JP4115642B2 - Ii型セリンプロテイナーゼインヒビターまたはその前駆体をコードする遺伝子配列を含むトランスジェニック植物 - Google Patents

Ii型セリンプロテイナーゼインヒビターまたはその前駆体をコードする遺伝子配列を含むトランスジェニック植物 Download PDF

Info

Publication number
JP4115642B2
JP4115642B2 JP2000003716A JP2000003716A JP4115642B2 JP 4115642 B2 JP4115642 B2 JP 4115642B2 JP 2000003716 A JP2000003716 A JP 2000003716A JP 2000003716 A JP2000003716 A JP 2000003716A JP 4115642 B2 JP4115642 B2 JP 4115642B2
Authority
JP
Japan
Prior art keywords
precursor
amino acid
seq
protein
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000003716A
Other languages
English (en)
Other versions
JP2000175581A (ja
Inventor
マリリン・アン・アンダーソン
アンジェラ・ヒラリー・アトキンソン
ロビン・ルイーズ・ヒース
アドリアン・エリザベス・クラーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hexima Ltd
Original Assignee
Hexima Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexima Ltd filed Critical Hexima Ltd
Publication of JP2000175581A publication Critical patent/JP2000175581A/ja
Application granted granted Critical
Publication of JP4115642B2 publication Critical patent/JP4115642B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/026Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a baculovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/06Uses of viruses as vector in vitro
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/81Protease inhibitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般に、プロテアーゼ感受性ペプチドおよびそれをコードする遺伝子配列に関する。
ヌクレオチド配列および核酸配列は、本明細書において引用文献の後に記載する配列番号(SEQ ID NO)によって言及する。SEQ ID NOの一般的な要約は実施例の前に記載してある。
【0002】
【従来の技術】
ナス科(Solanaceae)およびマメ科(Fabaceae)に属する幾つかの種類の植物は、傷に対する応答の結果としてその貯蔵器官や葉にセリンプロテイナーゼインヒビターを蓄積する(ブラウン(Brown)およびライアン(Ryan)、1984;リチャードソン(Richardson)、1977)。これらタンパク質の抑制活性は、微生物および動物由来の広範囲のプロテイナーゼに対して向けられるが、植物のプロテイナーゼに向けられることは稀である(リチャードソン、1977)。これらインヒビターは、病原体および捕食者に対して植物を保護することに関与していると思われている。ジャガイモの塊茎およびマメ科植物の種子では、これらインヒビターは貯蔵タンパク質の10%またはそれ以上を占めることがあり(リチャードソン、1977)、トマトやジャガイモの葉(グリーン(Green)およびライアン、1972)およびアルファルファ(ブラウンおよびライアン、1984)では、昆虫の攻撃または他のタイプの傷から48時間以内にプロテイナーゼインヒビターは可溶性タンパク質の2%のレベルまで蓄積することがある(ブラウン&ライアン、1984;グラハム(Graham)ら、1986)。これらインヒビターはまた、野性型のトマト、リコペルシコン・ペルビアヌム(Lycopersicon peruvianum)の未熟果にも高レベル(全可溶性タンパク質の50%まで)で存在する(ピアス(Pearce)ら、1988)。
【0003】
トマトおよびジャガイモにおいて2つのファミリーのセリンプロテイナーゼインヒビターが存在する(ライアン、1984)。I型のインヒビターは、単一の反応部位でキモトリプシンを抑制する小さなタンパク質(モノマーの分子量8100)である(メルビル(Melville)およびライアン、1970;プランケット(Plunkett)ら、1982)。II型ファミリーのインヒビターは、一般に、2つの反応部位を有しており、その一方はキモトリプシンを抑制し、他方はトリプシンを抑制する(ブライアント(Bryant)ら、1976;プランケットら、1982)。II型インヒビターは12,300のモノマー分子量を有する(プランケットら、1982)。プロテイナーゼインヒビターIは、黄化タバコ(ニコチアナ・タバクム(Nicotiana tabacum))の葉中に蓄積し(クオ(Kuo)ら、1984)、フィトフトラ・パラシチカ・ヴァル・ニコチアナ(Phytophthora parasitica var. nicotianae)からのエリシタは、タバコ細胞懸濁培養液中でのプロテイナーゼインヒビターIの蓄積を誘発することがわかった(リッカウアー(Rickauer)ら、1989)。
【0004】
【発明が解決しようとする課題】
他のプロテイナーゼインヒビターを同定すること、および病原体や捕食者に対する保護の優れたトランスジェニック植物の開発での使用の可能性を探る必要性が存在する。
【0005】
【課題を解決するための手段】
本発明に従い、プロテイナーゼインヒビター前駆体をコードする遺伝子配列をクローニングした。該前駆体は複数のプロテイナーゼインヒビタードメインを有しており、プロテイナーゼインヒビター発現の優れた広範囲のトランスジェニック植物を開発するうえで有用であろう。かかる植物は、病原体や捕食者に対する防御特性が優れているであろう。本発明の遺伝構築物はまた、昆虫(それ自体捕食者であるか、または植物病原体の宿主として働く)による食物摂取に対するワクチンを開発するうえでも有用であろう。組換え前駆体またはモノマー性のインヒビターはまた、局所噴霧や動物が食物を消化するのを助けるのに有用であろう。
【0006】
従って、本発明の一つの態様は、植物からのII型セリンプロテイナーゼインヒビター(PI)前駆体をコードするかまたは該コード配列に相補的なヌクレオチドの配列を含む核酸分子に関する。その際、該前駆体は少なくとも3つのPIモノマーを含み、該モノマーのうち少なくとも一つはキモトリプシン特異的な部位であり、該モノマーの他のもののうち少なくとも一つはトリプシン特異的な部位である。
【0007】
【発明の実施の形態】
本発明において「核酸分子」とは、RNAまたはDNA(たとえばcDNA)であって、一本鎖または二本鎖であり、直線状または共有結合により閉じたものである。核酸分子はまた、全遺伝子またはその実質部分に対応するゲノムDNA、そのフラグメントまたはその誘導体であってよい。ヌクレオチド配列は、ゲノムクローンまたはcDNAクローンの天然に存在するヌクレオチド配列に対応していてよく、または単一または複数のヌクレオチドの置換、欠失および/または付加を有していてよい。核酸分子中のかかる変異はすべて、少なくとも一つのモノマーまたはその活性部位をコードする能力を保持しているか、または他の種の同じもしくは類似の遺伝子配列のためのハイブリダイゼーションプローブまたはポリメラーゼ連鎖反応(PCR)プライマーとして有用である。
【0008】
PI前駆体は、好ましくは少なくとも4つのPIモノマー、さらに好ましくは少なくとも5つのPIモノマー、さらに一層好ましくは少なくとも6つのPIモノマーを含む。さらに好ましくは、PI前駆体はさらにシグナル配列を含む。本発明のPI前駆体は、個々のモノマーに開裂するためのプロセシング部位であるアミノ酸配列を含む。
【0009】
本明細書において使用する「前駆体」なる語は、前駆体分子そのものの有用性を限定したり、PI活性が発現される前に該分子がまずモノマーにプロセシングされることを要求することを意図するものではない。該前駆体分子はPI活性を有しており、本発明は該前駆体および該前駆体の個々のモノマーに関する。
【0010】
さらに、本発明は、ハイブリッドII型セリンPI前駆体をコードするかまたは該コード配列に相補的なヌクレオチドの配列を含む核酸分子にも関する。その際、該前駆体は異なるPIからの少なくとも2つのモノマーを含む。かかる少なくとも2つのモノマーは、個々のモノマーにプロセシングされ得ないように修飾することもできるし、またはそのようにプロセシングされる能力を保持させることもできる。好ましくは、これらモノマーのうち少なくとも一つはキモトリプシン特異的な部位を有し、これらモノマーの他方はトリプシン特異的な部位を有する。少なくとも3つのモノマーを有するのが好ましく、少なくとも4つのモノマーを有するのがさらに好ましく、少なくとも5つのモノマーを有するのがさらに一層好ましく、少なくとも6つのモノマーを有するのがもっと一層好ましく、その場合、少なくとも2つは異なるPIからのものである。最も好ましい態様において、これらモノマーの少なくとも一つはチオニン(thionin)である。かかるハイブリッドPI前駆体および/またはそのモノマーは、「多価」な、すなわち広範囲の病原体や捕食者に対して(たとえば、真菌および昆虫の両者に対して)活性な分子を生成させるのに特に有用である。従って、本明細書において「PI前駆体」というときはハイブリッド分子をも包含するものである。
【0011】
本発明は、下記ヌクレオチド配列(SEQ ID NO:1)および対応アミノ酸配列(SEQ ID NO:3)を有するニコチアナ・アラタ(Nicotiana alata)由来の核酸分子の単離を例として挙げる。
【0012】
Figure 0004115642
Figure 0004115642
【0013】
しかしながら、上記例示は、本発明が他の植物からの等価なまたは実質的に同様の核酸分子をも包含することを理解したうえでのことである。「等価な」および「実質的に類似の」とは、ヌクレオチド配列、アミノ酸配列、抗体反応性、モノマー組成および/または前駆体のプロセシングによるモノマー生成のレベルにおいて等価および実質的に類似であることを意味する。たとえば、SEQ ID NO:1の配列と比較した場合に少なくとも55%、たとえば約60〜65%、70〜75%、80〜85%および90%以上のパーセントの配列類似性を有するヌクレオチド配列は本発明の主題の核酸分子に「実質的に類似」していると考えられる。ただし、そのような実質的に類似の配列が、上記のように少なくとも3つのモノマー、好ましくは4つ、5つまたは6つのモノマーを有するPI前駆体をコードすることを条件とする。
【0014】
特に好ましい態様において、本発明の核酸分子はさらに、転写解読枠の5’側のシグナル配列および/またはコード領域の3’側のヌクレオチド配列をもコードして下記のような完全なヌクレオチド配列(SEQ ID NO:2)およびその実質的に類似性の変異体を提供する。
【0015】
Figure 0004115642
Figure 0004115642
【0016】
従って、本発明の好ましい態様は、ニコチアナ・アラタ由来のII型セリンPI前駆体または該前駆体もしくは少なくとも一つのドメインに対して少なくとも55%の類似性を有する配列をコードするかまたは該コード配列に相補的なSEQID NO:1または2に示すヌクレオチドの配列を含む核酸分子を提供する。その際、該前駆体はシグナルペプチドおよび少なくとも5つのモノマーを含み、該モノマーのうちの一つはキモトリプシン特異的な部位を有し、該モノマーの残りの4つはトリプシン特異的な部位を有する。
さらに好ましい態様において、該核酸分子はcDNA分子であり、SEQID NO:1または2に一般に示すヌクレオチド配列または本明細書において定義するように該配列の全体またはそのドメインに実質的に類似な配列を含む。
【0017】
本発明の他の態様は、キモトリプシン特異的な部位かまたはトリプシン特異的な部位のいずれかを有する単一のII型セリンPIをコードするかまたは該コード配列に相補的なヌクレオチドの配列を含む核酸分子に関する。その際、該PIは、少なくとも3つのモノマーを有し、そのうち少なくとも一つがキモトリプシン部位を有し残りがトリプシン部位を有する前駆体PIの一つのモノマーである。しかしながら、本発明の前駆体は、4つ、5つまたは6つのモノマーを有し、上記に定義のごとくであるのが好ましい。
【0018】
最も好ましい態様において、植物は自家不和合性の遺伝子型S13、S33またはS66を有するニコチアナ・アラタ(リンク(Link)およびオット(Otto))であり、核酸分子は成熟植物の柱頭および花柱から単離しうる遺伝子配列から単離しうるまたは該配列に相補的なものである。対応mRNAは約1.4kbであり、cDNAは6つの保存されたドメインを有し、そのうち最初の2つのドメインは100%同一でありキモトリプシン特異的な部位(Leu−Asn)を有する。第三、第四および第五のドメインは95〜98%の同一性を有し、トリプシンに特異的な部位(Arg−Asn)を有する。第六のドメインもまたトリプシン特異的な部位を有するが、主に3’配列の相違により(表1参照)第三、第四および第五のドメインに対する同一性は低い(79〜90%)。本発明の好ましいPIインヒビターは約42〜45kDaの分子量を有し、約29アミノ酸のシグナル配列を有する。
【0019】
モノマー性PIのN末端配列は、PI前駆体タンパク質の予測される配列中の6つの各繰り返しドメインにおいて表示されている。それゆえ、PI前駆体タンパク質は6つの部位で開裂されて7つのペプチドを生成すると思われる。これら7つのペプチドのうち6つのペプチド(ペプチド2、3、4、5、6および7)(図1、それぞれ、残基25〜82[SEQ ID NO:5]、83〜140[SEQ ID NO:6]、141〜198[SEQ ID NO:7]、199〜256[SEQ ID NO:8]、257〜314[SEQ ID NO:9]および315〜368[SEQ ID NO:9])はモノマー性PIと同じ分子量(約6kDa)を有し、同じN末端配列を有する。ペプチド7はトリプシンまたはキモトリプシンに対する共通部位を有しない。ペプチド1(残基1〜24[SEQ ID NO:4]、図1)は6kDaよりも小さく、異なるN末端を有し、精製したモノマー性PI調製物中で検出されなかった。ペプチド1とペプチド7とは、これら2つのペプチド間で形成されたジスルフィド結合により正しいコンホメーションに保持されたペプチド1上の抑制部位として機能的なプロテイナーゼインヒビターを形成すると思われる。
【0020】
本発明を一つの仮定に限定することを意図するものではないが、PI前駆体は、たとえばAsn−Asp結合の開裂に関与するプロテアーゼによってプロセシングを受けて生物学的に活性なモノマーを生成するのかもしれない。さらに詳しくは、プロセシング感受性の配列はR1−X1−X2−Asn−Asp−R2(式中、R1、R2、X1およびX2は以下に定義する通り)である。かかる配列の発見により、プロテアーゼ感受性配列の開裂により植物中でプロセシングを受けうるペプチドおよびポリペプチドを製造することが可能となるであろう。本発明の該観点に従い、アミノ酸配列:
−X1−X2−Asn−Asp−
(式中、X1およびX2はいかなるアミノ酸であってもよいが、両方ともLys残基であるのが好ましい)を含むプロテアーゼ感受性ペプチドが提供される。
【0021】
プロテアーゼ感受性配列はまた、
1−X1−X2−Asn−Asp−R2
(式中、X1およびX2は同じであるのが好ましく、両方ともLys残基であるのが好ましく、R1およびR2は同じかまたは異なるDまたはLアミノ酸、ペプチド、ポリペプチド、タンパク質、または非アミノ酸残基または分子、たとえば当業者に明らかなように、アルキル(たとえば、メチル、エチル)、置換アルキル、アルケニル、置換アルケニル、アシル、ジエニル、アリールアルキル、アリールアルケニル、アリール、置換アリール、複素環、置換複素環、シクロアルキル、置換シクロアルキル、ハロ(たとえば、Cl、Br、I、F)、ハロアルキル、ニトロ、ヒドロキシ、チオール、スルホニル、カルボキシ、アルコキシ、アリールオキシおよびアルキルアリールオキシなどである)としても表示される。アルキル、置換アルキル、アルケニルおよび置換アルケニルなどは、直鎖および分枝鎖分子、低級(C1〜C6)および高級(C6以上)誘導体を意味する。「直鎖」なる語は、上記すべての置換基を包含する。
【0022】
最も好ましい態様において、プロテアーゼ感受性ペプチドは
1−X1−X2−Asn−Asp−R2
(式中、R1およびR2は同じかまたは異なるペプチドまたはポリペプチドであり、X1およびX2はともにLys残基である)である。
かかるプロテアーゼ感受性ペプチドは、適当な宿主中またはインビトロで発現させることにより大きな分子を該プロテアーゼ感受性ペプチド間に位置するペプチドにプロセシングすることができるように、同じかまたは異なるモノマー間に置くことができる。
【0023】
本発明はまた、配列:
−X1−X2−Asn−Asp−
(式中、X1およびX2は好ましくは同じであり、最も好ましくは両方ともLys残基である)を含むプロテアーゼ感受性ペプチドをコードするかまたは該コード配列に相補的なヌクレオチドの配列を含む核酸分子にも関する。かかる核酸分子は、たとえば、プロテアーゼ感受性配列によって個々のペプチドまたはモノマーにプロセシングされうる前駆体ポリペプチドをコードする一層大きなヌクレオチド配列の一部であってよい。
【0024】
本発明のプロテアーゼ感受性ペプチドは、複(ポリ)価および/または多価「前駆体」を生成するうえで特に有用であり、該前駆体は各モノマーが同じかまたは異なっており、各モノマーは抗ウイルス活性、抗細菌活性、抗真菌活性、抗病原体活性および/または抗捕食者活性などの同じかまたは異なる活性を有する。本発明の該観点を一つの仮定または提唱された作用機構に限定することを意図するものではないが、プロテアーゼはAsn残基に隣接して、さらに詳しくはAsn−Asp残基間で作用すると思われる。
【0025】
本発明はまた、植物から単離したII型セリンPI前駆体にも関する。該前駆体は、少なくとも3つのPIモノマーを含み、これらモノマーのうち少なくとも一つはキモトリプシン特異的な部位を有し、これらモノマーの残りの少なくとも一つはトリプシン特異的な部位を有する。このPI前駆体は、4つ、5つまたは6つのモノマーを有し、上記核酸分子によってコードされているのが好ましい。本発明はまた、該前駆体を構成する個々のモノマーにも関する。本発明はまた、上記のように異なるPIからの少なくとも2つのモノマーを含むハイブリッド組換えPI前駆体分子にも関する。
【0026】
単離したPIまたはPI前駆体は、組換えの形態であっても、および/または生物学的に純粋であってもよい。「生物学的に純粋」とは、硫酸アンモニウム沈殿、セファデックスクロマトグラフィーおよび/またはアフィニティークロマトグラフィーを含む少なくとも一つの精製工程を施したPI、PI前駆体および/またはその混合物の調製物を意味する。該調製物は、重量、活性抗体、反応性および/またはアミノ酸含量により決定して少なくとも20%のPI、PI前駆体またはその混合物を含むのが好ましい。さらに好ましくは、該調製物は、30〜40%、50〜60%または少なくとも80〜90%のPI、PI前駆体またはその混合物を含む。
【0027】
PIまたはその前駆体は、天然に存在するものであってもよいし、または上記核酸変異体によってコードされるような変異体であってもよい。PIまたはその前駆体はまた、そのアミノ酸配列または炭水化物および/または脂質残基などの非タンパク質成分に対して置換、欠失および/または付加を有していてよい。
組換えおよび単離PI、PI前駆体およびその混合物は、研究室試薬として、抗体の産生に、局所的に投与する殺虫剤並びに経口的に摂取する殺虫剤として有用である。
組換えPIまたはPI前駆体は、殺虫剤として、単独または1または2以上の担体またはBT結晶タンパク質などの他の殺虫剤と組み合わせて提供される。
【0028】
本発明のPIは、病害虫の増殖または感染および真菌、細菌および昆虫などの病原体に対して、植物の器官、たとえば柱頭を防御する働きを有すると考えられる。それゆえ、PI前駆体(このものは、モノマー性PI自体のモノマーにプロセシングされうる)を発現しうるトランスジェニック植物を生成するのに用いることのできる遺伝的構築物を開発する必要性が存在する。
【0029】
従って、本発明の他の態様は、植物由来のII型セリンPI前駆体またはそのモノマーをコードするかまたは該コード配列に相補的なヌクレオチドの配列を含む核酸分子を含む遺伝子構築物を包含する。その際、該前駆体は少なくとも3つのPIモノマーを含み、これらモノマーのうち少なくとも一つはキモトリプシン特異的な部位を有し、残るモノマーのうち少なくとも一つはトリプシン特異的な部位を有し、該遺伝子配列はさらに、該核酸分子の発現を可能にする発現手段、植物細胞中での複製を可能にする複製手段、または該核酸分子の植物細胞ゲノム中への安定な組み込みを可能にする組み込み手段を含む。発現は、発育に伴ってまたは感染に応答して、たとえば存在するPI制御配列によって、制御されるのが好ましい。核酸分子の発現が高められることによって、天然に存在する植物中に認められるレベルに比べてPIの内生レベルが大きくなるのが好ましい。または、本発明のPI前駆体cDNAはプロモーター配列を得るのに用いることができ、該プロモーター配列を今度は遺伝子構築やその操作に用いて等価な内生プロモーターの過剰発現を可能とすることができる。他の態様において、PI前駆体は上記のようなハイブリッド分子である。
【0030】
本発明のさらに別の態様は、上記遺伝子配列および/または核酸分子を有し、必要によりPIおよび/またはPI前駆体またはハイブリッドPI前駆体の産生レベルを上昇させ、高め、あるいは一層迅速にすることのできるトランスジェニック植物に関する。この植物は穀物植物またはタバコ植物であるのが好ましいが、PIまたはPI前駆体の核酸分子を発現することができる限り他の植物を用いることもできる。トランスジェニック植物がPI前駆体を産生する場合には、該植物は該前駆体をさらにモノマーにプロセシングしてもよいし、またはプロセシングしなくてもよい。または、該遺伝子配列は、昆虫に伝播するためのウイルスまたは細菌ベクターの一部であってもよく、それによって昆虫中の病原体を制御し、結果的に該病原体の植物への伝播を妨害することができる。
【0031】
本発明のさらに他の態様において、PI前駆体またはその1または2以上のモノマーに対する抗体が提供される。抗体はモノクローナルであってもポリクローナルであってもよく、発現ライブラリーにおいてPIまたはPI前駆体クローンをスクリーニングするうえで、または発酵液、上澄み液または植物抽出液中のPIまたはPI前駆体を精製するうえで有用である。
本発明の遺伝子構築物はまた、昆虫の消化管中に住まわせて、該昆虫自体または該昆虫中の植物病原体に有害な作用をさせたり、または動物の消化管中への導入を容易にして植物物質の消化を容易にしたりするために用いることもできる。
【0032】
つぎに、本発明を以下の図面および実施例により記載するが、これらに限られるものではない。
図面:
図1は、pNA−PI−2挿入物の核酸配列(SEQ ID NO:2)およびニコチアナ・アラタPIタンパク質の対応アミノ酸配列(SEQ ID NO:3)を示す。該アミノ酸配列は、成熟タンパク質の最初のアミノ酸を1としてナンバーを付してある。シグナル配列はヌクレオチド1〜97によりコードされており、これらアミノ酸残基にはマイナスの番号を付してある。インヒビターの反応部位残基は囲ってある。ニコチアナ・アラタPI配列は、6つの類似のドメイン(ドメイン1、残基1〜58、ドメイン2、残基59〜116、ドメイン3、残基117〜174、ドメイン4、残基175〜232、ドメイン5、残基233〜290、ドメイン6、残基291〜343)を有する。
【0033】
図2は、ニコチアナ・アラタの種々の器官からのRNAのゲルブロット分析を示す写真表示である。ニコチアナ・アラタの器官およびニコチアナ・タバクム(N.tabacum)およびニコチアナ・シルベストリス(N.sylvestris)の柱頭および花柱から単離したRNAのゲルブロットは、cDNAクローンNA−PI−2とハイブリダイズした。St、柱頭および花柱;Ov、子房;Po、花粉;Pe、花弁;Se、萼片;L、傷のない葉;L4、傷から4時間後の葉;L24、傷から24時間後の葉;Nt、ニコチアナ・タバクムの柱頭および花柱;Ns、ニコチアナ・シルベストリスの柱頭および花柱;Na、ラムダ−DNAのHindIII制限断片。
NA−PI−2クローンは、2つのmRNA種(1.0および1.4kb)とハイブリダイズした。大きい方のmRNAは柱頭および花柱において主としてみられ、一方、小さい方のmRNA種は他の組織において一層明らかに認められた。高厳格洗浄後、柱頭および花柱からの1.0kb mRNAはNA−PI−2プローブにもはやハイブリダイズしない。
【0034】
図3は、柱頭および花柱でのNA−PI−2に相同なRNAのインシトゥ局在を示す写真表示である。
(a)32P標識したNA−PI−2 cDNAプローブとハイブリダイズさせた後の1cm長の芽の柱頭および花柱の縦方向の凍結切片の放射能写真;
(b)トルイジンブルーで染色した(a)と同じ切片。c、皮層;v、維管束;tt、導管;s、柱頭組織。
cDNAプローブは柱頭の細胞を強く標識し、維管束への幾つかのハイブリダイゼーションも認められる。表皮、皮層または導管へのハイブリダイゼーションは認められなかった。スケール棒=200μm。
【0035】
図4は、ニコチアナ・アラタのゲノムDNAのゲルブロット分析を示す写真表示である。制限酵素EcoRIまたはHindIIIで消化し放射性標識したNA−PI−2でプローブしたニコチアナ・アラタゲノムDNAのゲルブロット分析。サイズマーカー(kb)は、ラムダ−DNAのHindIII制限断片である。EcoRIにより2つのハイブリダイズする断片(11kbおよび7.8kb)が得られたが、HindIIIからは3つの大きなハイブリダイズする断片(16.6、13.5および10.5kb)が得られた。NA−PI−2クローンは、少なくとも2つの成員からなる小さな多重遺伝子族に属すると思われる。
【0036】
図5は、ニコチアナ・アラタの種々の器官におけるPI活性のグラフ表示である。種々の器官からの緩衝液溶解性の抽出物について、トリプシンおよびキモトリプシンを抑制する能力を試験した。柱頭および萼片抽出物が、トリプシン(A)およびキモトリプシン(B)の両方に対する最も有効なインヒビターであった。
【0037】
図6は、ニコチアナ・アラタの柱頭からのPI精製の工程を示す。
(a)柱頭抽出物からの硫酸アンモニウム沈殿したタンパク質のセファデックスG−50ゲル濾過クロマトグラフィー。PI活性はプロフィールの後期に溶出した。
(b)ゲル濾過カラムからのフラクションの20%w/v SDS−ポリアクリルアミドゲル(レムリ(Laemmli)、1970)。ゲルを銀染色し、分子量マーカー(ファルマシアペプチドマーカー)はキロダルトンにて示す。約6kDのタンパク質(矢印)がプロテイナーゼインヒビター活性とともに溶出した。
(c)精製手順の種々の段階でのPI含有フラクションのSDS−PAGEによる分析。レーン1、粗製の柱頭抽出物(5μg);レーン2、80%w/v硫酸アンモニウムにより沈殿させた柱頭タンパク質(5μg);レーン3、キモトリプシンアフィニティーカラムから溶出したPIタンパク質(1μg)。
PIは6kDのタンパク質であり、柱頭からの非フラクション化緩衝液可溶性抽出物中の主要な成分である。
【0038】
図7は、ニコチアナ・アラタおよびジャガイモおよびトマトPIIIcDNAからのNA−PI−2クローンによりコードされるPIタンパク質のハイドロパシー(hydropathy)プロットを示すグラフ表示である。線よりも上にある値は疎水性の領域を示し、線よりも下の値は親水性の領域を示す。推定シグナルペプチドには陰影を施してある。疎水性プロフィールは、カイト(Kyte)およびドゥーリトル(Doolittle)(1982)の予測則および9の連続アミノ酸の連なりを用いて作成した。
(a)ニコチアナ・アラタPIタンパク質のハイドロパシープロフィール。予測された前駆体タンパク質中の6つの繰り返しドメインをI〜VIとして表示してある。6kD PI種を産生するための推定開裂部位を含む親水性領域には矢印を付してある。これら部位における開裂により生成されるペプチドに対応する領域は、キモトリプシンインヒビターに対してはCで、トリプシンに対してはTで、2つの両側の配列に対してはxで表示してある。
【0039】
(b)ジャガイモPIIIタンパク質のハイドロパシープロフィール(サンチェス−セラーノ(Sanchez−Serrano)ら、1986)。PIIIタンパク質中の2つの繰り返しドメインをIおよびIIで表示してある。PCI−1を産生するための推定開裂部位には矢印を付してあり、PCI−1の領域にはマークを付してある。
(c)トマトPIIIcDNAによってコードされるポリペプチドのハイドロパシープロフィール(グラハムら、1985)。2つのドメインにはIおよびIIの表示を付してあり、プロセシング部位の可能性のある残基には矢印を付してある。これら部位は親水性と予測される領域中には存在せず、それゆえ、開裂産物にはマークを付していない。
【0040】
図8は、生育中の花の柱頭中のPIタンパク質のイムノブロット分析を示す。
(a)ニコチアナ・アラタの生育中の花。
(b)(a)に示す生育の各段階における柱頭タンパク質のSDS−PAGEであり、5μgの各抽出物を負荷した。ペプチドゲルを銀染色し、分子量マーカー(LKB・ロー・モレキュラー・ウエイト(LKB Low Molecular weight)およびファルマシアペプチドマーカー)はキロダルトンで示してある。
(c)抗PI抗血清でプローブした(b)と同じゲルのイムノブロット。
生育中の花の柱頭には、抗PI抗体に結合する約42kD、32kD、18kDおよび6kDの4つのタンパク質が含まれる。42kDおよび18kD成分は、花が成熟するにつれて濃度が減少していくのに対して、6kD PIタンパク質は開花の直前に最大濃度に達する。32kD成分(二重線として現れる)のレベルは、花の発育の間有意に変化しない。
【0041】
図9は、ニコチアナ・アラタからの6kDプロテイナーゼインヒビター種の分離および同定を示す。
A.逆相HPLCクロマトグラフィーによる6kD PIの分離
4つの主要なピークが、約15.5分(ピーク1)、20.5分(ピーク2)、22.5分(ピーク3)、24分(ピーク4)の保持時間にて得られた。各ピークにおけるペプチドは、N末端分析および質量分析の両者の組み合わせにより同定した。C1およびT1〜T4についてはBを参照。
B.PI前駆体タンパク質から得られた5つの相同なペプチド:C1、キモトリプシンインヒビター、T1〜T4、トリプシンインヒビター。太線は、これらインヒビターの反応部位を示す。前駆体タンパク質は、シグナル配列を除いて描写してある。図中点線部は、6つの繰り返しドメインの領域(アミノ酸1〜343、図1)。図中斜線部は、非繰り返し配列(アミノ酸344〜368、図1)。矢印は、前駆体タンパク質におけるプロセシング部位を示す。
【0042】
C.cDNAクローンから予測され精製タンパク質のN末端シークエンシングにより確認されたC1およびT1〜T4のアミノ酸配列。各ペプチドのカルボキシ末端におけるアミノ酸は、電子スプレー(electro−spray)質量分析計を用いた正確な質量測定により得られた。C1およびT1インヒビターは、5つのアミノ酸において異なっている(太字)。これらアミノ酸のうちの2つは反応部位に位置しており(下線)、他の2〜3の残基はカルボキシ末端に位置している。ペプチドT2〜T4は3つのアミノ酸が変化しており(囲み)、これらはC1とT1との間では保存されている。ペプチドT2およびT3は互いに同一である。質量分析を用い、N末端およびC末端における正確でないトリミングのために他の形態のC1およびT1〜T4が存在することを示した。すなわち、幾つかの形態は残基1または残基53が失われており、他のものは残基1および残基53の両方が失われている(表2参照)。
【0043】
図10は、前駆体PIタンパク質のプロセシング部位の周辺のアミノ酸配列を示す。
太字で示した配列は、精製PIタンパク質から得たアミノ末端配列である。マイナスの番号を付した配列は、cDNAクローンから予測されるフランキング配列である。予測された前駆体タンパク質は、この配列の6つの繰り返しを含む。
【0044】
図11は、バクロウイルス発現系で生成されたPI前駆体、およびエンドプロテイナーゼAsp−Nによるアフィニティー精製PI前駆体の消化後に得られた生成物を示す。
A.組換えバクロウイルスにより生成されたPI前駆体
発育の緑芽段階におけるニコチアナ・アラタ柱頭からアフィニティーおよびHPLC精製したPI前駆体(レーン1)および組換えバクロウイルスにより生成されたアフィニティー精製PI前駆体(レーン2)を含むイムノブロット。電気泳動的にニトロセルロースに移す前に、タンパク質を15%w/vSDS−ポリアクリルアミドゲル上での電気泳動により分画した。このブロットを、柱頭からの6kD PI種に対してウサギ中で産生させた抗体とともにインキュベートした。組換えウイルスは、柱頭によって産生されたPI前駆体タンパク質と同じサイズの42kDの免疫反応性のタンパク質を産生した(矢印)。
【0045】
B.エンドプロテイナーゼAsp−NによるPI前駆体の開裂
銀染色した15%SDS−ポリアクリルアミドゲル。1、バクロウイルスにより産生され酵素なしでインキュベートしたPI前駆体。2、前駆体なしでインキュベートした酵素。6kD、ニコチアナ・アラタ柱頭から精製した約6kDのPIペプチド。1m、5m、30m、1分、5分および30分のインキュベーション後に産生された反応生成物。2hおよび24h、2時間および24時間のインキュベーション後の反応生成物。約6〜7kDのペプチドは、前駆体のインキュベーションの1分以内に酵素により検出された。24時間後には6〜7kDのペプチドのみが検出された。レーン1における42kDよりも小さなバンドは、バクロウイルス発現系における翻訳の成熟前の停止により生成された末端の欠失した形態の前駆体によるものである。
【0046】
図12は、Asp−N消化により前駆体から得られたペプチドの逆相HPLCによる分取クロマトグラフィーである。PI前駆体のAsp−N消化によって生成されたペプチドのHPLCプロフィールを示す。主要なピークは、19分(Asp−N1と称する)および21分(Asp−N2と称する)の保持時間を有していた。これらピークフラクション(1&2)中のペプチドは、柱頭からの6kDペプチドよりもSDS−PAGE上でわずかにゆっくりとした移動度を有していた。Asp−N1およびAsp−N2のプロテイナーゼ抑制活性をトリプシンおよびキモトリプシンに対して試験した。
【0047】
図13は、柱頭からのPI前駆体、PIペプチド、該PI前駆体からインビトロで生成したPIペプチドのトリプシンおよびキモトリプシン抑制活性の比較を示す。
材料および方法において記載するように、1.0μgのトリプシンまたはキモトリプシンを抑制する能力についてPI前駆体またはPIペプチド(0〜1.0μg)を試験した。抑制活性は、プロテイナーゼをPIとともにインキュベートした後に残留するプロテイナーゼ活性のパーセントとして表し、PIなしでインキュベートしたプロテイナーゼの活性を100%の残留活性とした。実験は2回行い、その平均値をプロットした。平均値からの変動は8%またはそれ以下であった。
【0048】
図14は、コントロールの人工食餌、ダイズバウマン−バーク(Bowman−Birk)インヒビターおよびニコチアナ・アラタPI上で飼育したテレオグリルス・コモデュス(T.commodus)若虫の発育曲線を示すグラフ表示である。縦軸は、各処置におけるコオロギの平均体重(+/−標準誤差)をmgで示す。横軸は週を示す。ニコチアナ・アラタPIで飼育したコオロギは、実験を通じてコントロールの食餌およびダイズインヒビターを含有する食餌で飼育した両コオロギに比べて低平均体重を示した。
【0049】
Figure 0004115642
【0050】
【実施例】
実施例1
1.材料および方法
植物材料
自家不和合性の遺伝子型S13、S33およびS66を有するニコチアナ・アラタ(リンクおよびオット)植物を、すでに記載されているように(アンダーソンら、1989)、標準温室(glasshouse)条件下にて保持した。傷に対する応答の誘発を回避するために器官を液体窒素中に直接回収し、必要なときまで−70℃で貯蔵した。遺伝子発現に対する傷の影響を調べるため、透析クリップで中心葉脈を押し潰すことによって葉を傷つけた。傷をつけてから4時間および24時間後に葉を回収した。
【0051】
PIをコードするcDNAクローンの同定およびシークエンシング
ニコチアナ・アラタ(遺伝子型S33)の成熟花から単離した柱頭および花柱からポリアデニル化RNAを調製し、ラムダgt10(アンダーソンら、1989)中でcDNAライブラリーを構築するのに用いた。ニコチアナ・アラタ(遺伝子型S33およびS66)の柱頭および花柱からのmRNAから一本鎖の32P標識cDNAを調製し、S遺伝子型特異的でない高度に発現されたクローンについてライブラリーをスクリーニングするのに用いた(アンダーソンら、1989)。
【0052】
両S遺伝子型からのcDNAプローブに強くハイブリダイズしたプラークを選択し、クロスハイブリダイゼーションに基づいてグループに分けた。各グループの最も長いクローンをM13mp18およびpGEM3zf+中にサブクローニングし、アプライドバイオシステムズモデル373A自動シークエンサーを用いてシークエンシングを行った。標準アプライドバイオシステムズプロトコールに従い、染色プライマーおよび染色ターミネーターの両サイクルシークエンシングを行った。SeqEdTM配列編集ソフトウエア(アプライド・バイオシステムズ)を用いて共通配列を作成した。これらクローンに相同な配列をGenBankデータベースでサーチした。ニコチアナ・アラタPIクローンの6つのドメイン間での配列の類似性の程度が高いため、非繰り返し3’配列(ヌクレオチド1117〜1137、1188〜1203および1247〜1267)、および繰り返し領域の開始の前の5’配列(ヌクレオチド74〜98)に対してシークエンシングプライマーを作成した。加えて、pNA−PI−2挿入物をエンドヌクレアーゼHaeIIIで制限処理することにより、ヌクレオチド622および970で切断して3つのフラグメントを生成させた。これらフラグメントをpGEM7zf+中にサブクローニングし、M13前プライマーおよび逆プライマーを用いて両方向にシークエンシングを行った。pNA−PI−2挿入物の繰り返し特性のため、培養物を6時間以上増殖させた場合にファージミドおよびプラスミドベクターの両方で不安定となった。
【0053】
RNAゲルブロット分析
全RNAを単離し、すでに記載されたようにして(アンダーソンら、1989)、1.2%w/vアガロース/ホルムアデヒドゲル上で分離した。RNAをHybond−N(アマーシャム)に移し、ランダムヘキサヌクレオチドを用いて32Pで標識したpNA−PI−2からの挿入物でプローブを行った(1×108cpmμg−1;1×107cpmml-1)(ファインベルク(Feinberg)およびフォーゲルスタイン(Vogelstein)、1983)。プレハイブリダイゼーションおよびハイブリダイゼーション(68℃にて)をアンダーソンらによる記載(1989)と同様にして行った。フィルターを2×SSC、0.1%w/v SDSまたは0.2×SDS、1%w/v SDS中で68℃で洗浄した。
【0054】
インシトゥハイブリダイゼーション
インシトゥハイブリダイゼーションをコーニッシュ(Cornish)ら(1987)による記載に従って行った。pNA−PI−2からの挿入物(100ng)をランダムヘキサヌクレオチドプライミングにより108cpmμg-1の比活性に標識することによりプローブを調製した(ファインベルクおよびフォーゲルスタイン、1983)。標識したプローブを沈殿させ、ハイブリダイゼーション緩衝液(50μl)中に再懸濁させ、5μlを切片に適用した。切片をカバーグラスで覆い、50%v/vホルムアデヒドを入れた閉じた箱中で40℃にて一夜インキュベートした。インキュベーション後、切片を室温にて4×SSC、室温にて2×SSC、および40℃にて1×SSC中で順番に40分間洗浄した。スライドを乾燥させ、室温にてX線フィルム(CronexMRF32、デュポン)に直接暴露した。ハイブリダイズした切片を水中の0.025%w/vトルイジンブルーで対比染色し、Eukitt(カール・ツァイス(Carl Zeiss)、フライブルク、FRG)中に積載した。放射能写真を切片上に移して、合成物を示した。
【0055】
DNAゲルブロット分析
バーナツキー(Bernatzky)およびタンクスレイ(Tanksley)(1986)の手順により、ニコチアナ・アラタの若葉からゲノムDNAを単離した。DNA(10μg)を制限エンドヌクレアーゼEcoRIおよびHindIIIで完全に消化し、0.9%w/vアガロースゲル上の電気泳動により分離し、20×SSC中のウエットブロッティングによりHybond−N(アマーシャム)に移した。フィルターをプローブし、RNAブロット分析の場合と同様にして洗浄した。
【0056】
タンパク質抽出物の調製
組織を液体窒素中で凍結し、乳鉢および乳棒中で細かい粉末に破砕することにより植物材料から可溶性タンパク質を抽出した。粉末化した組織を、100mMトリス−HCl、pH8.5、10mM EDTA、2mM CaCl2、14μMβ−メルカプトエタノールからなる緩衝液中に抽出した。10,000gで15分間遠心分離することにより不溶性の物質を除いた。ブラッドフォード(Bradford)(1976)の方法によりウシ血清アルブミン(BSA)を標準として用いてタンパク質濃度を評価した。
【0057】
プロテイナーゼインヒビターアッセイ
リッカウアー(1989)の記載に従い、タンパク質抽出物および精製タンパク質をトリプシンおよびキモトリプシンに対する抑制活性についてアッセイした。1μgのトリプシン(TPCK−処理;シグマ)および3μgのキモトリプシン(TLCK−処理;シグマ)に対して抑制活性を測定した。トリプシンおよびキモトリプシンによるそれぞれの合成基質、N−α−P−トシル−L−アルギニンメチルエステル(TAME)およびN−ベンゾイル−L−チロシンエチルエステル(BTEE)の加水分解の速度を、これら酵素の抑制されなかった活性とした。抽出物の抑制活性は、プロテアーゼを抽出物とともにプレインキュベートした後に残留するコントロールのプロテアーゼ活性のパーセントとして表した。柱頭からのPIペプチド、PI前駆体およびAsp−Nプロセシングしたペプチドを、クリステラー(Christeller)ら(1989)による記載に従って抑制活性についてアッセイした。
【0058】
ニコチアナ・アラタPIタンパク質の精製
柱頭(1000;10g)を液体N2中で細かい粉末に破砕し、緩衝液(100mMトリス−HCl、pH8.5、10mM EDTA、2mM CaCl2、14μM β−メルカプトエタノール、4ml/g組織)中に抽出した。最初の精製工程であるゲル濾過の前に抽出物を濃縮するため、抑制活性を80%w/v硫酸アンモニウムで沈殿させたが、すべてのプロテイナーゼ抑制活性を沈殿させるには濃縮が必要であった。
【0059】
硫酸アンモニウムペレットを5mlの0.15M KCl、10mMトリス−HCl、pH8.1中に再懸濁し、同緩衝液で平衡化したセファデックスG−50カラム(2cm×100cm)上に負荷した。このカラムから溶出しプロテイナーゼ抑制活性を有するフラクション(10ml)をプールし、キモトリプシン−セファロースCL4Bのアフィニティーカラム[製造業者の指示により100mgのTLCK−処理α−キモトリプシン(シグマ)を15mlのセファロースCL4B(ファルマシア)に架橋させたもの]に負荷した。結合したタンパク質を7m尿素、pH3で溶出する(5mlフラクション)前に、カラムを10容量の0.15M KCl/10mMトリス−HCl pH8.1で洗浄した。溶出液を200μlの1Mトリス−HCl pH8で直ちに中和し、脱イオン水に対して充分に透析した。
【0060】
アミノ酸配列分析
精製PIタンパク質を、ガス相シークエンサー上の自動エドマン分解に供する前に逆相HPLCマイクロポアカラム上のクロマトグラフィーにかけた(マウ(Mau)ら、1986)。グレゴ(Grego)ら(1985)の記載に従い、フェニルチオヒダントイン(PTH)アミノ酸をHPLCにより分析した。
【0061】
ニコチアナ・アラタPIに対するポリクローナル抗血清の製造
以下のようにしてグルタルアルデヒドを用いて精製プロテイナーゼインヒビター(図6c、レーン3)を担体タンパク質であるキーホールリンペットヘモシアニン(KLH)(シグマ)にコンジュゲートした。1mgのPIタンパク質を
2O(1.5ml)中に溶解し、0.5mlの0.4Mリン酸緩衝液(pH7.5)中のKLH(0.3mg)と混合した。20mMグルタルアルデヒド(1ml)を室温で撹拌しながら5分間かけて滴下した。混合物を室温で30分間撹拌し、グリシン(0.25ml)を加え、混合物をさらに30分間撹拌した。ついで、コンジュゲートしたタンパク質を通常の食塩水(0.8%w/v NaCl)に対して充分に透析した。各注射についで100μgの当量のPIタンパク質を用いた。最初の注射にはフロイントの完全アジュバントを用い、その後の2回のブースター注射には不完全アジュバントを用いた。抗血清のIgGフラクションを製造業者の指示に従ってプロテインAセファロース(ファルマシア)上で分離した。
【0062】
タンパク質ゲルブロット分析
タンパク質抽出物を15%w/v SDS−ポリアクリルアミドゲル中で電気泳動し(レムリ、1970)、Bio−Rad Trans−BlotRSemi−dry電気泳動トランスファーセル(12V、20分)を用いて25mMトリス−HCl、192mMグリシン、20%v/vメタノール中のニトロセルロースに移した。負荷およびタンパク質の移動は、膜上のタンパク質をPonceau S(ハーロウ(Harlow)およびレイン(Lane)、1988)で染色することによりチェックした。膜を3%w/vウシ血清アルブミン中で1時間ブロックし、抗PI抗体(1%w/vBSA、トリス緩衝食塩水中に2μg/ml)とともに室温にて一夜インキュベートした。製造業者の推奨に従い、ビオチン化ロバ抗ウサギIgG(1/500希釈、アマーシャム)およびアマーシャムビオチン−ストレプトアビジンシステムを用いて結合抗体を検出した。
【0063】
エンドプロテイナーゼAsp−NによるPI前駆体のタンパク質加水分解
アフィニティー精製したPI前駆体(1.25mg)を100mM NH4HCO3、pH8.5中のエンドプロテイナーゼAsp−N(2μg)とともに37℃にて全量1mlで48時間インキュベートした。反応生成物を、分析的ブラウンリー(Brownlee)RP−300アクアポア(Aquapore)カラム(C8、7μm、4.6×100mm)を用いた逆相HPLCにより分離した。カラムを0.1%v/vTFA中で平衡化し、ペプチドを以下のプログラムで溶出した:0〜25%B(0.089%v/vTFA中の60%v/vアセトニトリル)を5分間かけて負荷し、ついで25〜42%勾配のBを40分間かけて負荷し、最後に42〜100%勾配のBを5分間かけて負荷する。流速は1.0ml/分であり、ペプチドを215nmにおける吸光度により検出した。各ピークを手動で回収し、凍結乾燥した。UV検出器上での215nmにおける各ピークで得られた応答により濃度を推定した。
【0064】
2.PI前駆体遺伝子のクローニング
PIcDNAクローンの単離および特徴付け
cDNAライブラリー(ニコチアナ・アラタの成熟花の柱頭および花柱から単離したmRNAより調製)を、自家不和合性の遺伝子型を伴わない高度に発現された遺伝子のクローンについてスクリーニングした。ジャガイモおよびトマトのII型プロテイナーゼインヒビター(ソーンバーグ(Thornburg)ら、1987;グラハム(Graham)ら、1985)とある程度の配列同一性を有するタンパク質をコードするクローンを選択した。最も大きいクローン(NA−PI−2)は1191ヌクレオチドの転写解読枠を有し、1360塩基対の長さであった。このニコチアナ・アラタクローン(NA−PI−2)の核酸配列(SEQ ID NO:2)および予測されるアミノ酸配列(SEQ ID NO:3)を図1に示す。N−グリコシル化の可能性のある部位は存在しない。
【0065】
驚くべきことに、このニコチアナ・アラタcDNAクローンは、完全ではないが高度の配列同一性を有する6つの繰り返しドメインを有するタンパク質をコードしている(図1)。これら各ドメインには反応性部位の可能性のある部位が含まれている(図1中に明示してある)。ニコチアナ・アラタPIの推定反応部位の残基は、キモトリプシンを特異的に抑制する2つの部位(Leu5−Asn6、Leu63−Asn64)およびトリプシンに対して特異的な4つの部位(Arg121−Asn122、Arg179−Asn180、Arg237−Asn238およびArg295−Asn296)を有するインヒビターと一致している。
【0066】
NA−PI−2の繰り返し構造がクローニングによる人為的な産物でないことを確かめるため、別の3つのcDNAクローンをシークエンシングしたところ、NA−PI−2と同一であることがわかった。
表1は、PI前駆体の6つのドメインのアミノ酸同一性のパーセントを比較したものである。
【0067】
PI mRNAの一過性で空間的な発現
ニコチアナ・アラタの種々の組織から単離した全RNAを、図2に示すRNAゲルブロット分析においてPI cDNAクローンでプローブした。1.0および1.4kbの2つのハイブリダイズするメッセージが、花柱(柱頭を含む)から単離した全RNA中に存在した。大きい方のメッセージ(この組織において主要なものである)のみが、cDNAクローンNA−PI−2(1.4kb)をコードするのに充分なサイズである。小さい方のメッセージは、より高い厳格さにおいてはcDNAプローブで検出されない。約1.4kbの相同なメッセージはまた、ニコチアナ・タバクムおよびニコチアナ・シルベストリスの花柱から単離したRNA中にも存在した(図2)。
【0068】
花の他の器官(花粉を除く)では、両メッセージとも低レベルで検出することができたが、より小さいRNA種が一層たくさん認められた。花粉RNAにはハイブリダイゼーションは認められなかった。葉のRNAにはハイブリダイズする種が認められなかったが、機械的な傷をつけてから24時間後には1.0および1.4kbの2つの種が検出された。この場合には、小さい方のメッセージ(1.0kb)の方がたくさん認められた。
【0069】
未熟な(1cm長)芽の花柱の縦切片への放射性標識したニコチアナ・アラタPIcDNAのインシトゥハイブリダイゼーションを図3に示す。該cDNAに相同なRNAは柱頭の細胞に強く結合し、維管束へは弱く結合した。皮層組織、導管組織または花柱の表皮ではハイブリダイゼーションは検出されなかった。同じパターンのハイブリダイゼーションは、成熟した受容性の(receptive)花においても観察された。ハイブリダイゼーションの前にリボヌクレアーゼAで処理したコントロールの切片は標識されなかった。
【0070】
ゲノムDNAブロット分析
cDNAクローンNA−PI−2を図4に示すDNAゲルブロット(EcoRIかHindIIIのいずれかで消化したゲノムDNAが含まれる)上でプローブとして用いた。EcoRIにより2つのハイブリダイズするフラグメント(11kbおよび7.8kb)が得られ、HindIIIからは3つの大きなハイブリダイズするフラグメント(16.6、13.5および10.5kb)が得られた。
【0071】
ニコチアナ・アラタの種々の組織中でのPI活性の分布
ニコチアナ・アラタの種々の器官の粗製抽出物によるトリプシンおよびキモトリプシンの抑制を図5に示す。柱頭抽出物がトリプシンおよびキモトリプシンの両方に対して最も有効なインヒビターであった。柱頭抽出物は萼片抽出物に比べて8倍までの抑制活性を有し、花柱、花弁、葉および傷つけた葉からの抽出物に比べると20倍以上の抑制活性を有していた。
【0072】
ニコチアナ・アラタ柱頭からのPIの精製
ニコチアナ・アラタの柱頭を緩衝液中に抽出し、80%w/v硫酸アンモニウムで沈殿させることにより抑制活性を濃縮した。沈殿を再溶解し、セファデックスG−50上でゲル濾過することにより分画した。図6aおよび6bに図示したプロフィールにおいて、プロテイナーゼインヒビターに比べて抽出物中の殆どのタンパク質は早く溶出した。プロテイナーゼ抑制活性を有するフラクションをプールし、キモトリプシン−セファロースのアフィニティーカラムに負荷した。PI活性は約6kDのタンパク質とともに溶出し、図示6cに示す20%SDS−ポリアクリルアミドゲル上で単一のバンドとして移動するように思われた。精製の種々の段階におけるPIの純度をSDS−PAGEにより評価した(図6c)。精製したインヒビターは、粗製の抽出物中の存在する抑制活性の約50%を表していた。
【0073】
6kD PIタンパク質のN末端のアミノ酸配列
精製PIタンパク質からN末端アミノ酸配列DRICTNCCAG(T/K)KG(それぞれ、SEQ ID NO:11;SEQ ID NO:12)を得た。このアミノ酸配列は、図1中の位置25、83、141、199、257および315から開始されるcDNAクローンの導かれた配列中の6つの領域に対応する。このN末端配列の位置11には、トレオニンおよびリジンの両方が検出された。このことは、図1において下線を引いた配列で始まる6つのペプチドの混合物からなる精製インヒビターと一致する。最初の2つのペプチドは該位置にトレオニンを含み、一方、他の4つのペプチドは該位置にリジンを有する。予測された前駆体タンパク質中の6つの繰り返しドメインに対するこれらペプチドの相対位置を図7に図示する。これら6つの予測された6kDペプチドのうち5つは、キモトリプシンかまたはトリプシンのいずれかに対する反応部位を有している(図1および7)。6番目のペプチドは他の5つのペプチドよりもアミノ酸が4つ短く(58アミノ酸)、抑制部位を含有していないので活性でない。N末端からのペプチド(図7におけるx)はキモトリプシン反応性の可能性のある部位を有するが、はるかに短い(24アミノ酸)。
【0074】
ニコチアナ・アラタ中でのPIタンパク質の分布
キーホールリンペットヘモシアニンにコンジュゲートした精製PIタンパク質に対してポリクローナル抗血清を産生させた。該抗体はイムノブロット分析において精製6kD PIタンパク質と強く反応し、成熟花からの全柱頭および花柱抽出物において6kDおよび32kDタンパク質(二重線として出現)にのみ結合した。図8は、抗PI抗血清でプローブした、発育の種々の段階(1cm長の芽から成熟した花まで)での花からのタンパク質抽出物を含有するイムノブロットである。長さが1cmから5cmの芽では、6kDおよび32kDタンパク質に加えて約18kDおよび42kDの大きな交差反応性タンパク質が検出された。これら18kDおよび42kDタンパク質は成熟につれて濃度が減少したが、6kDタンパク質は開花の直前にピーク濃度に達した。32kDタンパク質は花の成熟の間、比較的一定に推移した。
【0075】
Figure 0004115642
【0076】
実施例2
PIモノマーの精製および同定
1.材料および方法
逆相クロマトグラフィーによる6kD PI種の分離
柱頭(21,000)を破砕し、PIタンパク質の精製についての記載と同様にして抽出した。セファデックスG−50ゲル濾過カラム(5cm×800cm、分離当たり3000の柱頭)上でのゲル濾過の後、ペプチドを凍結乾燥し、ベックマンHPLCシステムゴールド(Gold)上のブラウンリーRP−300C8逆相カラム(10×250mm)に負荷し、0.1%v/vトリフルオロ酢酸(TFA)およびアセトニトリル勾配(0〜10%を5分間、10〜25%を40分間、および25〜60%を10分間)により5ml/分にて溶出した。ピークのフラクション(フラクション1、2、3および4)を回収し、凍結乾燥した。
【0077】
電子スプレー質量分析
改変ヒューレット−パッカード(Hewlett−Packard)モデルHP1090L液体クロマトグラフ上のブラウンリーRP−300C8逆相カラム(150×20mm内径の融解石英毛管カラム)上に水(2.0μl)中の各PI調製物(フラクション1、2、3および4)(20ピコモル)を負荷し、1μl/分の流速および25℃のカラム温度にてアセトニトリルの直線勾配(0.05%v/v TFAから0.045%v/v TFA/60%v/vアセトニトリル、30分間)で溶出することにより、HPLC溶出液のオンライン質量分析を行った。6mm行路長のU字型軸ビーム毛管流セルを有するスペクトラルフィジックス(Spectral Physics)前光学スキャニング検出器(LCパッキングス(LC Packings)、オランダ)を用い溶出液を215nmにてモニターした。電子スプレーイオン化(EAI)源(アナリティカ(Analytica)、ブランフォード、コネチカット州)を備えたフィニガン−マット(Finningan−Mat)トリプル四極子質量分析計(モデルTSQ−700、サンホセ、カリフォルニア州)で質量スペクトルを得た。電子スプレー針を−4kVの電圧差にて陽イオンモードで操作した。被覆(sheath)液は2−メトキシエタノールであり、手動ポンプ駆動により1μl/分にて分配した(ハーバード・アパレイタス(Harvard Apparatus)、サウスナチック、マサチューセッツ州)。窒素乾燥ガス条件は以下の通りであった;ヒーターの温度、275℃;圧力、15psi;流速、15stdL/分。窒素被覆ガスを33psiで供給した。ガス状窒素を沸騰した液体窒素源から得た。ペプチドを上記オンライン毛管RP−HPLCにより1.0μl/分にてESI源中に導入した。3秒の速度にてm/z400〜2000でスキャニングしてスペクトルを得た。データの回収および換算をフィニガンBIOMASSTMソフトウエアを用いてDec5100コンピューター上で行った。
【0078】
2.結果
ニコチアナ・アラタ柱頭からの個々の6kD PI種の分離および同定
精製した6kD PI調製物中に存在すると予測された約6kDの6つのペプチドのうち5つを逆相HPLCクロマトグラフィーにより互いに分離した。4つのピークが得られ(図9a)、各ピーク中のペプチドを電子スプレー質量分析により同定した(表2)。PI前駆体中での位置およびキモトリプシンまたはトリプシン活性部位の存在に従ってペプチドをC1、T1、T2、T3およびT4と称した(図9b)。最初のHPLCピーク(図9a)はキモトリプシンインヒビターC1に対応し、第二のピークはT2およびT3(互いに同一)およびT4(T2およびT3とは位置32における一つのアミノ酸のみが異なる)の混合物からなる。第三のピークにはペプチドT1が含まれ、第四のピークはT1、T2/T3およびT4の混合物からなる(表2)。
【0079】
プロセシングの部位は正確には決定しなかったが、図10に示す配列中のアスパラギン酸残基(N)とアスパラギン残基(D)との間に位置していると思われる。アスパラギン残基に対する特異性を有するプロテアーゼは、未熟なダイズ種子およびカボチャの子葉からの液胞から単離されている(スコット(Scott)ら、1992、ハラ−ニシムラ(Hara−Nishimura)ら、1991)。このことは、ニコチアナ・アラタの柱頭中の乳頭およびその下の分泌細胞の液胞中のPIの免疫金(immunogold)局在と一致する(アトキンソン、1992)。ニコチアナ・アラタPIの場合は、ペプチドホルモンと類似のプロセシングも可能である。なぜなら、可能な各6kDペプチドは二塩基性残基(Lys−Lys、図10中の位置−2&−3)を側部に有するからである。しかしながら、かかるシステムは植物においては記載されておらず、これら二塩基性残基は分子表面にプロセシング部位を呈示する予測された親水性ループの形成に預かっていると考える方がよいようである。
【0080】
質量分析からのデータは、いったん最初の開裂が起こったら新たなカルボキシ末端はトリミングされていくことを示している(図10)。EEKKN配列(SEQ ID NO:14)は完全に除去されるがトリミングは完全ではなく、ときにはさらにアミノ酸が除去される。立体障害がトリミングがさらに進むのを防ぐ。場合によってはアスパラギン酸もN末端から除去される。
【0081】
実施例3
組換えバクロウイルスベクターを用いた昆虫細胞(Sf9)培養液中でのPI前駆体の製造
PI前駆体をコードするcDNA(図1)をプラスミドベクターpVL1392のEcoRI部位に挿入した。該プラスミドベクターは、BamH1部位にマルチクローニング部位が挿入されている他はpVL941(ルックナウ(Lucknow)およびサマーズ(Summers)、1989)と同じである。pRH11と称するプラスミドは、多核体(polyhedrin)プロモーターによって指令される転写の方向に関して正しい方向にてPIcDNAを含有する。バクロウイルスDNAおよびpRH11をスポドプテラ・フルジペルダ(Spodoptera frugiperda)細胞に同時トランスフェクションすることにより組換えバクロウイルスを得た。組換えウイルス(相同組換えによって得られた)をプラーク精製し、タンパク質産生のために昆虫細胞に感染させる前に増幅させた。組換えバクロウイルスの産生、該ウイルスの滴定およびSf9細胞の維持および感染に関するすべての手順はキング(King)およびポッセ(Posse)(1992)から得た。PI前駆体を産生させるため、大フラスコ(175cm2)中の単層のSf9細胞が集密に達した時点で高力価の組換えウイルスで5〜10pfu/細胞の多数の感染により感染させた。感染の4日後に培養液を回収し、遠心分離により清澄化し、柱頭からの6kD PI種について記載したのと同様にしてキモトリプシン−セファロースアフィニティーカラムに適用することによりPI前駆体を精製した。7M尿素、pH3中でカラムから溶出したPI前駆体を1Mトリス−HCl緩衝液(pH8)で直ちに中和し、Milli−Q水に対して充分に透析し、ダイアフロー(Diaflow)YM10フィルターを用いた超遠心分離により20〜50倍に濃縮し、−20℃にて凍結保存した。
【0082】
感染した昆虫細胞から前駆体を産生させるため、PI前駆体をコードするcDNAクローンをバクロウイルスベクター中に組み込んだ。昆虫細胞は42kDのタンパク質を産生したが、このものは柱頭からの6kD PIペプチドに対して産生させた抗体と交差反応し、キモトリプシンアフィニティーカラムに結合した。この42kDタンパク質は、ニコチアナ・アラタの未熟な柱頭中で産生される42kD前駆体とサイズが同じであり(図11)、N末端配列LysAlaCysThrLeuAsn(SEQ ID NO:13)を有しており、シグナル配列が昆虫細胞によって正確にプロセシングされたことを示している(図1)。これら結果に基づき、バクロウイルス発現系で産生された該42kDタンパク質は、いまやPI前駆体と呼ぶことになるであろう。この42kD PI前駆体はキモトリプシンに対しては抑制活性を有するが、トリプシンに対しては抑制活性を有していなかった(図13)。このPI前駆体をエンドプロテイナーゼAspNによってプロセシングして約6kDの安定なペプチドが得られ、これを逆相HPLCにより部分精製した(図12)。これらペプチドは柱頭から分離した6kDペプチドに等価なトリプシンおよびキモトリプシンに対する抑制活性を有しており、トリプシン抑制活性を活性化するには前駆体のプロセシングが必要であるが、キモトリプシン活性についてはすべてについて必要でないことを示していた。AspNはアスパラギン酸残基に隣接して(図10におけるAsn−1とAsp1との間)特異的に開裂しトリミング活性を有しないので、インビトロで生成したペプチドはC末端に配列EEKKN(SEQ ID NO:14)が存在する他は柱頭で産生させたものと同じであろう。このことは、活性な6kD PIペプチドを得るにはN末端およびC末端の正確なプロセシングを必要としないことの新たな証拠を提供する。Asp−N1はトリプシンに比べてキモトリプシンの抑制において一層有効であり、それゆえ主としてC1類似体であると思われる(図9b)。Asp−N2は一層有効なトリプシンインヒビターであり、おそらくT1〜T4類似体を含有している。
【0083】
実施例4
種々の昆虫からの未分画消化管抽出物におけるプロテアーゼ活性に対するPIの効果
クリステラーら(1992)の手順を用いて消化管プロテアーゼに対するPIの活性を以下のようにして測定した。インヒビターの1μMのアリコート(0〜10μl、消化管中に存在するプロテアーゼに対して少なくとも5倍過剰)を10mM CAPS緩衝液(pH10)(150μl)と混合し、各昆虫消化管抽出物(0〜15μl)と30℃にて20分間プレインキュベートした。C14−標識したカゼイン基質(400μgタンパク質、比活性25,000〜75,000dpm mg-1)(50μl)を加えることにより反応を開始し、反応を停止させるために冷30%(w/v)TCA(50μl)を加えるまで反応を続けた。氷上で30分間インキュベートした後、未消化のタンパク質を20℃にて10,000gで5分間遠心分離にかけてペレット化した。上澄み液を除き、シンチレーション液と混合し、放射能を測定した。ルシラ・セリカタ(L.sericata)およびクリソムヤ・ルフィファシエス(C.rufifacies)の場合に10mMトリス−HCl(pH8.0)を用いた他はpH10にてアッセイを行った。
【0084】
表3は、レピドプテラ(Lepidoptera)、コレオプテラ(Coleoptera)、オルトプテラ(Orthoptera)およびジプテラ(Diptera)の種々の成員の消化管中のプロテアーゼに対するプールした6kD PIペプチド(C1、T1、T2/T3、T4)、トリプシンインヒビターT2/T3およびT4の混合物、およびキモトリプシンインヒビターC1の抑制活性を示す。殆どの場合、プールしたペプチドおよびトリプシンインヒビターは、試験した昆虫に依存して37〜79%の範囲の抑制程度にて消化管プロテアーゼに対して等価な効果を有していた。
これらインヒビターは、ジャガイモ塊茎の蛾であるフトリマエ・オペルクレラ(P.opercullela)の消化管プロテアーゼに対しては殆ど効果は認められなかった。キモトリプシンインヒビターC1もまたプロテアーゼの活性に影響を与えたが、5つの場合(ウイセアナ・セルビナタ(W.cervinata)、ルシラ・セリカタ、コステリトラ・ゼアランディカ(C.zealandica)、プラノトルトリックス・オクト(P.octo)、サトウキビ地虫(sugar cane grub))にはトリプシンインヒビターよりも有効性が低かった。
【0085】
実験の詳細は図14の説明に記載してある。ニコチアナ・アラタPIは、コオロギの体重を減少させるうえでダイズバウマン−バークインヒビターよりも一層有効であった。昆虫の中腸の酵素を抑制するプロテイナーゼインヒビターの能力と昆虫飼育試験において昆虫の生育を遅らせるうえでの有効性との間に良好な相関関係が存在することが示された(クリステラーら、1992)。図14は、インビトロアッセイで黒色野生コオロギ(テレオグリルス・コモデュス(T.commodus))の消化管プロテアーゼを70%抑制したプールPIが、10週間の期間にわたって行った飼育試験においてコオロギの生育を30%遅らせたことを示している。インビトロアッセイと飼育試験との間の相関関係は、最近になってヘリコベルパ・アルミゲラ(Helicoverpa armigera)の生育および発達について研究しているジョンストン(Johnston)と彼の同僚(1993)によって確かめられた。
【0086】
【表1】
Figure 0004115642
【0087】
【表2】
Figure 0004115642
【0088】
表3の説明
NaPI=プールしたニコチアナ・アラタプロテイナーゼインヒビター
C1=ニコチアナ・アラタキモトリプシンインヒビター(HPLCからのピーク1)
T2/T3、T4=ニコチアナ・アラタトリプシンインヒビター(HPLCからのピーク2)
ヘリオチス・アルミゲラ(Heliothis armigera)、ヘリコベルパ・アルニゲラ(Helicoverpa armigera)、タバコの青虫、レピドプテラ
ヘリオチス・プンクチゲラ(Heliothis punctigera)、ヘリコベルパ・プンクチゲラ(Helicoverpa punctigera) 自生の青虫、レピドプテラ
テレオグリルス・コモデュス 黒色野生コオロギ、オルトプテラ
アグロチス・インフサ(Agrotis infusa) 普通のネキリガ、成虫はモンヤガ(Bogong moth)として知られる、レピドプテラ
【0089】
ウイセアナ・セルビナタ ポリナ(Porina)、ニュージーランドに自生、レピドプテラ
ルシラ・セリカタ 緑クロバエ、ジプテラ、pH8にてアッセ
クリソムヤ・ルフィファシエス 毛深い蛆クロバエ、ジプテラ、pH8にてアッセイ
アホジウス・タスマニア(Aphodius tasmaniae) タスマニアの草地虫=黒頭牧草コフキコガネ(cockchafer)、コレオプテラ
コステリトラ・ゼアランディカ ニュージーランドの草地虫、コレオプテラ
スポドプテラ・リトゥラ(Spodoptera litura) 熱帯産アワヨトウの幼虫
(armyworm)、レピドプテラ
フトリマエ・オペルクレラ ジャガイモ塊茎の蛾、レピドプテラ
エピフィアス・ポストビッタナ(Epiphyas postvittana) 薄褐色のリンゴ蛾(ハマキムシ(leafroller))、レピドプテラ
プラノトルトリックス・オクト 緑頭のハマキムシ、レピドプテラ
クテノプセウスチス・オブリクアナ(Ctenopseustis obliquana) 褐色頭のハマキムシ、レピドプテラ
サトウキビ地虫
【0090】
引用文献
アンダーソン(Anderson,M.A.)、マックファデン(McFadden,G.I.)、バーナツキー(Bernatzky,R.)、アトキンソン(Atkinson,A.)、オーピン(Orpin,T.)、デッドマン(Dedman,H.)、トレギア(Tregear,G.)、ファーンレイ(Fernley,R.)、クラーク(Clerke,A.E.)(1989)The Plant Cell 1:483〜491
アトキンソン(Atkinson,A.H.)(1992)博士論文、メルボルン大学、ビクトリア、オーストラリア
バーナツキー、タンクレイ(Tanksley,S.D.)(1986)Theor. Appl. Genet.72:314〜321
ブラッドフォード(Bradford,M.M.)(1976)Anal. Biochem.72:248〜254
【0091】
ブラウン(Brown,W.E.)、ライアン(Ryan,C.A.)(1984)Biochemistry 23:3418〜3422
ブライアント(Bryant,J.)、グリーン(Green,T.R.)、グルサダイア
(Gurusaddaiah,T.)、ライアン(1976)Biochemistry 15:3418〜3424
コーニッシュ(Conish,E.C.)、プティ(Pettitt,J.M.)、ボニッヒ(Bonig,I.)、クラーク(1987)Nature 326:99〜102
クリステラー(Christeller,J.T.)、ショー(Shaw,B.D.)、ガーディナー(Gardiner,S.E.)、ダイモック(Dymock,J.)(1989)Insect Biochem.19:2217〜231
クリステラー、レング(Laing,W.A.)、マークウイック(Markwick,N.P.)およびバーゲス(Burgess,E.P.J.)(1992)Insect Biochem. Molec. Biol.22:735〜746
【0092】
ファインバーグ(Feinberg,A.P.)、フォーゲルスタイン(Vogelstein,B.)Anal. Biochem.132:6〜13
グラハム(Graham,J.S.)、ピアス(Pearce,G.)、メリーウエザー(Merryweather,J.)、チタニ(Titani,K.)、エリクソン(Ericsson,L.H.)、ライアン(1985)J.Biol.Chem.260:6561〜6564
グラハム、ホール(Hall,G.)、ピアス、ライアン(1986)Planta 169:399〜405
グレゴ(Grego,B.)、ファン・ドリエル(van Driel, I.R.)、スターン(Stearne,P.A.)、ゴーディング(Goding,J.W.)、ナイス(Nice,E.G.)、シンプソン(Simpson,R.J.)(1985)Eur. J. Biochem.148:485〜491
【0093】
グリーン、ライアン(1972)Science:776〜777
ハラ−ニシムラ(Hara−Nishimura,I.)、イノウエ(Inoue,K.)、ニシムラ(Nishimura,M.)(1991)FEBS Letters 294、89〜93
ハーロウ(Harlow,E.)、レイン(Lane,D.)(1988)Antibodies. A Laboratory Mannual. コールドスプリングハーバーラボラトリー、ニューヨークハス(Hass,G.M.)、ハーモドソン(Hermodson,M.A.)、ライアン、ジェントリー(Gentry,L.)(1982)Biochemistry 21:752〜756
ジョンストン(Johnston,K.A.)、ゲートハウス(Gatehouse,J.A.)、アンステー(Anstee,J.H.)(1993)J.Insect Physiol.39、657〜664
【0094】
キング(King,L.A.)、ポッセー(Possee,R.D.)(1992)The Baculovirus Expression system. A Laboratory Guide(チャップマン&ホール(Chapman&Hall):ロンドン、UK)
クオ(Kuo,J.)、ピアス、ライアン(1984)黄化したタバコの葉からのプロテイナーゼインヒビターの単離および特徴付け、Arch. Biochem. Biophys.230:504〜510
カイト(Kyte,J.)、ドゥーリトル(Doolittle,R.F.)(1982)J. Mol. Biol.157:680〜685
レムリ(Laemmli,U.K.)(1970)Nature 227:680〜685
ルックナウ(Lucknow,V.A.)およびサマーズ(Summers,M.D.)(1989)Virology 170:31〜39
【0095】
マウ(Mau,S−L.)、ウイリアムズ(Williams,E.G.)、アトキンソン、アンダーソン、コーニッシュ、グレゴ、シンプソン、ケア−プア(Kheyr−Pour,A.)、クラーク(1986)Planta 169:184〜191
メルビル(Melville,J.C.)、ライアン(1970)Archives of Biochemistry and Biophysics 138:700〜702
ピアス、ライアン、リリエグレン(Liljegren,D.)(1988)Planta 175:527〜531
プランケット(Plunkett,G.)、セニア(Senear,D.F.)、ズロスク(Zuroske,G.)、ライアン(1982)Arch. Biochem. Biophys. 213:463〜472
【0096】
リチャードソン(Richardson,M.)(1977)Phytochemistry 16:159〜169
リッカウアー(Rickauer,M.)、フルニエ(Fournier,J.)、エスケレ−ツガエ(Esquerre−Tugaye,M.)(1989)Plant Physiol.9:1065〜1070
ライアン(1983)植物における防御反応:Plant Gene Research、デンズ(Dennes,E.S.)、ホーン(Hohn,B.)、ホーン(Hohn,T.)、キング、シェル(Schell,J.)、バーマ(Verma,D.P.S.)編、ニューヨーク、スプリンガー版、375〜386
サンチェス−セラノ(Sanchez−Serrano,J.J.)、シュミット(Schmidt,R.)、シェル、ウイルミッツァー(Willmitzer,L.)(1986)Mol. Gen. Genet.203:15〜20
【0097】
スコット(Scott,M.P.)、ヤング(Young,R.)、ムンツ(Muntz,K.)、ニールセン(Nielsen,N.C.)(1992)Proc.Natl.Acad.Sci.USA89、658〜662
ソーンブルグ(Thornburg,R.W.)、アン(An,G.)、クリーブランド(Cleveland,T.E.)、ジョンソン(Johnson,R.)、ライアン(1987)Proc.Natl.Acad.Sci.USA84:744〜748
【0098】
【配列表】
Figure 0004115642
【0099】
Figure 0004115642
【0100】
Figure 0004115642
Figure 0004115642
Figure 0004115642
【0101】
Figure 0004115642
Figure 0004115642
【0102】
Figure 0004115642
【0103】
Figure 0004115642
【0104】
Figure 0004115642
【0105】
Figure 0004115642
【0106】
Figure 0004115642
【0107】
Figure 0004115642
【0108】
Figure 0004115642
【0109】
Figure 0004115642
【0110】
Figure 0004115642
【0111】
Figure 0004115642
【0112】
Figure 0004115642

【図面の簡単な説明】
【図1−1】 pNA−PI−2挿入物の核酸配列(SEQ ID NO:2)およびニコチアナ・アラタPIタンパク質の対応アミノ酸配列(SEQ ID NO:3)を示す。該アミノ酸配列は、成熟タンパク質の最初のアミノ酸を1としてナンバーを付してある。シグナル配列はヌクレオチド1〜97によりコードされており、これらアミノ酸残基にはマイナスの番号を付してある。インヒビターの反応部位残基は囲ってある。
【図1−2】 図1−1の続き。
【図1−3】 図1−2の続き。
【図1−4】 図1−3の続き。
【図1−5】 図1−4の続き。
【図2】 ニコチアナ・アラタの種々の器官からのRNAのゲルブロット分析を示す写真表示である。ニコチアナ・アラタの器官およびニコチアナ・タバクム(N.tabacum)およびニコチアナ・シルベストリス(N.sylvestris)の柱頭および花柱から単離したRNAのゲルブロットは、cDNAクローンNA−PI−2とハイブリダイズした。St、柱頭および花柱;Ov、子房;Po、花粉;Pe、花弁;Se、萼片;L、傷のない葉;L4、傷から4時間後の葉;L24、傷から24時間後の葉;Nt、ニコチアナ・タバクムの柱頭および花柱;Ns、ニコチアナ・シルベストリスの柱頭および花柱;Na、ラムダ−DNAのHindIII制限断片。
【図3】 柱頭および花柱でのNA−PI−2に相同なRNAのインシトゥ局在を示す写真表示である。(a)32P標識したNA−PI−2 cDNAプローブとハイブリダイズさせた後の1cm長の芽の柱頭および花柱の縦方向の凍結切片の放射能写真;(b)トルイジンブルーで染色した(a)と同じ切片。c、皮層;v、維管束;tt、導管;s、柱頭組織。
【図4】 ニコチアナ・アラタのゲノムDNAのゲルブロット分析を示す写真表示である。制限酵素EcoRIまたはHindIIIで消化し放射性標識したNA−PI−2でプローブしたニコチアナ・アラタゲノムDNAのゲルブロット分析。サイズマーカー(kb)は、ラムダ−DNAのHindIII制限断片である。
【図5】 ニコチアナ・アラタの種々の器官におけるPI活性のグラフ表示である。種々の器官からの緩衝液溶解性の抽出物について、トリプシンおよびキモトリプシンを抑制する能力を試験した。柱頭および萼片抽出物が、トリプシン(A)およびキモトリプシン(B)の両方に対する最も有効なインヒビターであった。
【図6】 ニコチアナ・アラタの柱頭からのPI精製の工程を示す。(a)柱頭抽出物からの硫酸アンモニウム沈殿したタンパク質のセファデックスG−50ゲル濾過クロマトグラフィー。PI活性はプロフィールの後期に溶出した。(b)ゲル濾過カラムからのフラクションの20%w/v SDS−ポリアクリルアミドゲル(レムリ(Laemmli)、1970)。ゲルを銀染色し、分子量マーカー(ファルマシアペプチドマーカー)はキロダルトンにて示す。約6kDのタンパク質(矢印)がプロテイナーゼインヒビター活性とともに溶出した。(c)精製手順の種々の段階でのPI含有フラクションのSDS−PAGEによる分析。レーン1、粗製の柱頭抽出物(5μg);レーン2、80%w/v硫酸アンモニウムにより沈殿させた柱頭タンパク質(5μg);レーン3、キモトリプシンアフィニティーカラムから溶出したPIタンパク質(1μg)。
【図7】 ニコチアナ・アラタ(a)およびジャガイモ(b)およびトマト(c)PIIIcDNAからのNA−PI−2クローンによりコードされるPIタンパク質のハイドロパシー(hydropathy)プロットを示すグラフ表示である。線よりも上にある値は疎水性の領域を示し、線よりも下の値は親水性の領域を示す。推定シグナルペプチドには陰影を施してある。疎水性プロフィールは、カイト(Kyte)およびドゥーリトル(Doolittle)(1982)の予測則および9の連続アミノ酸の連なりを用いて作成した。
【図8】 生育中の花の柱頭中のPIタンパク質のイムノブロット分析を示す。
(a)ニコチアナ・アラタの生育中の花。
(b)(a)に示す生育の各段階における柱頭タンパク質のSDS−PAGEであり、5μgの各抽出物を負荷した。ペプチドゲルを銀染色し、分子量マーカー(LKB・ロー・モレキュラー・ウエイト(LKB Low Molecular weight)およびファルマシアペプチドマーカー)はキロダルトンで示してある。
(c)抗PI抗血清でプローブした(b)と同じゲルのイムノブロット。
【図9】 ニコチアナ・アラタからの6kDプロテイナーゼインヒビター種の分離および同定を示す。(A)逆相HPLCクロマトグラフィーによる6kDPIの分離。(B)PI前駆体タンパク質から得られた5つの相同なペプチド:C1、キモトリプシンインヒビター、T1〜T4、トリプシンインヒビター。太線は、これらインヒビターの反応部位を示す。前駆体タンパク質は、シグナル配列を除いて描写してある。図中点線部は、6つの繰り返しドメインの領域(アミノ酸1〜343、図1)。図中斜線部は、非繰り返し配列(アミノ酸344〜368、図1)。矢印は、前駆体タンパク質におけるプロセシング部位を示す。(C)cDNAクローンから予測され精製タンパク質のN末端シークエンシングにより確認されたC1およびT1〜T4のアミノ酸配列。
【図10】 前駆体PIタンパク質のプロセシング部位の周辺のアミノ酸配列を示す。太字で示した配列は、精製PIタンパク質から得たアミノ末端配列である。マイナスの番号を付した配列は、cDNAクローンから予測されるフランキング配列である。予測された前駆体タンパク質は、この配列の6つの繰り返しを含む。
【図11】 バクロウイルス発現系で生成されたPI前駆体(A)、およびエンドプロテイナーゼAsp−Nによるアフィニティー精製PI前駆体(B)の消化後に得られた生成物を示す。
【図12】 Asp−N消化により前駆体から得られたペプチドの逆相HPLCによる分取クロマトグラフィーを示す。
【図13】 柱頭からのPI前駆体、PIペプチド、該PI前駆体からインビトロで生成したPIペプチドのトリプシンおよびキモトリプシン抑制活性の比較を示す。
【図14】 コントロールの人工食餌、ダイズバウマン−バーク(Bowman−Birk)インヒビターおよびニコチアナ・アラタPI上で飼育したテレオグリルス・コモデュス(T.commodus)若虫の発育曲線を示すグラフ表示である。縦軸は、各処置におけるコオロギの平均体重(+/−標準誤差)をmgで示す。横軸は週を示す。ニコチアナ・アラタPIで飼育したコオロギは、実験を通じてコントロールの食餌およびダイズインヒビターを含有する食餌で飼育した両コオロギに比べて低平均体重を示した。

Claims (2)

  1. ニコチアナ属植物からのマルチドメインII型セリンプロテイナーゼインヒビター(PI)前駆体 をコードするヌクレオチドの配列を含む核酸分子を含む遺伝子構築物を有するトランスジェニック植物であって、該PI前駆体は少なくとも3つのドメインからなり、該少なくとも3つのドメインは該ドメイン内でプロセシングしたときに少なくとも3つのペプチドを生成し、該少なくとも3つのペプチドのうち少なくとも1つはキモトリプシン特異的な部位を有し、該少なくとも3つのペプチドの残りの少なくとも1つはトリプシン特異的な部位を有し、該PI前駆体をコードするヌクレオチド配列が、ドメイン1(配列番号3のアミノ酸残基1〜58)またはドメイン2(配列番号3のアミノ酸残基59〜116)から選ばれる少なくとも1つのドメイン、およびドメイン3(配列番号3のアミノ酸残基117〜174)、ドメイン4(配列番号3のアミノ酸残基175〜232)、ドメイン5(配列番号3のアミノ酸残基233〜290)およびドメイン6(配列番号3のアミノ酸残基291〜343)よりなる群から選ばれる少なくとも2つのドメインをコードするヌクレオチド配列を含み、該遺伝子構築物はさらに該核酸分子の発現を可能とする発現手段、植物細胞中での複製を可能とする複製手段、または植物細胞ゲノム中への該核酸分子の安定な組み込みを可能とする組み込み手段を含むことを特徴とするトランスジェニック植物。
  2. 図1に示すアミノ酸配列(SEQ ID NO:3)のアミノ酸残基25〜82(SEQ ID NO:5);アミノ酸残基83〜140(SEQ ID NO:6);アミノ酸残基141〜198(SEQ ID NO:7);アミノ酸残基199〜256(SEQ ID NO:8);およびアミノ酸残基257〜314(SEQ ID NO:9) よりなる群から選ばれた1または2以上のPIモノマーを産生する請求項1に記載のトランスジェニック植物
JP2000003716A 1992-12-16 2000-01-12 Ii型セリンプロテイナーゼインヒビターまたはその前駆体をコードする遺伝子配列を含むトランスジェニック植物 Expired - Fee Related JP4115642B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPL639992 1992-12-16
AU6399 1992-12-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51358394A Division JP3657980B2 (ja) 1992-12-16 1993-12-16 プロテイナーゼインヒビター、その前駆体およびそれをコードする遺伝子配列

Publications (2)

Publication Number Publication Date
JP2000175581A JP2000175581A (ja) 2000-06-27
JP4115642B2 true JP4115642B2 (ja) 2008-07-09

Family

ID=3776602

Family Applications (3)

Application Number Title Priority Date Filing Date
JP51358394A Expired - Fee Related JP3657980B2 (ja) 1992-12-16 1993-12-16 プロテイナーゼインヒビター、その前駆体およびそれをコードする遺伝子配列
JP11128615A Withdrawn JPH11346788A (ja) 1992-12-16 1999-05-10 プロテイナ―ゼインヒビタ―、その前駆体およびそれをコ―ドする遺伝子配列
JP2000003716A Expired - Fee Related JP4115642B2 (ja) 1992-12-16 2000-01-12 Ii型セリンプロテイナーゼインヒビターまたはその前駆体をコードする遺伝子配列を含むトランスジェニック植物

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP51358394A Expired - Fee Related JP3657980B2 (ja) 1992-12-16 1993-12-16 プロテイナーゼインヒビター、その前駆体およびそれをコードする遺伝子配列
JP11128615A Withdrawn JPH11346788A (ja) 1992-12-16 1999-05-10 プロテイナ―ゼインヒビタ―、その前駆体およびそれをコ―ドする遺伝子配列

Country Status (9)

Country Link
US (10) US6031087A (ja)
EP (1) EP0674712B1 (ja)
JP (3) JP3657980B2 (ja)
AT (1) ATE291624T1 (ja)
CA (1) CA2151933C (ja)
DE (1) DE69333782T2 (ja)
ES (1) ES2239754T3 (ja)
NZ (1) NZ258824A (ja)
WO (1) WO1994013810A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE291624T1 (de) * 1992-12-16 2005-04-15 Hexima Ltd Ein proteinase inhibitor, vorläufer davon und genetische sequenzen dafür kodierend
US6121436A (en) 1996-12-13 2000-09-19 Monsanto Company Antifungal polypeptide and methods for controlling plant pathogenic fungi
GB9725556D0 (en) 1997-12-03 1998-02-04 Ciba Geigy Ag Organic compounds
EP0958833A1 (en) * 1998-05-20 1999-11-24 Erasmus Universiteit Rotterdam Methods and means for preventing or treating inflammation
EP1366168B1 (en) 2001-02-08 2011-05-18 Hexima Limited Plant-derived molecules and genetic sequences encoding same and uses therefor
WO2004050873A1 (en) * 2002-11-29 2004-06-17 The University Of Hong Kong Genetically modified plants expressing proteinase inhibitors, sapina2a or sapin2b, and methods of use thereof for the inhibition of trypsin-and chymotrypsin-like activities
NZ572316A (en) 2003-04-23 2010-06-25 Hexima Ltd Insect chymotrypsin and inhibitors thereof
US20060035827A1 (en) * 2004-06-24 2006-02-16 Green Gary M Compositions and methods for the treatment or prevention of gallbladder disease
EP1909559A4 (en) * 2005-07-08 2009-01-21 Hexima Ltd COMBATING PLANT PEPPERS
WO2007137329A2 (en) * 2006-05-25 2007-12-06 Hexima Limited Multi-gene expression vehicle
US20090083880A1 (en) * 2007-04-20 2009-03-26 Hexima Ltd. Modified plant defensin
AR075257A1 (es) * 2008-02-01 2011-03-23 Hexima Ltd Sistema de proteccion de plantas contra la infeccion por agentes patogenos
US9889184B2 (en) 2008-08-05 2018-02-13 Hexima Limited Anti-pathogen systems
BRPI0916867A2 (pt) * 2008-08-05 2017-05-23 Hexima Ltd métodos para proteger uma planta de uma doença associada com infecção por um patógeno, e para identificar uma defensiva, uso de uma defensina de planta e um inibidor de proteinase ou uma forma precursora, planta geneticamente modificada ou progênie desta, e, defensiva
CA2825118C (en) 2011-02-07 2020-02-18 Hexima Limited Modified plant defensins useful as anti-pathogenic agents

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI875467A (fi) * 1986-12-19 1988-06-20 Agricultural Genetics Co Dna-molekyler, som aer nyttiga vid vaextskydd.
JPS6413997U (ja) 1987-07-17 1989-01-24
JPS6453092A (en) 1987-08-21 1989-03-01 Hitachi Ltd Blower device
US5032396A (en) * 1989-02-17 1991-07-16 Immunex Corporation IL-7 to stimulate platelet production
ES2092560T5 (es) * 1989-12-22 2004-09-16 Mikrogen Molekularbiologische Entwicklungs-Gmbh Proteinas inmunologicamente activas de borrelia burgdorferi, estuches de ensayo relacionados y vacuna.
DE69122100T2 (de) 1990-05-25 1997-02-06 Univ Washington Verfahren zur auslösung pflanzenschützender mechanismen
JPH04145099A (ja) 1990-10-05 1992-05-19 Sanwa Kagaku Kenkyusho Co Ltd Gip様活性を有するポリペプチド誘導体及びその用途
GB9104617D0 (en) * 1991-03-05 1991-04-17 Nickerson Int Seed Pest control
ATE291624T1 (de) * 1992-12-16 2005-04-15 Hexima Ltd Ein proteinase inhibitor, vorläufer davon und genetische sequenzen dafür kodierend

Also Published As

Publication number Publication date
EP0674712A4 (en) 1997-06-18
JPH08506482A (ja) 1996-07-16
US6946278B2 (en) 2005-09-20
US20050250149A1 (en) 2005-11-10
US20070054365A1 (en) 2007-03-08
US20030129720A1 (en) 2003-07-10
US6955916B2 (en) 2005-10-18
US20030027303A1 (en) 2003-02-06
WO1994013810A1 (en) 1994-06-23
US6806074B2 (en) 2004-10-19
US6440727B1 (en) 2002-08-27
EP0674712A1 (en) 1995-10-04
ES2239754T3 (es) 2005-10-01
JPH11346788A (ja) 1999-12-21
ATE291624T1 (de) 2005-04-15
DE69333782D1 (de) 2005-04-28
NZ258824A (en) 1997-11-24
US7410796B2 (en) 2008-08-12
US20030096388A1 (en) 2003-05-22
US6451573B1 (en) 2002-09-17
DE69333782T2 (de) 2006-01-26
CA2151933C (en) 2007-04-24
US7309596B2 (en) 2007-12-18
US6261821B1 (en) 2001-07-17
EP0674712B1 (en) 2005-03-23
JP3657980B2 (ja) 2005-06-08
US20080134367A1 (en) 2008-06-05
CA2151933A1 (en) 1994-06-23
JP2000175581A (ja) 2000-06-27
US6031087A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
US7410796B2 (en) Proteinase inhibitor, precursor thereof and genetic sequences encoding same
Atkinson et al. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors.
Dumas et al. Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings
Heath et al. Characterization of the protease processing sites in a multidomain proteinase inhibitor precursor from Nicotiana alata
Wang et al. Characterization of a 46 kDa insect chitinase from transgenic tobacco
Kreft et al. Jasmonic acid inducible aspartic proteinase inhibitors from potato
JPH09509842A (ja) 新規チオールプロテアーゼ阻害剤
McManus et al. Posttranslational modification of an isoinhibitor from the potato proteinase inhibitor II gene family in transgenic tobacco yields a peptide with homology to potato chymotrypsin inhibitor I
US7537929B2 (en) Genes for male accessory gland proteins in Drosophila melanogaster
CA2440583C (en) A proteinase inhibitor, precursor thereof and genetic sequences encoding same
AU680855B2 (en) A proteinase inhibitor, precursor thereof and genetic sequences encoding same
Jiménez et al. A chickpea Kunitz trypsin inhibitor is located in cell wall of elongating seedling organs and vascular tissue
CA2341062A1 (en) Scorpion toxins
WO1996016171A1 (en) Toxins from the wasp bracon hebetor
KR20040063658A (ko) 바이러스에 의해 특이적으로 유도되는 고추 유래의 신규한세포벽 단백질 및 이를 코딩하는 유전자
Andersonai Proteinase lnhibitors in Nicotiana alata Stigmas Are Derived from a Precursor Protein Which 1s Processed into Five Homologous lnhibitors
AU2005215825A1 (en) Antifungal peptides

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees