JP4116748B2 - Magnet buried type non-oriented electrical steel sheet for motor - Google Patents

Magnet buried type non-oriented electrical steel sheet for motor Download PDF

Info

Publication number
JP4116748B2
JP4116748B2 JP35807299A JP35807299A JP4116748B2 JP 4116748 B2 JP4116748 B2 JP 4116748B2 JP 35807299 A JP35807299 A JP 35807299A JP 35807299 A JP35807299 A JP 35807299A JP 4116748 B2 JP4116748 B2 JP 4116748B2
Authority
JP
Japan
Prior art keywords
oxide layer
steel sheet
oriented electrical
iron
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35807299A
Other languages
Japanese (ja)
Other versions
JP2001172752A (en
Inventor
高英 島津
浩明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35807299A priority Critical patent/JP4116748B2/en
Publication of JP2001172752A publication Critical patent/JP2001172752A/en
Application granted granted Critical
Publication of JP4116748B2 publication Critical patent/JP4116748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄リサイクルを可能にする成分系を前提とした、磁石埋設型のモータに最適な無方向性電磁鋼板に関し、特に、従来の課題であった打ち抜き加工性や磁気特性の向上を図った磁石埋設型モータ用無方向性電磁鋼板に係るものである。
【0002】
【従来の技術】
地球資源が枯渇するかも知れないとの近未来的な状況の中で、色々な分野で資源の再利用の動きが急である。このため、鉄鋼業でも各種の鉄スクラップ、例えば自動車、洗濯機、エアコンなどを製鉄原料として利用する必要が生じてきている。このためには、従来有害とされてきたCu,Ni,Cr,Snなどのスクラップに含有する成分を積極利用しなければならない。
【0003】
一方で、同じ地球資源問題から、エネルギーの無駄使いをなくそうとの動きも強まっている。モータの分野でも、例えば一般家庭用のエアコンに見られるように、消費電力低下による電気代が安いものが求められている。このため、モータの設計においても消費電力を少なくすべく改良が計られてきた。従来のモータは殆どが誘導モータであり、この誘導モータは回転子にアルミダイキャストを施し、このアルミに誘導電流を流す方式であった。しかしながら、近年の日本においては、効率の観点からインバータ制御化が進み、更には回転子に永久磁石を埋め込んだ、いわゆる磁石埋設型DCインバータ制御モータと呼ばれる形式に変わりつつある。
【0004】
ところで、今までこの磁石埋設型回転子に用いられる無方向性電磁鋼板の第一の課題は、高速回転での遠心力で磁石が飛び出してモータが破壊されないための必要最低限の強度である。このためには、降伏点強度で260Mpa以上が必要とされている。高強度にするために、従来はSi量を上げて固溶体強化を行う手段が採用されていた。しかしながらSiが増加すると、打ち抜き金型の摩耗が激しくなって打ち抜き作業性が劣化していた。これが第二の課題であった。即ち、Siの活用によるモータの破壊防止と打抜き性の改善とは二律相反する現象であった。
更に、第三の課題はモータ効率改善、特に固定子(ステータ)でのインバータ制御での高周波鉄損の更なる低減である。なお、回転子と固定子は通常、同一のコイルから打ち抜かれることが多いので、回転子と固定子との両者を満足させる特性が無方向性電磁鋼板には要求される。
【0005】
一方、上記したように地球環境問題から不純物とされてきたCu,Ni,Cr,Snなどを積極活用しなければならないが、上記の磁石埋設型モータ用無方向性電磁鋼板などの超高級機能性鋼板に、これらのCu,Ni,Cr,Snなどを含有させることは従来、疵の問題や磁気特性への懸念から不可能と考えられてきた。その理由の一つとしては、実験室レベルでの研究ではうまく行っても、実際の工場を通板してみると打抜き性や高周波鉄損特性に劣化の大きいものがしばしば発生して、その原因が究明出来ていなかったためである。即ち、これらの課題を同時に解決する無方向性電磁鋼板は今まで提案されていなかった。
【0006】
なお特開平8−97023号公報では、Sbを添加することで酸化層を少なくして磁気特性を改善することが開示されている。しかし、Sbは高価な上、人体に有害でもあること、また熱延板もしくは熱延板焼鈍後のスケール残り量が議論されているが、それは最表層に存在する酸化層のことであり、本発明で重要なインバータ制御用の高周波用途には意味のない酸化層であったため、利用されることがなかった。また、K.MatsmuraとB.Fukuda:IEEE Trans.mag.20(1984)1533でも酸化層のことが述べられているが、これも最表層から存在する酸化層のことであった。なお、無方向性電磁鋼板として知られる製品板厚は0.1〜1mmである。
【0007】
本発明は上記の点に鑑み、地球環境問題からの鉄スクラップの積極活用課題を解決し、更には磁石埋設型モータの固有問題であった無方向性電磁鋼板の剛性、打抜き性、磁気特性などを抜本的に解決する無方向性電磁鋼板を提供するものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明の要旨とするところは以下の通りである。
(1)質量%で、
C ≦0.005%、 Si:1.6〜2.8%、
Mn≦0.5%、 P ≦0.05%、
S ≦0.002%、 Al:1〜4%、
N ≦0.004%、 Cu:0.05〜0.7%、
Ni:0.01〜0.2%、 Cr:0.01〜0.2%、
Sn:0.003〜0.1%
を含有し、残部が鉄及び不可避的不純物からなり、冷延板焼鈍後の鋼板表面構造が最表面に鉄メタル層が存在し、その内層に厚さ≦0.5μmの内部酸化層を形成しており、更に、結晶粒径が80〜170μm、降伏点強度:260〜370N/mm であることを特徴とする磁石埋設型のモータ用無方向性電磁鋼板。
【0009】
本発明のポイントは3点ある。一つは、打抜き性の金型摩耗を少なくするには鋼板の降伏点を小さくすべきこと、このためにはSiよりもAlを積極活用したほうが良いこと、更には、Cu,Ni,Cr,Snの4種を含有する鋼板で発生しやすい内部酸化層を少なくすることが重要である。二点目は、鉄損を改善するには、従来公知の結晶粒径制御以外に内部酸化層も効いていること、特に高周波鉄損にこの内部酸化層が重要である。三点目は、これらの降伏点、内部酸化層などを制御することは、工業的に充分可能なことである。
【0010】
【発明の実施の形態】
以下、本発明の限定理由について説明する。成分含有量は質量%である。
C量は、0.005%以下とする。C量が0.005%を超えると、磁気時効があるため低周波鉄損が増加するためである。
【0011】
Si量は、1.6〜2.8%に制限する。Siは鋼板剛性を増加させるのに有効で、1.6%未満では降伏点が低すぎて不満で、また2.8%超では、降伏点が高すぎ金型摩耗が大きく不可である。
【0012】
Mn量は、0.5%以下とする。Mnは熱間割れを防止する効果があるが、多すぎると添加コストの問題があるので0.5%以下とする。
【0013】
P量は、0.05%以下に制限する。Pも結晶粒成長を阻害して、製品結晶粒径を細粒化するため少ない方が好ましいが、この限界が0.05%である。
【0014】
S量は、0.002%以下とする。Sは硫化物を形成して鉄損を劣化させる。この限界が、0.002%である。
【0015】
Al量は、1〜4%とする。Alは鋼板剛性を増加させるのに有効で、1%未満では降伏点が不満であり、また4%超では添加コストが大きくなるため、避けなければならない。
【0016】
N量は、0.004%以下とする。Nは窒化物を形成して鉄損を劣化させる。この限界が0.004%である。
【0017】
Cu量は、0.05〜0.7%とする。鉄スクラップの有効活用の意味は0.05%以上のCuであり、また0.7%を超えるとCuへげと称される熱延での鋼板表面割れが発生するので、避けなければならない。
【0018】
Ni量は、0.01〜0.2%とする。鉄スクラップの有効活用の意味は0.01%以上のNiであり、また0.2%を超えると結晶粒成長が阻害されるため不可とする。
【0019】
Cr量は、0.01〜0.2%とする。鉄スクラップの有効活用の意味は、0.01%以上のCrであり、また、実用上、鉄スクラップから0.2%を超えることはないので、0.01〜0.2%とする。
【0020】
Sn量は、0.003〜0.1%とする。鉄スクラップの有効活用の意味は0.003%以上のSnであり、また実用上、鉄スクラップから0.1%を超えることはないので、0.01〜0.1%とする。
【0021】
その他の元素として、集合組織を改善するための公知のB,Moなどを添加しても本発明として有害なものではない。但し添加コストの問題があるので、それぞれ0.1%以下が好ましい。
また、公知の有害元素、Ti,Nbは0.01%以下が好ましい。また本発明では高価なSbは添加しないので、製鋼作業の不可避的不純物としての量である0.01%未満である。
【0022】
製鋼で上記の成分に調整された連続鋳造スラブは、通常の熱間圧延を行われて熱延板とされる。
熱延板は、次いで焼鈍される。熱延板焼鈍は、通常の800〜1200℃であって磁束密度改善のためには高温のほうが好ましい。なお熱延板焼鈍温度は高い方が若干であるが、製品の降伏点は低めとなる傾向になる。
【0023】
次いで、冷延を行ってから焼鈍を実施する。焼鈍後の鋼板の平均結晶粒径は、80μm以上、170μm以下とする。80μm未満では、低周波鉄損が不満足で、また170μm超では高周波鉄損が不満である。結晶粒径を制御するためには、通常の温度×時間制御をすればよい。
【0024】
また、内部酸化層の厚みは0.5μm以下でなければならない。内部酸化層が0.5μmを超えると、高周波鉄損の劣化が大きいためである。特に、本発明のCu,Sn,Ni,Cr複合含有系では、内部酸化層が生じ易いので注意しなければならない。
【0025】
ここで言う内部酸化層とは、最表層がSiまたはAlが若干少なくなった鉄メタル層の下層に形成された、Si,Al,Mnなどがリッチの酸化層のことである。即ち表面構造としては、最表層の第一層が鉄メタルで、第二層が内部酸化層、第三層が地鉄である三層構造が形成されている。内部酸化層が厚くなると、最表層の鉄メタル層厚みも増加する傾向にあるが、例えば内部酸化層が0.5μmの場合は、鉄メタル層厚みは0.8μm程度である。なお、最表層の鉄メタル層は殆どの場合、内部酸化層の上にフィルム(膜)状に観察される。しかし、まれなケースとしては、この最表層の鉄メタル部分がなく、内部酸化層の上層部分に、鉄メタルが断続的な島状のものとして観察されることもある。この場合の内部酸化層厚みは、島状の鉄メタル厚みの平均化したものを全体の酸化層厚みから引いたものとして定義する。内部酸化層の下層は地鉄である。
【0026】
この内部酸化層は地鉄との境界面の凹凸が大きいので、磁束の流れを阻害して高周波鉄損を著しく劣化させるので、特に注意しなければならない。なお、この内部酸化層は、鋼板断面の研磨面を5000倍以上の倍率でSEM−EDX測定することで観察することができるが、SEM像は通常の二次電子ではなく、反射電子像の方が内部酸化層厚みを明瞭に見ることができる。内部酸化層厚みは、最表層の鉄メタル界面と下層の地鉄界面との中間層の厚みであるが、上下それぞれの界面の凹凸中心線(凹凸曲線の平均線に平行な直線を引いたとき、この直線と凹凸曲線で囲まれる面積が、この直線の両側で等しくなる直線を中心線とする)同士の差として定義される。
【0027】
この内部酸化層は、焼鈍の加熱過程などで酸化された場合に生じるため、例えば加熱ラジアントチューブでの割れや直火無酸化炉での空燃比に十分注意しなければならない。即ち、焼鈍の加熱過程で酸化されると、次いで高温での還元ガスで均熱焼鈍されても内部酸化層まで還元されることはない。なお、この内部酸化層は、従来のH2 +N2 +H2 O混合の湿潤ガス中での均熱焼鈍で、最表面から酸化される現象を意味しない。この表面酸化は高周波鉄損に悪影響しない。
【0028】
また実験室レベルでは、加熱から均熱、冷却まで非酸化性ガス中で焼鈍することが容易であるが、鉄鋼メーカでの実炉では加熱帯に直火バーナーやラジアントチューブを用いることが多いので、特にCu,Sn,Ni,Cr複合含有系では、この内部酸化層には注意を払わなければならない。均熱帯で例えば100%H2 の露点−50℃ドライ雰囲気として高温均熱しても、この内部酸化層までは還元されないので注意を要する。
【0029】
上記、再結晶焼鈍の後は通常の絶縁皮膜が塗布乾燥されて出荷される。出荷された後は、打ち抜き加工され、積層固定され、そのまま、または焼鈍されて(特に固定子が磁性改善のために焼鈍される場合がある)磁石埋設型モータコアとなる。
以下、実施例で説明する。
【0030】
(実施例1)
表1に示す各種の成分系を真空溶解で溶解して、インゴットを作成した。これを1030℃に加熱してから、10mm厚の鋼片に分塊した。次いで、更に1000℃に加熱してから、1.7mmの熱延板を作成した。次いで1100℃で30秒均熱の窒素中焼鈍を行ってから大気中放冷した。酸洗後、冷延して0.35mm厚とした。次いで脱脂して、1000℃で5秒の水素中焼鈍を実施した。
【0031】
これらから、引張試験片を圧延方向とそれと直角の方向に切り出し、降伏点 (YP)を測定して平均化した値を表1に併記した。なお、降伏点は上降伏点より、読み取り精度の高い下降伏点とした。また、100mm角の試料を切り出してから、圧延方向とそれと直角の方向の400Hz鉄損を測定し、平均して表1に示した。また、鋼板断面の平均結晶粒径を厚み方向にカウントとして求めた。なお、内部酸化層も調査したが存在しなかった。
【0032】
表1に示すように、本発明の成分範囲を外れるものは、降伏点の下限・上限を外れ、また鉄損特性が不満となった。なお、製品での成分分析も実施したが、インゴットでの分析結果と同じであった。なお、表1の備考欄の本発明例とは、内部酸化層以外についての技術項目が全て特許請求の範囲に入っている例のことである。
【0033】
【表1】

Figure 0004116748
【0034】
(実施例2)
表2に示すように、SiとAl量とを調整した連続鋳造スラブを供試材として用いた。その他の成分としては、実験No.1〜9については、0.001%C、0.2%Mn、0.02%P、0.0002%S、0.0007%N、0.25%Cu、0.04%Sn、0.05%Ni、0.05%Crに固定した。また、実験No.10と11のみ、0.001%C、0.2%Mn、0.02%P、0.0002%S、0.0007%Nで、Cu,Sn,Ni,Crについてはそれぞれ0.0002%以下とした。このスラブを1100℃で加熱してから、1.5mm厚の熱延コイルを製造した。次いで900℃で15秒の焼鈍をN2 中で実施した。酸洗してから0.25mmまで冷延した。この冷延板で表層酸化層を観察調査したが、酸化層は存在しなかった。
【0035】
脱脂後、1100℃×10秒の均熱焼鈍を実施した。この時、加熱を無酸化炉(直火雰囲気、空燃比=0.9)で行い、無酸化炉出側の板温を制御して、内部酸化層の厚みを変更した。無酸化炉を出てからは、電気ヒータゾーンで40%H2 +60%N2 雰囲気で焼鈍した。絶縁皮膜(クロム酸、マグネシュウム、アクリル系の半有機皮膜)を約1.5μm厚焼き付けた。
【0036】
このコイルから、打抜き性の評価は、リング試料(20mmφ×30mmφ)の最大かえり量を測定し、かえりが5/100mmとなる打抜き回数を表2に記した。なお、金型はSKDを使用した。初回のかえりはいずれも2/100mmであった。また、エプスタイン試験片で磁気特性を測定した。引張試験片を圧延方向とそれと直角の方向に切り出し、下降伏点を測定して平均化して表2に載せた。製品の平均結晶粒径は、いずれも150〜155μmであった。
【0037】
【表2】
Figure 0004116748
【0038】
表2に示すように、成分、内部酸化層、降伏点とを本発明範囲に制御したものは、優れた打抜き回数および鉄損特性を示した。なお、最終の鋼板の成分をチェックしたが、スラブ成分と同一であった。No.10と11とは、Cu,Sn,Ni,Crを含まない成分系であるが、内部酸化層は生成されにくい傾向にあることが実験No.2と10との比較で、また実験No.5と11との比較で分かる。
その原因については、未だ不明確な部分があって今後の調査に待たなければならないが、表層をGDSなどでスパッターしながら調査すると、Cu,Sn,Ni,Crなどは表層に濃化する傾向があるため、これが原因の一つと推定している。
【0039】
(実施例3)
質量%で、0.0035%C、2.2%Si、0.18%Mn、0.01%P、0.0035%S、2.1%Al、0.0015%N、0.003%Nb、0.5%Cu、0.08%Sn、0.08%Ni、0.11%Cr、0.002%O、0.001%Ti、0.002%Mo、0.001%V、0.0001%B、0.0002%Sbを含むスラブを1050℃で加熱してから、2.5mm厚の熱延コイルを製造した。次いで850℃×10秒の窒素中焼鈍をして、酸洗した。酸化層を調査したが、認められなかった。次いで0.2mm厚まで冷延し、脱脂後、均熱温度を表3のように変更して10秒均熱の30%H2 +70%N2 中の焼鈍を実施した。この時、均熱温度に到達するまでの加熱雰囲気をN2 とし、その酸素を0.01%とした。次いで有機、無機混合の絶縁皮膜を1μm厚で焼き付けした。
【0040】
この鋼板表面を調査したところ、いずれも内部酸化層は、0.2μm厚であった。次いでエプスタイン試料に切断してから磁気特性を測定した。引張試験片を圧延方向とそれと直角の方向に切り出し、下降伏点を測定して平均化した。また結晶粒径も測定して、表3に示した。
表3に示すように、本発明範囲の結晶粒径で優れた磁気特性・機械的性質が得られた。
【0041】
【表3】
Figure 0004116748
【0042】
【発明の効果】
地球環境問題からの鉄スクラップの積極活用課題を解決し、磁石埋設型モータの回転子の固有問題であった、無方向性電磁鋼板の剛性、打抜き性、磁気特性などの課題も解決した無方向性電磁鋼板を提供することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-oriented electrical steel sheet that is optimal for a magnet-embedded motor based on a component system that enables iron recycling, and in particular, aims to improve punching workability and magnetic properties, which have been problems in the past. Further, the present invention relates to a non-oriented electrical steel sheet for a magnet-embedded motor.
[0002]
[Prior art]
In the near-future situation where global resources may be depleted, there is a rapid movement for resource reuse in various fields. For this reason, it has become necessary for the steel industry to use various types of iron scrap, such as automobiles, washing machines, and air conditioners, as raw materials for iron making. For this purpose, the components contained in scrap such as Cu, Ni, Cr and Sn, which have been considered harmful in the past, must be actively used.
[0003]
On the other hand, due to the same global resource problem, there is an increasing trend to eliminate wasted energy. In the field of motors as well, there is a demand for a low electricity bill due to a reduction in power consumption, as seen in, for example, general household air conditioners. For this reason, improvements have been made in motor design to reduce power consumption. Most of conventional motors are induction motors, and this induction motor is a system in which an aluminum die cast is applied to a rotor and an induction current is passed through the aluminum. However, in Japan in recent years, inverter control has been advanced from the viewpoint of efficiency, and further, a so-called magnet-embedded DC inverter control motor in which a permanent magnet is embedded in a rotor is changing.
[0004]
By the way, the first problem of the non-oriented electrical steel sheet used for the magnet-embedded rotor up to now is the minimum necessary strength for preventing the motor from being destroyed due to the magnet popping out by centrifugal force at high speed rotation. For this purpose, a yield point strength of 260 Mpa or more is required. In order to increase the strength, conventionally, means for increasing the amount of Si and strengthening the solid solution has been adopted. However, when Si is increased, the punching die is severely worn and the punching workability is deteriorated. This was the second issue. That is, the prevention of motor breakage and improvement of punchability by utilizing Si were two contradictory phenomena.
Further, the third problem is improvement of motor efficiency, particularly further reduction of high-frequency iron loss in inverter control at the stator (stator). Since the rotor and the stator are usually often punched from the same coil, the non-oriented electrical steel sheet is required to have characteristics that satisfy both the rotor and the stator.
[0005]
On the other hand, Cu, Ni, Cr, Sn, etc., which have been regarded as impurities due to global environmental problems as described above, must be actively used. However, ultra-high-grade functionality such as the above-mentioned non-oriented electrical steel sheet for magnet-embedded motors. Conventionally, it has been considered impossible to incorporate these Cu, Ni, Cr, Sn, and the like into a steel sheet because of wrinkle problems and concerns over magnetic properties. One reason for this is that even if research at the laboratory level is successful, when the actual factory is passed through, punching and high-frequency iron loss characteristics often deteriorate, which is the cause. This is because the problem has not been investigated. That is, a non-oriented electrical steel sheet that simultaneously solves these problems has not been proposed.
[0006]
JP-A-8-97023 discloses that the magnetic properties are improved by adding Sb to reduce the oxide layer. However, Sb is expensive and harmful to the human body, and the remaining amount of scale after hot-rolled sheet or hot-rolled sheet annealing has been discussed. It is an oxide layer present in the outermost layer. Since it was a meaningless oxide layer for the high frequency use for inverter control important in the invention, it was not used. K. Matsmura and B. Fukuda: IEEE Trans. Mag. 20 (1984) 1533 also describe an oxide layer, which was also an oxide layer existing from the outermost layer. The product plate thickness known as a non-oriented electrical steel sheet is 0.1 to 1 mm.
[0007]
In view of the above points, the present invention solves the problem of positive utilization of iron scrap due to global environmental problems, and further, the rigidity, punchability, magnetic characteristics, etc. of the non-oriented electrical steel sheet, which were inherent problems of a magnet-embedded motor It is intended to provide a non-oriented electrical steel sheet that drastically solves the problem.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the gist of the present invention is as follows.
(1) In mass%,
C ≦ 0.005%, Si: 1.6 to 2.8%,
Mn ≦ 0.5%, P ≦ 0.05%,
S ≦ 0.002%, Al: 1-4%,
N ≦ 0.004%, Cu: 0.05 to 0.7%,
Ni: 0.01 to 0.2%, Cr: 0.01 to 0.2%,
Sn: 0.003-0.1%
The balance consists of iron and unavoidable impurities, the steel sheet surface structure after cold-rolled sheet annealing has an iron metal layer on the outermost surface, and an inner oxide layer with a thickness ≦ 0.5 μm is formed in the inner layer Furthermore, the crystal grain size is 80 to 170 μm, and the yield point strength is 260 to 370 N / mm 2. A non-oriented electrical steel sheet for motors embedded in a magnet.
[0009]
There are three points of the present invention. One is that the yield point of the steel sheet should be made small in order to reduce the die wear of the punching property. For this purpose, it is better to actively use Al than Si. Furthermore, Cu, Ni, Cr, It is important to reduce the number of internal oxide layers that are likely to occur in a steel sheet containing four types of Sn. Second, in order to improve the iron loss, the internal oxide layer is also effective in addition to the conventionally known control of the crystal grain size, and this internal oxide layer is particularly important for high-frequency iron loss. Third, it is industrially possible to control these yield points and internal oxide layers.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reasons for limitation of the present invention will be described. The component content is% by mass .
The C amount is 0.005% or less. This is because if the C content exceeds 0.005%, low frequency iron loss increases due to magnetic aging.
[0011]
The amount of Si is limited to 1.6 to 2.8%. Si is effective in increasing the rigidity of the steel sheet. If it is less than 1.6%, the yield point is too low and unsatisfactory, and if it exceeds 2.8%, the yield point is too high and die wear is not possible.
[0012]
The amount of Mn is 0.5% or less. Mn has an effect of preventing hot cracking, but if it is too much, there is a problem of addition cost, so 0.5% or less.
[0013]
The amount of P is limited to 0.05% or less. P is also preferable because it inhibits crystal grain growth and makes the product crystal grain size finer, but this limit is 0.05%.
[0014]
The amount of S is 0.002% or less. S forms sulfides and degrades iron loss. This limit is 0.002%.
[0015]
The amount of Al is 1 to 4%. Al is effective in increasing the rigidity of the steel sheet. If it is less than 1%, the yield point is unsatisfactory, and if it exceeds 4%, the addition cost increases, so it must be avoided.
[0016]
The N amount is 0.004% or less. N forms nitrides and degrades iron loss. This limit is 0.004%.
[0017]
The amount of Cu is 0.05 to 0.7%. The meaning of effective utilization of iron scrap is 0.05% or more of Cu, and if it exceeds 0.7%, a steel plate surface crack occurs due to hot rolling called Cu baldness and must be avoided.
[0018]
The amount of Ni is 0.01 to 0.2%. The meaning of effective utilization of iron scrap is 0.01% or more of Ni, and if it exceeds 0.2%, crystal grain growth is hindered.
[0019]
The amount of Cr is 0.01 to 0.2%. The meaning of effective utilization of iron scrap is 0.01% or more of Cr, and practically does not exceed 0.2% from iron scrap, so is 0.01 to 0.2%.
[0020]
The Sn amount is 0.003 to 0.1%. The meaning of effective use of iron scrap is 0.003% or more of Sn, and practically does not exceed 0.1% from iron scrap, so 0.01 to 0.1%.
[0021]
Addition of other known elements such as B and Mo for improving the texture is not harmful as the present invention. However, since there is a problem of addition cost, 0.1% or less is preferable for each.
Further, the known harmful elements, Ti and Nb, are preferably 0.01% or less. Further, in the present invention, since expensive Sb is not added, it is less than 0.01%, which is an amount as an unavoidable impurity in the steelmaking operation.
[0022]
The continuous cast slab adjusted to the above components by steel making is subjected to normal hot rolling to form a hot rolled sheet.
The hot rolled sheet is then annealed. Hot-rolled sheet annealing is usually performed at 800 to 1200 ° C., and higher temperature is preferable for improving the magnetic flux density. In addition, although the one where a hot-rolled sheet annealing temperature is high is a little, the yield point of a product tends to become low.
[0023]
Next, annealing is performed after cold rolling. The average crystal grain size of the steel sheet after annealing is set to 80 μm or more and 170 μm or less. If it is less than 80 μm, the low-frequency iron loss is unsatisfactory, and if it exceeds 170 μm, the high-frequency iron loss is unsatisfactory. In order to control the crystal grain size, normal temperature × time control may be performed.
[0024]
The thickness of the internal oxide layer must be 0.5 μm or less. This is because when the internal oxide layer exceeds 0.5 μm, the high-frequency iron loss is greatly deteriorated. In particular, in the Cu, Sn, Ni, Cr composite containing system of the present invention, care must be taken because an internal oxide layer is likely to occur.
[0025]
The internal oxide layer referred to here is an oxide layer rich in Si, Al, Mn, etc. formed in the lower layer of the iron metal layer where the outermost layer is slightly reduced in Si or Al. That is, as the surface structure, a three-layer structure is formed in which the first outermost layer is iron metal, the second layer is an internal oxide layer, and the third layer is ground metal. As the internal oxide layer becomes thicker, the thickness of the outermost iron metal layer also tends to increase. For example, when the internal oxide layer is 0.5 μm, the iron metal layer thickness is about 0.8 μm. In most cases, the outermost iron metal layer is observed as a film (film) on the internal oxide layer. However, as a rare case, there is no iron metal portion of the outermost layer, and iron metal may be observed as intermittent islands in the upper layer portion of the internal oxide layer. The thickness of the internal oxide layer in this case is defined as a value obtained by subtracting the average thickness of the island-like iron metal thickness from the total oxide layer thickness. The lower layer of the inner oxide layer is ground iron.
[0026]
Since this internal oxide layer has large irregularities on the boundary surface with the ground iron, it must interfere with the flow of magnetic flux and remarkably deteriorate high frequency iron loss. This internal oxide layer can be observed by measuring the polished surface of the cross section of the steel sheet by SEM-EDX at a magnification of 5000 times or more. However, the SEM image is not a normal secondary electron but a reflected electron image. Can clearly see the thickness of the internal oxide layer. The thickness of the internal oxide layer is the thickness of the intermediate layer between the outermost iron metal interface and the lower ground metal interface, but when the straight line parallel to the average line of the upper and lower interfaces is drawn The area surrounded by the straight line and the concavo-convex curve is defined as the difference between the straight lines that are equal on both sides of the straight line.
[0027]
Since this internal oxide layer is generated when it is oxidized during the heating process of annealing, for example, it is necessary to pay sufficient attention to cracks in the heated radiant tube and air-fuel ratio in a direct-fired non-oxidation furnace. That is, when oxidized during the heating process of annealing, the inner oxide layer is not reduced even if it is then annealed with a reducing gas at a high temperature. This internal oxide layer does not mean a phenomenon of oxidation from the outermost surface by soaking in a conventional wet gas of H 2 + N 2 + H 2 O mixed. This surface oxidation does not adversely affect the high frequency iron loss.
[0028]
At the laboratory level, it is easy to anneal in non-oxidizing gas from heating to soaking and cooling, but in an actual furnace at a steel manufacturer, a direct flame burner or radiant tube is often used for the heating zone. In particular, in the Cu, Sn, Ni, Cr composite containing system, attention must be paid to this internal oxide layer. Note that even if the temperature is soaked in a dry atmosphere, for example, 100% H 2 dew point of −50 ° C., the internal oxide layer is not reduced.
[0029]
After the recrystallization annealing, a normal insulating film is applied and dried before shipment. After being shipped, it is punched out, laminated and fixed, as it is, or annealed (in particular, the stator may be annealed to improve magnetism) to become a magnet embedded motor core.
Examples will be described below.
[0030]
(Example 1)
Various component systems shown in Table 1 were dissolved by vacuum melting to prepare ingots. This was heated to 1030 ° C. and then divided into 10 mm thick steel pieces. Next, after further heating to 1000 ° C., a 1.7 mm hot-rolled sheet was prepared. Subsequently, after annealing in nitrogen at 1100 ° C. for 30 seconds, it was allowed to cool in the atmosphere. After pickling, it was cold rolled to a thickness of 0.35 mm. Subsequently, degreasing was performed, and annealing in hydrogen at 1000 ° C. for 5 seconds was performed.
[0031]
From these, tensile test specimens were cut in the rolling direction and a direction perpendicular thereto, and the yield point (YP) was measured and averaged. The yield point was a lower yield point with higher reading accuracy than the upper yield point. Moreover, after cutting out a 100 mm square sample, the 400-Hz iron loss of the rolling direction and the direction orthogonal to it was measured, and it averaged and showed in Table 1. Moreover, the average crystal grain size of the steel sheet cross section was obtained as a count in the thickness direction. The internal oxide layer was also investigated but was not present.
[0032]
As shown in Table 1, those outside the component range of the present invention were outside the lower and upper limits of the yield point, and the iron loss characteristics were unsatisfactory. In addition, although the component analysis in the product was also carried out, it was the same as the analysis result in the ingot. The example of the present invention in the remarks column of Table 1 is an example in which all technical items other than the internal oxide layer are within the scope of the claims.
[0033]
[Table 1]
Figure 0004116748
[0034]
(Example 2)
As shown in Table 2, a continuous cast slab in which the amounts of Si and Al were adjusted was used as a test material. As other components, Experiment No. For 1 to 9, 0.001% C, 0.2% Mn, 0.02% P, 0.0002% S, 0.0007% N, 0.25% Cu, 0.04% Sn, 0. Fixed to 05% Ni and 0.05% Cr. In addition, Experiment No. 10 and 11 only, 0.001% C, 0.2% Mn, 0.02% P, 0.0002% S, 0.0007% N, and Cu, Sn, Ni, and Cr are 0.0002%. It was as follows. The slab was heated at 1100 ° C., and a hot rolled coil having a thickness of 1.5 mm was manufactured. Next, annealing at 900 ° C. for 15 seconds was performed in N 2 . After pickling, it was cold rolled to 0.25 mm. The surface oxide layer was observed and investigated with this cold-rolled sheet, but no oxide layer was present.
[0035]
After degreasing, soaking at 1100 ° C. for 10 seconds was performed. At this time, heating was performed in a non-oxidizing furnace (direct flame atmosphere, air-fuel ratio = 0.9), and the plate temperature on the non-oxidizing furnace exit side was controlled to change the thickness of the internal oxide layer. After leaving the non-oxidizing furnace, annealing was performed in an atmosphere of 40% H 2 + 60% N 2 in an electric heater zone. An insulating film (chromic acid, magnesium, acrylic semi-organic film) was baked to a thickness of about 1.5 μm.
[0036]
From this coil, the punchability was evaluated by measuring the maximum burr amount of a ring sample (20 mmφ × 30 mmφ), and Table 2 shows the number of times that the burr is 5/100 mm. The mold used was SKD. The first burr was 2/100 mm in all cases. In addition, magnetic properties were measured with an Epstein test piece. Tensile test pieces were cut out in the rolling direction and in a direction perpendicular thereto, and the yield points were measured and averaged and listed in Table 2. The average crystal grain size of the products was 150 to 155 μm for all.
[0037]
[Table 2]
Figure 0004116748
[0038]
As shown in Table 2, those in which the components, the internal oxide layer, and the yield point were controlled within the scope of the present invention exhibited excellent punching times and iron loss characteristics. In addition, although the component of the last steel plate was checked, it was the same as the slab component. No. Experiments 10 and 11 are component systems that do not contain Cu, Sn, Ni, and Cr, but the internal oxide layer tends to be difficult to generate. In comparison with 2 and 10, experiment no. It can be seen by comparing 5 and 11.
As for the cause, there are still unclear parts and we have to wait for future investigations. However, if the surface layer is investigated while sputtering with GDS, Cu, Sn, Ni, Cr, etc. tend to concentrate on the surface layer. This is one of the causes.
[0039]
(Example 3)
% By mass , 0.0035% C, 2.2% Si, 0.18% Mn, 0.01% P, 0.0035% S, 2.1% Al, 0.0015% N, 0.003% Nb, 0.5% Cu, 0.08% Sn, 0.08% Ni, 0.11% Cr, 0.002% O, 0.001% Ti, 0.002% Mo, 0.001% V, A slab containing 0.0001% B and 0.0002% Sb was heated at 1050 ° C., and a 2.5 mm thick hot rolled coil was manufactured. Next, it was annealed in nitrogen at 850 ° C. for 10 seconds and pickled. The oxide layer was investigated but not found. Subsequently, it was cold-rolled to a thickness of 0.2 mm, and after degreasing, the soaking temperature was changed as shown in Table 3 and annealing in 30% H 2 + 70% N 2 with soaking for 10 seconds was performed. In this case, the heating atmosphere to reach the soaking temperature was N 2, was the oxygen of 0.01%. Next, an organic and inorganic mixed insulating film was baked at a thickness of 1 μm.
[0040]
When the surface of this steel plate was investigated, the internal oxide layer was 0.2 μm in any case. Next, after cutting into Epstein samples, the magnetic properties were measured. Tensile test specimens were cut in the rolling direction and a direction perpendicular thereto, and the yield point was measured and averaged. The crystal grain size was also measured and shown in Table 3.
As shown in Table 3, excellent magnetic properties and mechanical properties were obtained with a crystal grain size in the range of the present invention.
[0041]
[Table 3]
Figure 0004116748
[0042]
【The invention's effect】
Non-directional solution that solves the problem of active use of iron scrap due to global environmental problems and solves problems such as rigidity, punchability, and magnetic properties of non-oriented electrical steel sheets, which were inherent problems of rotors in magnet-embedded motors Steel sheet could be provided.

Claims (1)

質量%で、
C ≦0.005%、
Si:1.6〜2.8%、
Mn≦0.5%、
P ≦0.05%、
S ≦0.002%、
Al:1〜4%、
N ≦0.004%、
Cu:0.05〜0.7%、
Ni:0.01〜0.2%、
Cr:0.01〜0.2%、
Sn:0.003〜0.1%
を含有し、残部が鉄及び不可避的不純物からなり、冷延板焼鈍後の鋼板表面構造が最表面に鉄メタル層が存在し、その内層に厚さ≦0.5μmの内部酸化層を形成しており、更に、結晶粒径が80〜170μm、降伏点強度:260〜370N/mm であることを特徴とする磁石埋設型のモータ用無方向性電磁鋼板。
% By mass
C ≦ 0.005%,
Si: 1.6 to 2.8%,
Mn ≦ 0.5%,
P ≦ 0.05%,
S ≦ 0.002%,
Al: 1-4%
N ≦ 0.004%,
Cu: 0.05 to 0.7%,
Ni: 0.01-0.2%
Cr: 0.01 to 0.2%,
Sn: 0.003-0.1%
The balance consists of iron and unavoidable impurities, the steel sheet surface structure after cold-rolled sheet annealing has an iron metal layer on the outermost surface, and an inner oxide layer with a thickness ≦ 0.5 μm is formed in the inner layer Furthermore, the crystal grain size is 80 to 170 μm, and the yield point strength is 260 to 370 N / mm 2. A non-oriented electrical steel sheet for motors embedded in a magnet.
JP35807299A 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor Expired - Fee Related JP4116748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35807299A JP4116748B2 (en) 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35807299A JP4116748B2 (en) 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor

Publications (2)

Publication Number Publication Date
JP2001172752A JP2001172752A (en) 2001-06-26
JP4116748B2 true JP4116748B2 (en) 2008-07-09

Family

ID=18457399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35807299A Expired - Fee Related JP4116748B2 (en) 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor

Country Status (1)

Country Link
JP (1) JP4116748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188812A1 (en) 2019-03-20 2020-09-24 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
KR100973627B1 (en) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
JP5391997B2 (en) * 2009-10-22 2014-01-15 新日鐵住金株式会社 Composite panel with excellent tension rigidity
JP6880814B2 (en) * 2017-02-21 2021-06-02 日本製鉄株式会社 Electrical steel sheet and its manufacturing method
JP6870381B2 (en) * 2017-02-28 2021-05-12 日本製鉄株式会社 Electrical steel sheet and its manufacturing method
KR102009393B1 (en) * 2017-12-26 2019-08-09 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102106409B1 (en) * 2018-07-18 2020-05-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP7192887B2 (en) * 2019-01-17 2022-12-20 日本製鉄株式会社 Non-oriented electrical steel sheet, split type stator and rotating electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188812A1 (en) 2019-03-20 2020-09-24 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
US11952641B2 (en) 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2001172752A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5429411B1 (en) Non-oriented electrical steel sheet
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP7401729B2 (en) Non-oriented electrical steel sheet
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP4116749B2 (en) Non-oriented electrical steel sheet
JP2008240104A (en) High-strength non-oriented electromagnetic steel sheet and method for producing the same
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP4116748B2 (en) Magnet buried type non-oriented electrical steel sheet for motor
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
WO2007063581A1 (en) Nonoriented electromagnetic steel sheet and process for producing the same
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JPS62256917A (en) High-tensile non-oriented electrical steel sheet for rotating machine and its production
JP4507316B2 (en) DC brushless motor
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP2001295003A (en) Thin nonoriented silicon steel sheet for high frequency small in anisotropy and excellent in surface property and its producing method
JP4506664B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP4276391B2 (en) High grade non-oriented electrical steel sheet
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011089204A (en) Nonoriented silicon steel sheet for rotor and production method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4116748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees