of the main current Ic is detected from the viewpoint, it is possible to effectively prevent the situation where the overcurrent protection operation is erroneously activated due to noise generated in the sense voltage, and a true overcurrent state occurs. The overcurrent protection operation can be functioned effectively by accurately detecting the current.
[0031]
(Modification of Embodiment 1)
The configuration described in the first embodiment can also be applied to an overcurrent protection circuit for an IGBT on the high potential side in an inverter circuit or the like.
[0032]
【The invention's effect】
According to the first aspect of the present invention, even if the sense voltage exceeds the first reference voltage due to noise generated in the sense voltage, the monitor voltage of the first main electrode terminal voltage also exceeds the second reference voltage. As long as the state does not occur, the overcurrent protection circuit does not determine that the power transistor is in the overcurrent state, so that it is possible to prevent a malfunction of detecting the overcurrent state due to the noise of the sense voltage.
[0033]
According to the invention of claim 2, when the current flowing into the power transistor (main current) is an overcurrent, the detection of the phenomenon that the first main electrode terminal voltage rises when the power transistor is turned on is detected. Therefore, it is possible to reliably identify whether the main current is in the normal current state within the rating or in the overcurrent state, and the power transistor can be reliably protected from the overcurrent state.
[0034]
According to the third aspect of the present invention, since it is determined whether or not the overcurrent state exists according to both monitoring results, it is possible to effectively prevent the occurrence of erroneous determination due to noise in the sense voltage.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a main part of a power semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a timing chart showing the operation of the power semiconductor device according to the first embodiment of the present invention.
FIG. 3 is a circuit diagram showing a conventional power semiconductor device.
[Explanation of symbols]
100 IGBT, 101 Main IGBT, 102 Auxiliary IGBT, 103 Sense resistor, 107 Capacitor, 105 Resistance, 200 Overcurrent protection circuit, 210 First comparator, 211 Second comparator, 212 Overcurrent determination circuit, 213 Drive circuit

Claims (3)

主回路に接続された第1主電極端子と、第2主電極端子と、制御電極端子と、センス端子とを備え、前記制御電極端子に印加される制御電圧がしきい値電圧以上のときに前記第1主電極端子と前記第2主電極端子との間に電流を流し且つ前記第1主電極端子と前記センス端子との間にセンス電流を流すパワートランジスタと、
前記パワートランジスタの前記制御電極端子に接続された出力端子と、制御端子とを備え、前記制御電圧を生成して前記出力端子より出力する駆動回路と、
前記パワートランジスタの前記第1主電極端子と前記センス端子とにそれぞれ接続された第1及び第2入力端子と、前記駆動回路の前記制御端子に接続された出力端子とを備え、前記第1主電極端子の電圧と前記センス端子のセンス電圧とをそれぞれモニターし、前記センス電圧が第1基準電圧を越えると共に前記第1主電極端子電圧のモニター結果も第2基準電圧を越えるときにのみ前記パワートランジスタが過電流状態にあると判定して、前記過電流状態を示す出力信号を前記制御端子に出力する過電流保護回路とを備え、
前記駆動回路は前記過電流状態を示す出力信号の受信に応じて前記制御電圧を前記しきい値電圧未満に設定して前記パワートランジスタをターンオフさせることを特徴とする、
電力用半導体装置。
A first main electrode terminal connected to the main circuit; a second main electrode terminal; a control electrode terminal; and a sense terminal, wherein a control voltage applied to the control electrode terminal is equal to or higher than a threshold voltage A power transistor for passing a current between the first main electrode terminal and the second main electrode terminal and for passing a sense current between the first main electrode terminal and the sense terminal;
An output terminal connected to the control electrode terminal of the power transistor; and a control terminal; a drive circuit that generates the control voltage and outputs the control voltage from the output terminal;
And a first input terminal connected to the first main electrode terminal and the sense terminal of the power transistor, respectively, and an output terminal connected to the control terminal of the drive circuit. The voltage of the electrode terminal and the sense voltage of the sense terminal are monitored, respectively, and the power only when the sense voltage exceeds the first reference voltage and the monitoring result of the first main electrode terminal voltage also exceeds the second reference voltage. An overcurrent protection circuit that determines that the transistor is in an overcurrent state and outputs an output signal indicating the overcurrent state to the control terminal;
The drive circuit sets the control voltage below the threshold voltage in response to receiving an output signal indicating the overcurrent state, and turns off the power transistor.
Power semiconductor device.
請求項1に記載の電力用半導体装置であって、
前記過電流保護回路は、
前記第2入力端子をその入力端子とし、前記センス電圧を検出するセンス電圧検出部と、
前記センス電圧検出部が出力する前記センス電圧を受信して前記センス電圧と前記第1基準電圧とを比較し、前記センス電圧が前記第1基準電圧以下のときには第1レベルの出力信号を出力し、前記センス電圧が前記第1基準電圧を越えるときには第2レベルの出力信号を出力する第1比較器と、
前記第1入力端子をその入力端子とし、前記パワートランジスタのターンオン時に於ける前記第1主電極端子電圧の上昇変化を検出して当該検出結果を前記モニター電圧として出力する第1主電極端子電圧モニター部と、
前記モニター電圧を受信して前記モニター電圧と前記第2基準電圧とを比較し、前記モニター電圧が前記第2基準電圧以下のときには前記第1レベルの出力信号を出力し、前記モニター電圧が前記第2基準電圧を越えるときには前記第2レベルの出力信号を出力する第2比較器と、
前記第1比較器の出力信号と前記第2比較器の出力信号とを受信し、前記第1比較器の前記出力信号と前記第2比較器の前記出力信号とが共に前記第2レベルの信号であるときにのみ前記過電流状態を示す出力信号を前記駆動回路の前記制御端子に出力する過電流判定回路とを備えることを特徴とする、
電力用半導体装置。
The power semiconductor device according to claim 1,
The overcurrent protection circuit is
A sense voltage detector configured to detect the sense voltage using the second input terminal as its input terminal;
The sense voltage output from the sense voltage detector is received, the sense voltage is compared with the first reference voltage, and a first level output signal is output when the sense voltage is lower than the first reference voltage. A first comparator that outputs a second level output signal when the sense voltage exceeds the first reference voltage;
A first main electrode terminal voltage monitor that uses the first input terminal as an input terminal, detects an increase in the first main electrode terminal voltage when the power transistor is turned on, and outputs the detection result as the monitor voltage. And
The monitor voltage is received, the monitor voltage is compared with the second reference voltage, and when the monitor voltage is less than or equal to the second reference voltage, the first level output signal is output, and the monitor voltage is the first voltage. A second comparator that outputs the second level output signal when exceeding two reference voltages;
The output signal of the first comparator and the output signal of the second comparator are received, and the output signal of the first comparator and the output signal of the second comparator are both signals of the second level. And an overcurrent determination circuit that outputs an output signal indicating the overcurrent state to the control terminal of the drive circuit only when
Power semiconductor device.
主回路に接続されたセンス端子付きパワートランジスタを過電流状態から保護するための過電流保護回路であって、
当該過電流保護回路は、請求項1又は2に記載の前記過電流保護回路に該当することを特徴とする、
過電流保護回路。
An overcurrent protection circuit for protecting a power transistor with a sense terminal connected to a main circuit from an overcurrent state,
The overcurrent protection circuit corresponds to the overcurrent protection circuit according to claim 1 or 2,
Overcurrent protection circuit.
JP2000274417A 2000-09-11 2000-09-11 Power semiconductor device and overcurrent protection circuit Expired - Lifetime JP4118496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274417A JP4118496B2 (en) 2000-09-11 2000-09-11 Power semiconductor device and overcurrent protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274417A JP4118496B2 (en) 2000-09-11 2000-09-11 Power semiconductor device and overcurrent protection circuit

Publications (2)

Publication Number Publication Date
JP2002084173A JP2002084173A (en) 2002-03-22
JP4118496B2 true JP4118496B2 (en) 2008-07-16

Family

ID=18760178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274417A Expired - Lifetime JP4118496B2 (en) 2000-09-11 2000-09-11 Power semiconductor device and overcurrent protection circuit

Country Status (1)

Country Link
JP (1) JP4118496B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5714455B2 (en) 2011-08-31 2015-05-07 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit
TWI497682B (en) * 2012-06-13 2015-08-21 Elite Semiconductor Esmt Integrated circuit having circuit damage protection mechanism and method thereof
CN103545793B (en) * 2012-07-17 2016-12-21 晶豪科技股份有限公司 There is circuit and damage integrated circuit and the method thereof of protection mechanism
JP6190280B2 (en) * 2014-01-22 2017-08-30 株式会社日立製作所 Semiconductor drive device and power conversion device using the same
CN105049010B (en) * 2015-08-27 2018-11-27 广州易和医疗技术开发有限公司 A kind of IGBT current foldback circuit and its method
GB2564700A (en) * 2017-07-21 2019-01-23 Rolls Royce Plc A power electronics module and a method of detecting a fault in a power electronics module
JP7087371B2 (en) * 2017-12-18 2022-06-21 富士電機株式会社 Semiconductor devices and power modules
CN110022141B (en) * 2019-03-26 2023-12-12 瓴芯电子科技(无锡)有限公司 Driving device of power device and method for acquiring real-time state of power device
JP7195386B1 (en) 2021-07-27 2022-12-23 三菱電機株式会社 power converter
JP7183375B1 (en) 2021-11-25 2022-12-05 三菱電機株式会社 Protection circuit and power converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184332U (en) * 1985-05-09 1986-11-17
JP2805308B2 (en) * 1987-01-14 1998-09-30 利康 鈴木 Switching means with self-holding function and self-extinguishing function
JPH0691447B2 (en) * 1988-11-15 1994-11-14 日本電気株式会社 Integrated circuit
JPH02224521A (en) * 1989-02-27 1990-09-06 Mitsubishi Electric Corp Semiconductor cutoff device
JP2985431B2 (en) * 1991-10-15 1999-11-29 松下電器産業株式会社 Transistor overcurrent protection circuit
JPH06217450A (en) * 1992-12-04 1994-08-05 Texas Instr Inc <Ti> Solid circuit power controller
JPH11112313A (en) * 1997-10-02 1999-04-23 Mitsubishi Electric Corp Semiconductor circuit and power transistor protection circuit
JP3383571B2 (en) * 1998-03-12 2003-03-04 株式会社東芝 Semiconductor element driving circuit and power conversion device using the same

Also Published As

Publication number Publication date
JP2002084173A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
US9214934B2 (en) Desaturation detection circuit for use between the desaturation detection input of an optocoupler and the output of a power switching device
US6842064B2 (en) Overcurrent protection and masking circuitry for protection against an overcurrent condition
US5142432A (en) Fault detection apparatus for a transformer isolated transistor drive circuit for a power device
US5500616A (en) Overvoltage clamp and desaturation detection circuit
US10601415B2 (en) Configurable integrated desaturation filter
JP2999887B2 (en) IGBT overcurrent protection circuit and semiconductor integrated circuit device
JP4295928B2 (en) Semiconductor protection circuit
EP0467681A2 (en) Drive circuit for current sense IGBT
JP2643459B2 (en) Power device drive / protection circuit
JP5796450B2 (en) Switching device control device
JP2004064930A (en) Drive circuit for power semiconductor device
CN109983679B (en) Control device and semiconductor device
JP2006005581A (en) Controller for semiconductor switch
JP4118496B2 (en) Power semiconductor device and overcurrent protection circuit
US7265958B2 (en) Overcurrent protection circuit and semiconductor apparatus
JPH05276761A (en) Method and circuit for detecting overcurrent in power semiconductor element and inverter using the same
EP0561386A1 (en) Semiconductor device
CN114667681A (en) Gate drive circuit
CN112103920A (en) DC/DC converter overcurrent protection circuit
US7173801B2 (en) Protection circuit for faulted power devices
JP3240489B2 (en) IGBT overcurrent protection device and IGBT protection device
US6396674B1 (en) System and method for monitoring the operation of a power converter
JP3661813B2 (en) Drive circuit for voltage-driven semiconductor element
JP3191661B2 (en) Semiconductor element overload protection circuit
JP4957916B2 (en) Semiconductor device drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4118496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term