JP4105780B2 - Decarburization annealing method and apparatus for grain-oriented electrical steel sheet - Google Patents

Decarburization annealing method and apparatus for grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4105780B2
JP4105780B2 JP13709397A JP13709397A JP4105780B2 JP 4105780 B2 JP4105780 B2 JP 4105780B2 JP 13709397 A JP13709397 A JP 13709397A JP 13709397 A JP13709397 A JP 13709397A JP 4105780 B2 JP4105780 B2 JP 4105780B2
Authority
JP
Japan
Prior art keywords
heating
grain
oriented electrical
temperature
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13709397A
Other languages
Japanese (ja)
Other versions
JPH10324922A (en
Inventor
洋一 財前
和幸 田代
泰夫 松浦
重信 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13709397A priority Critical patent/JP4105780B2/en
Publication of JPH10324922A publication Critical patent/JPH10324922A/en
Application granted granted Critical
Publication of JP4105780B2 publication Critical patent/JP4105780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Tunnel Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、方向性電磁鋼板の製造過程における脱炭焼鈍工程での加熱時のオーバーシュートや加熱未達がなく、的確に昇温させる脱炭焼鈍方法とその装置に関するものである。
【0002】
【従来の技術】
方向性電磁鋼板は、圧延方向に (110)[001] 方位を有する結晶粒(ゴス方位粒)により構成される、通常4.5%以下のSiを含有する、板厚0.10〜0.35mmの鋼板で、主にトランス用鉄心に使用される。
この目的のために、最近では前記方向性電磁鋼板の製造に際し、従来の1350℃以上の高温スラブ加熱をベースとした製造方法に替わり、特開平3−122227号公報に示されるような普通鋼レベルのスラブ加熱、即ち1280℃以下の温度によるスラブ加熱をベースとし、かつインヒビターであるAlN、(Al・Si)N等の微細分散析出物を脱炭焼鈍後に行う窒化処理工程で造り込む方向性電磁鋼板の製造方法が開発されている。
【0003】
しかしながら、上記1280℃以下の温度によるスラブ加熱をベースとした技術においては、脱炭焼鈍(一次再結晶焼鈍)の良否が以後の窒化処理および最終仕上焼鈍工程におけるグラス皮膜生成および二次再結晶の良否を左右する重要なキーを握る工程になることから従来からこの脱炭焼鈍工程、特に加熱工程について数多くの改善提案がなされてきた。
【0004】
通常、この技術分野においては脱炭焼鈍の加熱帯には加熱能力の大きいガス加熱によるラジアントチューブによるガス加熱方式と均熱帯にはエレメントヒーター方式による加熱方式が採用されている。しかしながら、このラジアントチューブによるガス加熱は前述したように加熱能力が大きい反面、加熱温度のバラツキが発生し時として均熱温度への到達が遅れるという難点を有している。前記した均熱温度への到達遅れが発生すると、その分だけ脱炭にかける時間が少なくなり、脱炭性が悪くなるという問題が生じる。これに対応するために、最近では特開平1−290716号公報および特開平6−128646号公報に開示されているように二次再結晶粒径を微細化し、最終的な磁気特性を改善する目的から電磁誘導加熱、抵抗加熱、直接エネルギー加熱手段による100℃/sec以上の超急速加熱技術や、直接通電加熱手段により50℃/sec以上の加熱速度で目標到達温度と昇温速度との関係をバランスさせた加熱技術等がある。
【0005】
【発明が解決しようとする課題】
しかしながら、前述した脱炭焼鈍工程において急速加熱によるオーバーシュートが起こると、極く短時間でも目標とする均熱温度を超えると早期段階で生成した酸化層が脱炭を阻害するために脱炭性が劣化するという問題がある。特に、前述した加熱帯において投入熱量の大きいガス加熱方式や、通電加熱方式等の急速加熱方式では、複雑な工程と高度な技術を要求される方向性電磁鋼板において広範囲の処理量変更を要求される設備において、少ない投入熱量が必要な場合には、前述した設備では高精度の加熱制御が困難である。
【0006】
特に、方向性電磁鋼板の製造ラインでは、広い範囲で様々な板厚および板幅の製品を一つの炉で脱炭焼鈍する場合には、広範囲にわたる投入熱量において高精度な加熱制御が必要となる。このことは、脱炭焼鈍の加熱段階から均熱段階に移行する際に顕著に現れ、前述のガス加熱方式では燃焼バーナーの安定燃焼範囲を超えて煤詰まり等が生じて不安定燃焼となる可能性があり、前記移行領域での昇温安定性が要求される方向性電磁鋼板の製造の場合には余裕ある出力で操業することで品質の安定化を図る必要がある。
【0007】
本発明は、上記問題を解決するために方向性電磁鋼板の製造過程における脱炭焼鈍工程での加熱時のオーバーシュートや加熱未達がなく、的確に昇温させる脱炭焼鈍方法とその装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、最終板厚に冷延されたSi≦4.5%以下を含有する方向性電磁鋼板用ストリップを脱炭焼鈍するに際し、前記ストリップの加熱段階における鋼板温度が600〜800℃にある間に目標とする加熱推移に対する温度偏差を±15℃以内に制御し、かつ前記ストリップの加熱段階における鋼板温度が550〜650℃までの加熱帯の前段をラジアントチューブによるガス加熱方式で加熱し、次いで前記温度以上で均熱温度到達までの加熱帯の後段をチューブ状ヒーターによる電気加熱方式で加熱し、均熱段階ではエレメントヒーターによる均熱を行うことを特徴とする方向性電磁鋼板の脱炭焼鈍方法である。
【0009】
また、上記脱炭焼鈍方法を実現するために、最終板厚に冷延されたSi≦4.5%以下を含有する方向性電磁鋼板用ストリップの脱炭焼鈍装置において,加熱手段は加熱帯の前段がラジアントチューブによるガス加熱方式と加熱帯の後段がチューブ状ヒーターによる電気加熱方式の組み合わせ手段とエレメントヒーターによる均熱手段とで構成されたことを特徴とする方向性電磁鋼板の脱炭焼鈍装置である。
【0010】
【発明の実施の形態】
図1に脱炭焼鈍炉において従来の10本のラジアントチューブによるガス加熱方式による加熱帯のゾーン毎(便宜的に7ゾーンに分割して示す。)のバーナー容量と安定燃焼範囲を模式的に示した図である。この図1において、1〜4ゾーンまでの各バーナー容量は12.0万kcal/Hrを有し、5〜6ゾーンのバーナー容量は8.0万kcal/Hr、7ゾーンのバーナー容量は6.0万kcal/Hrで操業した。前記態様において、1〜5ゾーンまではいずれも安定燃焼範囲内にあり目標加熱条件を満足しているが、6〜7ゾーンにおいては安定燃焼範囲を越えているため煤詰まりを生じて不安定燃焼状態が発生した。前記6〜7ゾーンは丁度均熱帯への移行区域に相当する区域であり、この移行区域を如何に厳密に温度管理するかが脱炭性牽いてはグラス皮膜の良否を決定する鍵となる。そこで、この移行区域の加熱を従来のラジアントチューブによるガス加熱方式に替えて、巾広く、しかも厳密な温度管理が可能な電気制御であるチューブ状ヒーターによる電気加熱方式にすることで脱炭性を損なうことなく脱炭焼鈍が可能になったものである。
【0011】
図2に、図1に基づく昇温カーブを示す。図2において、脱炭焼鈍サイクルの目標昇温カーブを実線で示してあるが、従来のラジアントチューブによるガス加熱方式における加熱操業の場合には、600℃近傍から時間の経過と共に目標昇温カーブから外れ、+側(目標昇温カーブより高く外れる。一点鎖線カーブ)に変動した場合には前述したように酸化膜が先行して脱炭性が悪化し、一方、−側(目標昇温カーブより低く外れる。一点鎖線カーブ)に変動した場合には有効均熱時間が短くなり脱炭性が悪化するという現象が起きる。特に、この傾向は600℃〜800℃の加熱帯から均熱帯への移行区域で起こる傾向が強い。従って、この温度区域を本発明に従って温度変動が少なく、かつ厳密な昇温カーブがとれる加熱手段で、最大でも目標昇温カーブに対し±15℃以内の温度範囲(点線カーブ)で加熱することにより脱炭性を許容範囲内に収めることができる。
【0012】
表1に本発明による方法と従来のラジアントチューブによるガス加熱方式による方法での脱炭性についての評価結果を示した。なお、表1に示したデータはコイル100本についての実績データである。
【0013】
【表1】

Figure 0004105780
【0014】
また、本発明方法を実施するに当たっては、脱炭焼鈍装置内の加熱帯の手段の配列において装置長の約3/4をラジアントチューブによるガス加熱手段とし、加熱帯後半、ほぼ残り1/4の部位をチューブ状ヒーターによる電気加熱手段とで構成することにより達成させる。なお、前記ラジアントチューブによるガス加熱手段およびチューブ状ヒーターによる電気加熱手段は、何ら特別の仕様である必要はなく市販の設備仕様で十分対応可能である。
【0015】
【発明の効果】
以上説明したように、本発明においては、脱炭焼鈍の加熱帯後半の昇温推移を規定することで加熱のオーバーシュートやアンダーシュートが解消され、安定した脱炭焼鈍が可能であると共に、脱炭焼鈍の加熱帯後半の加熱方法を発熱密度の大きい、発熱抵抗体をに配置したチューブ状ヒーターを用いることで処理能力の大きい炉にもかかわらず広範囲の鋼板サイズ変更に対しても柔軟な対応ができ、しかも安定した加熱昇温カーブを採用することが可能である。
【図面の簡単な説明】
【図1】従来の脱炭焼鈍装置内における加熱手段の配置を示す模式図である。
【図2】脱炭焼鈍装置における目標昇温カーブ、従来方法のカーブおよび本発明カーブを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a decarburization annealing method and apparatus for accurately raising the temperature without causing overshoot or heating failure during heating in a decarburization annealing process in the production process of a grain-oriented electrical steel sheet.
[0002]
[Prior art]
The grain-oriented electrical steel sheet is composed of crystal grains having a (110) [001] orientation in the rolling direction (Goss orientation grains) and usually contains 4.5% or less of Si and has a thickness of 0.10 to 0.00. It is a 35mm steel plate and is mainly used for transformer iron cores.
For this purpose, recently, in the production of the grain-oriented electrical steel sheet, instead of the conventional manufacturing method based on high-temperature slab heating of 1350 ° C. or higher, the level of ordinary steel as disclosed in JP-A-3-122227 is disclosed. Directional slab heating based on slab heating, ie, slab heating at a temperature of 1280 ° C. or less, and forming finely dispersed precipitates such as AlN and (Al · Si) N as inhibitors in a nitriding process performed after decarburization annealing Steel plate manufacturing methods have been developed.
[0003]
However, in the technology based on the slab heating at a temperature of 1280 ° C. or less, the quality of decarburization annealing (primary recrystallization annealing) is determined by the glass film formation and secondary recrystallization in the subsequent nitriding treatment and final finish annealing steps. Since it is a process that holds an important key that determines success or failure, many improvements have been proposed for the decarburization annealing process, particularly the heating process.
[0004]
Usually, in this technical field, a gas heating method using a radiant tube by gas heating with a large heating capacity is used for a heating zone for decarburization annealing, and a heating method using an element heater method for soaking. However, the gas heating by the radiant tube has a large heating capacity as described above, but has a disadvantage that the heating temperature varies and sometimes the arrival at the soaking temperature is delayed. When the arrival delay to the soaking temperature described above occurs, there is a problem that the time required for decarburization is reduced by that amount, and the decarburization property is deteriorated. In order to cope with this, recently, as disclosed in JP-A-1-290716 and JP-A-6-128646, the secondary recrystallized grain size is refined and the final magnetic characteristics are improved. From electromagnetic induction heating, resistance heating, ultra-rapid heating technology of 100 ° C / sec or more by direct energy heating means, or direct heating heating means at a heating rate of 50 ° C / sec or more, the relationship between target temperature and temperature rise rate There is a balanced heating technique.
[0005]
[Problems to be solved by the invention]
However, if overshoot occurs due to rapid heating in the decarburization annealing process described above, the oxide layer formed at an early stage inhibits decarburization when the target soaking temperature is exceeded even in a very short time. There is a problem of deterioration. In particular, the gas heating method with a large amount of input heat in the heating zone described above and the rapid heating method such as the energization heating method require a wide range of throughput changes in grain oriented electrical steel sheets that require complicated processes and advanced technology. When a small amount of input heat is required in the equipment, it is difficult to perform highly accurate heating control with the equipment described above.
[0006]
In particular, in the production line for grain-oriented electrical steel sheets, when decarburizing and annealing products of various thicknesses and widths in a single furnace in a wide range, high-precision heating control is required over a wide range of input heat amounts. . This appears prominently during the transition from the heating stage of decarburization annealing to the soaking stage, and the above-mentioned gas heating system can cause clogging beyond the stable combustion range of the combustion burner, resulting in unstable combustion. In the production of grain-oriented electrical steel sheets that require stability in temperature rise in the transition region, it is necessary to stabilize the quality by operating with sufficient output.
[0007]
In order to solve the above problems, the present invention provides a decarburization annealing method and apparatus for accurately raising the temperature without causing overshoot or heating failure during heating in the decarburization annealing process in the production process of grain-oriented electrical steel sheets. It is to provide.
[0008]
[Means for Solving the Problems]
In the present invention, when decarburizing and annealing a strip for grain-oriented electrical steel sheet containing Si ≦ 4.5% or less cold-rolled to the final sheet thickness, the steel sheet temperature in the heating stage of the strip is 600 to 800 ° C. In the meantime, the temperature deviation with respect to the target heating transition is controlled within ± 15 ° C. , and the preceding stage of the heating zone where the steel plate temperature in the heating stage of the strip is 550 to 650 ° C. is heated by a gas heating method using a radiant tube, Next, the latter stage of the heating zone above the temperature until the soaking temperature is reached is heated by an electric heating method using a tube heater, and the soaking is performed using an element heater in the soaking stage, and the decarburization of the grain-oriented electrical steel sheet, An annealing method.
[0009]
Further, in order to realize the above decarburization annealing method, in the decarburization annealing apparatus for grain-oriented electrical steel strips containing Si ≦ 4.5% or less cold-rolled to the final sheet thickness, the heating means is a heating zone. A decarburization annealing apparatus for grain-oriented electrical steel sheets, characterized in that the first stage is composed of a combination means of a gas heating method using a radiant tube and the second stage of the heating zone is an electric heating system using a tube heater and a soaking means using an element heater. It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically shows a burner capacity and a stable combustion range for each zone of heating zone by gas heating method using 10 radiant tubes in the decarburization annealing furnace (divided into 7 zones for convenience). It is a figure. In FIG. 1, each burner capacity up to 1 to 4 zones has 12 million kcal / Hr, burner capacity in 5 to 6 zones is 8 million kcal / Hr, and burner capacity in 7 zones is 6. Operation was performed at 0,000 kcal / Hr. In the above embodiment, all of the zones 1 to 5 are within the stable combustion range and satisfy the target heating conditions, but the zones 6 to 7 exceed the stable combustion range, so they become clogged and become unstable combustion. A condition has occurred. The zones 6 to 7 are just equivalent to the transition zone to the soaking zone, and how strictly the temperature of the transition zone is controlled is the key to determining the quality of the glass coating in terms of decarburization. Therefore, instead of the conventional gas heating method using a radiant tube, this transition zone is heated by using an electric heating method using a tube heater, which is a wide and strict temperature control. Decarburization annealing is now possible without loss.
[0011]
FIG. 2 shows a temperature rise curve based on FIG. In FIG. 2, the target temperature rise curve of the decarburization annealing cycle is shown by a solid line, but in the case of the heating operation in the gas heating method using the conventional radiant tube, from the target temperature rise curve with the passage of time from around 600 ° C. When it is off and changes to the + side (higher than the target temperature rise curve, one-dot chain line curve), the oxide film precedes and decarburization deteriorates as described above, while the-side (from the target temperature rise curve). When it changes to a one-dot chain curve), the effective soaking time is shortened and the decarburization property deteriorates. In particular, this tendency tends to occur in the transition zone from the heating zone of 600 ° C. to 800 ° C. to the soaking zone. Therefore, by heating this temperature zone in a temperature range (dotted line curve) within ± 15 ° C. at the maximum with respect to the target temperature rise curve, the temperature range is a heating means which has a small temperature fluctuation and can take a strict temperature rise curve according to the present invention. Decarburization can be kept within an allowable range.
[0012]
Table 1 shows the evaluation results of decarburization by the method according to the present invention and the conventional gas heating method using a radiant tube. The data shown in Table 1 is actual data for 100 coils.
[0013]
[Table 1]
Figure 0004105780
[0014]
Further, in carrying out the method of the present invention, in the arrangement of means for heating zones in the decarburization annealing apparatus, about 3/4 of the apparatus length is used as gas heating means by the radiant tube, and the latter half of the heating zone, almost the remaining 1/4. This is achieved by configuring the part with an electric heating means using a tubular heater. The gas heating means using the radiant tube and the electric heating means using the tubular heater do not need to have any special specifications, and can be sufficiently handled by commercially available equipment specifications.
[0015]
【The invention's effect】
As described above, in the present invention, by defining the temperature rise transition in the latter half of the heating zone of decarburization annealing, heating overshoot and undershoot are eliminated, and stable decarburization annealing is possible. The heating method in the second half of the heating zone for carbon annealing uses a tube heater with a large heat generation density and densely arranged heating resistors, making it flexible for a wide range of steel plate size changes despite a furnace with a high processing capacity. It is possible to adopt a stable heating temperature rising curve.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the arrangement of heating means in a conventional decarburization annealing apparatus.
FIG. 2 is a diagram showing a target temperature increase curve, a conventional method curve, and a curve of the present invention in a decarburization annealing apparatus.

Claims (2)

最終板厚に冷延されたSi≦4.5%以下を含有する方向性電磁鋼板用ストリップを脱炭焼鈍するに際し、前記ストリップの加熱段階における鋼板温度が600〜800℃にある間に目標とする加熱推移に対する温度偏差を±15℃以内に制御し、かつ前記ストリップの加熱段階における鋼板温度が550〜650℃までの加熱帯の前段をラジアントチューブによるガス加熱方式で加熱し、次いで前記温度以上で均熱温度到達までの加熱帯の後段をチューブ状ヒーターによる電気加熱方式で加熱し、均熱段階ではエレメントヒーターによる均熱を行うことを特徴とする方向性電磁鋼板の脱炭焼鈍方法。When decarburizing and annealing the strip for grain-oriented electrical steel sheet containing Si ≦ 4.5% or less, which is cold-rolled to the final sheet thickness, while the steel sheet temperature in the heating stage of the strip is 600 to 800 ° C., The temperature deviation with respect to the heating transition to be controlled is controlled within ± 15 ° C. , and the preceding stage of the heating zone where the steel plate temperature in the heating stage of the strip is 550 to 650 ° C. is heated by a gas heating method using a radiant tube, and then the above temperature or more A decarburization annealing method for grain-oriented electrical steel sheets, characterized in that the latter stage of the heating zone until reaching the soaking temperature is heated by an electric heating method using a tube heater, and soaking is performed by an element heater in the soaking stage. 最終板厚に冷延されたSi≦4.5%以下を含有する方向性電磁鋼板用ストリップの脱炭焼鈍装置において,加熱手段は加熱帯の前段がラジアントチューブによるガス加熱方式と加熱帯の後段がチューブ状ヒーターによる電気加熱方式の組み合わせ手段とエレメントヒーターによる均熱手段とで構成されたことを特徴とする方向性電磁鋼板の脱炭焼鈍装置。In the decarburization annealing apparatus for strips for grain-oriented electrical steel sheets containing Si ≦ 4.5% or less cold-rolled to the final thickness, the heating means is preceded by a gas heating method using a radiant tube and the latter stage of the heating zone. Is a decarburization annealing apparatus for grain-oriented electrical steel sheets, characterized by comprising a combination means of an electric heating system using a tube heater and a soaking means using an element heater.
JP13709397A 1997-05-27 1997-05-27 Decarburization annealing method and apparatus for grain-oriented electrical steel sheet Expired - Fee Related JP4105780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13709397A JP4105780B2 (en) 1997-05-27 1997-05-27 Decarburization annealing method and apparatus for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13709397A JP4105780B2 (en) 1997-05-27 1997-05-27 Decarburization annealing method and apparatus for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH10324922A JPH10324922A (en) 1998-12-08
JP4105780B2 true JP4105780B2 (en) 2008-06-25

Family

ID=15190720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13709397A Expired - Fee Related JP4105780B2 (en) 1997-05-27 1997-05-27 Decarburization annealing method and apparatus for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4105780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126911A1 (en) 2007-04-05 2008-10-23 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP4840518B2 (en) 2010-02-24 2011-12-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH10324922A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
WO2017098800A1 (en) Non-directional electromagnetic steel sheet manufacturing method
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP6299987B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR920006581B1 (en) Method of making non-oriented silicon steel sheets having excellent magnetic properties
JP2008063655A (en) Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction
JP4105780B2 (en) Decarburization annealing method and apparatus for grain-oriented electrical steel sheet
EP0404937A1 (en) Method of manufacturing non-oriented electromagnetic steel plates
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP4259155B2 (en) Finish annealing method for grain-oriented electrical steel sheets
JP2005146295A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
JPH05214444A (en) Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3151000B2 (en) Induction heating method for slab for electrical steel sheet
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JPH0328320A (en) Finish annealing method for grain-oriented magnetic steel sheet
JP2004283846A (en) Hot rolling method and its equipment
JP2005177781A (en) Hot rolling method
JP2006206997A (en) Method for heating grain-oriented electromagnetic steel slab
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH07305115A (en) Production of grain-oriented silicon steel sheet excellent in core loss and magnetostrictive property
JPH09170020A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH05179418A (en) Method for controlling nitriding amount in grain-oriented silicon steel sheet
JPH08311560A (en) Method for finish-annealing grain oriented electrical steel sheet
JP2003277830A (en) Method for manufacturing grain-oriented magnetic steel sheet having magnetic property uniform in sheet-width direction
JPH04346622A (en) Manufacture of grain-oriented magnetic steel sheet excellent in magnetic characteristic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees