JP2005177781A - Hot rolling method - Google Patents

Hot rolling method Download PDF

Info

Publication number
JP2005177781A
JP2005177781A JP2003419222A JP2003419222A JP2005177781A JP 2005177781 A JP2005177781 A JP 2005177781A JP 2003419222 A JP2003419222 A JP 2003419222A JP 2003419222 A JP2003419222 A JP 2003419222A JP 2005177781 A JP2005177781 A JP 2005177781A
Authority
JP
Japan
Prior art keywords
heating furnace
vertical electric
rolled
electric heating
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003419222A
Other languages
Japanese (ja)
Other versions
JP4085975B2 (en
Inventor
Yasuyuki Baba
康之 馬場
Eitaro Shidara
英太郎 設楽
Toshito Takamiya
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003419222A priority Critical patent/JP4085975B2/en
Publication of JP2005177781A publication Critical patent/JP2005177781A/en
Application granted granted Critical
Publication of JP4085975B2 publication Critical patent/JP4085975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a method which is advantageously suitable to the manufacture of a product especially a grain oriented electrical steel sheet to which high-temperature heating of a slab is indispensable by uniformly performing the heating of the slab in the width direction of the slab in hot rolling method by which rolling is performed with a hot-rolling equipment train in which vertical electric heating furnaces are incorporated. <P>SOLUTION: In the hot rolling method by which rolling is performed by passing a material to be rolled through the hot-rolling equipment train in which a gas heating furnace, roughing mill and a continuous finishing mill are successively connected through roller tables and at least one vertical electric heating furnace is arranged on one side of the roller table and at least two furnaces are arranged on both sides, the material to be rolled is inserted into the vertical electric heating furnace arranged on either side of the roller table before starting the rolling with the continuous finishing mill after extracting the material to be rolled from the gas heating furnace and, next, before starting the rolling with the continuous finishing mill and, next, when inserting the material to be rolled into the vertical electric heating furnace arranged on the either other side of the roller table, the material to be rolled is inserted under arrangement by which an end part in the width direction of the material to be rolled on a side near to the vertical electric heating furnace is on the side of the furnace bed in the inside of the vertical electric heating furnace and, after that, the continuous finish rolling is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼板の製造工程において、連続鋳造スラブを連続的に熱間圧延する際に用いる設備列、特に高温加熱する方向性電磁鋼板用スラブの熱間圧延に好適であり、製品の幅方向の均一性を改善しつつ、生産性および磁気特性に優れた方向性電磁鋼板を得ることを可能とした、熱間圧延方法に関するものである。   The present invention is suitable for hot rolling of slabs for directional electrical steel sheets that are used for continuous rolling of continuous cast slabs, particularly directional slabs for high-temperature heating in continuous manufacturing slabs in the manufacturing process of steel sheets. The present invention relates to a hot rolling method that makes it possible to obtain a grain-oriented electrical steel sheet that is excellent in productivity and magnetic properties while improving the uniformity.

変圧器や発電機の鉄心材料として使用される方向性電磁鋼板には、高磁束密度かつ低鉄損であることが最も重要な特性として要求される。
今日まで方向性電磁鋼板の低鉄損化を実現するために様々な手段が講じられてきたが、そのなかでも最終仕上げ焼鈍後の鋼板の結晶方位を、ゴス方位と呼ばれる{110}<001>方位に高度に集積させることは、最も重用視されてきた開発目標のひとつである。というのは、鉄結晶の磁化容易軸方向である結晶方位<001>が圧延方向に高度に集積することにより、圧延方向への磁化に要する磁化力が小さくなり、保磁力が低下する結果、ヒステリシス損が低下して鉄損が低下するからである。
A grain-oriented electrical steel sheet used as a core material for transformers and generators is required to have high magnetic flux density and low iron loss as the most important characteristics.
To date, various measures have been taken to achieve low iron loss in grain-oriented electrical steel sheets. Among them, the crystal orientation of the steel sheet after final finish annealing is referred to as the Goss orientation {110} <001> Accumulating highly in the direction is one of the development goals that has been most emphasized. This is because the crystal orientation <001>, which is the easy axis direction of the iron crystal, is highly accumulated in the rolling direction, so that the magnetization force required for magnetization in the rolling direction is reduced and the coercive force is reduced, resulting in hysteresis. This is because the loss is reduced and the iron loss is reduced.

その他、方向性電磁鋼板の重要な要求特性として、磁化した際の騒音が小さいことが挙げられるが、この問題も結晶方位をゴス方位に揃えることにより大いに改善される。
すなわち、変圧器から生じる騒音の原因として、鉄心素材の磁歪振動や電磁振動が知られているが、結晶方位のゴス方位への集積度が向上することにより、磁歪振動の原因となる90度磁区の生成が抑制されると同時に、励磁電流が低下して電磁振動が抑制され、これらの結果として騒音が低減される。
Another important required characteristic of grain-oriented electrical steel sheets is that noise when magnetized is small. This problem is also greatly improved by aligning the crystal orientation to the Goth orientation.
In other words, the magnetostrictive vibration and electromagnetic vibration of the iron core material are known as the cause of the noise generated from the transformer, but the 90 degree magnetic domain causing the magnetostrictive vibration is improved by improving the degree of integration of the crystal orientation in the Goss orientation. At the same time, the excitation current is reduced and electromagnetic vibration is suppressed, resulting in noise reduction.

以上のように、方向性電磁鋼板にとって結晶方位<001>の圧延方向への集積は最も重要な課題であるといえる。
ここで、結晶方位の集積度の指標として、B(磁化力800A/mにおける磁束密度)の値が用いられる場合が多く、方向性電磁鋼板の開発はBの向上を大きな目標として推進されている。また、鉄損の代表的な値としては、励磁磁束密度1.7T、励磁周波数50Hzの場合のエネルギー損失であるW17/50が使用される。
As described above, it can be said that the accumulation of the crystal orientation <001> in the rolling direction is the most important issue for grain-oriented electrical steel sheets.
Here, in many cases, the value of B 8 (magnetic flux density at a magnetizing force of 800 A / m) is used as an index of the degree of integration of crystal orientation, and the development of grain-oriented electrical steel sheets is promoted with a major goal of improving B 8. ing. As a typical value of the iron loss, W 17/50, which is an energy loss when the excitation magnetic flux density is 1.7 T and the excitation frequency is 50 Hz, is used.

上記した方向性電磁鋼板の二次再結晶粒組織は、最終仕上げ焼鈍中の二次再結晶と呼ばれる現象を通じて形成され、この二次再結晶によりゴス方位の結晶粒を優先的に巨大成長させて、所望の磁気特性を有する製品を得る。
上記の二次再結晶粒の集積を効果的に促進させるためには、一次再結晶粒の成長を選択的に抑制するインヒビターと呼ばれる析出分散相を均一かつ適性なサイズで形成することが重要である。このインヒビターの存在により一次再結晶粒の正常粒成長が抑制され、最終仕上げ焼鈍中に高温まで細かい一次再結晶粒の状態が保たれるとともに、良好な方位の結晶粒の成長に対する選択性が高まるため、高磁束密度が実現される。一般に、インヒビターが強力で正常粒成長抑制力が強いほど高い方位集積度が得られると考えられている。
The secondary recrystallized grain structure of the above-mentioned grain-oriented electrical steel sheet is formed through a phenomenon called secondary recrystallization during the final finish annealing, and this secondary recrystallization preferentially grows goss-oriented crystal grains. To obtain a product with the desired magnetic properties.
In order to effectively promote the accumulation of the secondary recrystallized grains, it is important to form a precipitated dispersed phase called an inhibitor that selectively suppresses the growth of primary recrystallized grains with a uniform and appropriate size. is there. The presence of this inhibitor suppresses the normal grain growth of primary recrystallized grains, maintains the state of fine primary recrystallized grains up to high temperatures during final finish annealing, and increases the selectivity for the growth of grains with good orientation. Therefore, a high magnetic flux density is realized. In general, it is considered that a higher degree of orientation accumulation can be obtained as the inhibitor is stronger and the inhibition of normal grain growth is stronger.

このようなインヒビターとしては、MnS、MnSe、Cu2−xS、Cu2−xSe、AlN、BN等が用いられる。かようなインヒビターの固溶には、例えば1300℃以上の高温加熱が必要とされている。ここに、近年スラブ加熱に縦型電気式スラブ加熱が導入され、高温短時間の加熱が可能となっている。しかしながら、縦型電気式スラブ加熱炉は、幅方向の加熱が均一に行えないという欠点を内在している。この原因は、スラブの片側の側面を下にし、他の片側の側面を上面にしてスラブを立てた状態で加熱するという、縦型電気式スラブ加熱炉の本質的な構造に起因する。すなわち、スラブの下側の側面から炉床への抜熱量と、同上面の側面から天井方向への抜熱量が異なり、さらに雰囲気温度も炉の上部の方が高いといった、上下が非対称であることが問題である。 As such an inhibitor, MnS, MnSe, Cu 2-x S, Cu 2-x Se, AlN, BN or the like is used. In order to dissolve such an inhibitor, heating at a high temperature of, for example, 1300 ° C. or more is required. Here, in recent years, vertical electric slab heating has been introduced to slab heating, and heating at a high temperature in a short time is possible. However, the vertical electric slab heating furnace has a disadvantage that heating in the width direction cannot be performed uniformly. This is due to the essential structure of the vertical electric slab heating furnace in which the slab is heated with the side face on one side down and the side face on the other side up. That is, the amount of heat removed from the lower side of the slab to the hearth is different from the amount of heat removed from the side of the upper surface toward the ceiling, and the atmosphere temperature is higher in the upper part of the furnace. Is a problem.

かようなスラブ側面からの抜熱により、スラブのエッジ部で温度が低くなることが問題であった。このスラブエッジ部の温度低下は、特に電磁鋼板において製品エッジ部の磁気特性の劣化として現れることが知られている。また、スラブ上下の非対称加熱に起因してスラブ幅方向の温度差が非対称になるため、温度に起因する熱間強度差により圧延後の形状が弓なりになり、ひどいときには圧延が出来なくなってしまう等の操業トラブルの原因となっていた。   The problem is that the temperature is lowered at the edge of the slab due to heat removal from the side surface of the slab. It is known that this temperature drop at the slab edge portion appears as deterioration of the magnetic properties of the product edge portion particularly in the electromagnetic steel sheet. In addition, because the temperature difference in the slab width direction becomes asymmetric due to asymmetric heating on the top and bottom of the slab, the shape after rolling becomes bowed due to the difference in hot strength due to temperature, and in severe cases, rolling becomes impossible, etc. Was the cause of operational troubles.

このスラブの幅方向の不均一加熱を是正するために、特許文献1では、縦型電気式スラブ加熱炉に挿入する前に、エッジ部を加熱する方法が提案されている。この方法では、エッジヒーター等の特殊な加熱装置が必要であり、これらの加熱装置はローラテーブル上に設置するため、エッジ加熱中は他の圧延をすることが出来ないため、経済的に不利である。   In order to correct this uneven heating in the width direction of the slab, Patent Document 1 proposes a method of heating the edge portion before inserting into the vertical electric slab heating furnace. This method requires special heating devices such as edge heaters, and since these heating devices are installed on a roller table, other rolling cannot be performed during edge heating, which is economically disadvantageous. is there.

また、特許文献2に記載されている方法は、縦型誘導加熱炉において、鋼材を支持するサポートビーム間の耐火断熱材の上層面近傍に、誘導加熱による発熱体を配置し、この発熱体の発熱により当該鋼材下面からの熱放散を防止する方法が開示されている。同様に、特許文献3には、炉床の耐熱炉床金物を一旦予熱し、その後スラブを載せて加熱する方法が開示されている。
これらの方法では、スラブ下面側の側面温度を上昇させることは出来るが、上下の非対称性を改善することは難しい。
Moreover, in the method described in Patent Document 2, in a vertical induction heating furnace, a heating element by induction heating is disposed in the vicinity of the upper layer surface of the refractory heat insulating material between the support beams supporting the steel material. A method for preventing heat dissipation from the lower surface of the steel material due to heat generation is disclosed. Similarly, Patent Document 3 discloses a method in which a heat-resistant hearth metal of the hearth is once preheated, and then a slab is placed thereon and heated.
With these methods, the side surface temperature on the lower surface side of the slab can be raised, but it is difficult to improve the asymmetry of the upper and lower sides.

さらに、特許文献4には、誘導加熱炉の挿入前後にスラブ幅方向の温度を測定し、幅方向投入電力及び時間の設定条件を補正するフィードフォワードおよびフィードバック機能を備えた制御用計算機にて温度を制御する、誘導加熱炉の温度制御方法が開示されている。しかしながら、この方法でもスラブの幅方向の温度差をなくすのは困難であり、特に加熱中にスラブの転倒を防止するスラブ上面支持装置の温度降下部分など、局所的な温度降下に対しては効果に乏しいものであった。   Further, in Patent Document 4, the temperature in the slab width direction is measured before and after insertion of the induction heating furnace, and the temperature is measured by a control computer having a feed forward and feedback function for correcting the setting power and time setting power. A method for controlling the temperature of an induction heating furnace is disclosed. However, even with this method, it is difficult to eliminate the temperature difference in the width direction of the slab, and it is effective for local temperature drops such as the temperature drop part of the slab upper surface support device that prevents the slab from toppling during heating. It was poor.

特許文献5では、この上部支持装置を複数台設置し、スラブ支持装置を交互に上昇および下降させてスラブを支持することにより、支持装置からの抜熱をできるだけ防止する方法が開示されている。これによりスラブ支持装置による抜熱はある程度抑えられるものの、スラブ側面の交互支持を高温下で行うことでスラブ側面に新たな鋼片傷が発生するおそれがあった。   Patent Document 5 discloses a method of preventing heat removal from the support device as much as possible by installing a plurality of the upper support devices and supporting the slab by alternately raising and lowering the slab support devices. Thus, although heat removal by the slab support device can be suppressed to some extent, there is a possibility that new steel piece scratches may be generated on the slab side surface by alternately supporting the slab side surface at a high temperature.

以上のように、縦型電気式加熱炉は、その構造に起因してスラブ幅方向で非対称の加熱となる欠点があり、この欠点を解消するために上記した種々の対策がなされたが、この欠点を完全に解消することは困難であった。
特開平5−117753号公報 特開平3−110380号公報 特開平6−136434号公報 特開昭62−16526号公報 特開2000−273534号公報
As described above, the vertical electric heating furnace has the disadvantage of asymmetric heating in the slab width direction due to its structure, and various measures described above have been taken to eliminate this drawback. It was difficult to completely eliminate the drawbacks.
Japanese Patent Laid-Open No. 5-117753 JP-A-3-110380 JP-A-6-136434 JP 62-16526 A JP 2000-273534 A

本発明は、縦型電気式加熱炉を組み込んだ熱間圧延設備列にて圧延を行う熱間圧延方法において、そのスラブ加熱をスラブの幅方向で均一に行うことによって、製品、特にスラブの高温加熱が必須である方向性電磁鋼板の製造に有利に適合する手法について提案することを目的とする。   The present invention relates to a hot rolling method in which rolling is performed in a hot rolling equipment row incorporating a vertical electric heating furnace, and by performing the slab heating uniformly in the width direction of the slab, the high temperature of the product, particularly the slab The purpose is to propose a method that is advantageously adapted to the production of grain-oriented electrical steel sheets in which heating is essential.

上記目的を達成するために、本発明は以下の構成を要旨とするものである。
(1)ローラテーブルを介して、ガス式加熱炉、粗圧延機および連続仕上圧延機を順次に接続し、さらにローラテーブルの片側に少なくとも1台両側に少なくとも2台の縦型電気式加熱炉を配置した熱間圧延設備列に、被圧延材を通して圧延を行う熱間圧延方法において、
前記ガス式加熱炉から被圧延材を抽出した後、連続仕上圧延機での圧延を開始するに先立ち、前記ローラテーブルのいずれか一方の側に配置した縦型電気式加熱炉に、被圧延材を挿入し、次いで当該縦型電気式加熱炉から取り出した被圧延材を、前記ローラテーブルのいずれか他方の側に配置した縦型電気式加熱炉に挿入する際、縦型電気式加熱炉に近い側の、被圧延材幅方向端部が、該縦型電気式加熱炉内において炉床側となる配置の下に、被圧延材の挿入を行い、その後連続仕上圧延を行うことを特徴とする熱間圧延方法。
In order to achieve the above object, the present invention is summarized as follows.
(1) A gas-type heating furnace, a rough rolling mill and a continuous finishing rolling mill are sequentially connected via a roller table, and at least two vertical electric heating furnaces are provided on one side of the roller table. In the hot rolling method that performs rolling through the material to be rolled to the arranged hot rolling equipment row,
After extracting the material to be rolled from the gas heating furnace, prior to starting rolling in a continuous finishing rolling mill, the material to be rolled is placed in a vertical electric heating furnace arranged on either side of the roller table. Then, when the material to be rolled taken out from the vertical electric heating furnace is inserted into the vertical electric heating furnace disposed on the other side of the roller table, the vertical electric heating furnace is inserted into the vertical electric heating furnace. It is characterized by inserting the material to be rolled under the arrangement in which the width direction end of the material to be rolled is the hearth side in the vertical electric heating furnace, and then performing continuous finish rolling. Hot rolling method to do.

(2)ローラテーブルを介して、ガス式加熱炉、粗圧延機および連続仕上圧延機を順次に接続し、さらにローラテーブルの片側に少なくとも1台両側に少なくとも2台の縦型電気式加熱炉を配置した熱間圧延設備列に、被圧延材を通して圧延を行う熱間圧延方法において、
前記ガス式加熱炉から被圧延材を抽出した後、連続仕上圧延機での圧延を開始するに先立ち、前記ローラテーブルのいずれか一方の側に配置した縦型電気式加熱炉に、被圧延材を挿入し、次いで当該縦型電気式加熱炉から取り出した被圧延材を、前記ローラテーブルのいずれか他方の側に配置した縦型電気式加熱炉に挿入する際、縦型電気式加熱炉に近い側の、被圧延材幅方向端部が、該縦型電気式加熱炉内において天井側となる配置の下に、被圧延材の挿入を行い、その後連続仕上圧延を行うことを特徴とする熱間圧延方法。
(2) A gas heating furnace, a rough rolling mill and a continuous finishing rolling mill are sequentially connected via a roller table, and at least two vertical electric heating furnaces are provided on one side of the roller table. In the hot rolling method that performs rolling through the material to be rolled to the arranged hot rolling equipment row,
After extracting the material to be rolled from the gas heating furnace, prior to starting rolling in the continuous finish rolling mill, the material to be rolled is placed in a vertical electric heating furnace arranged on either side of the roller table. Then, when the material to be rolled taken out from the vertical electric heating furnace is inserted into the vertical electric heating furnace disposed on the other side of the roller table, the vertical electric heating furnace is inserted into the vertical electric heating furnace. Under the arrangement in which the end in the width direction of the material to be rolled is the ceiling side in the vertical electric heating furnace, the material to be rolled is inserted, and then continuous finish rolling is performed. Hot rolling method.

(3)ローラテーブルを介して、ガス式加熱炉、粗圧延機および連続仕上圧延機を順次に接続し、さらにローラテーブル近傍に少なくとも1台の縦型電気式加熱炉を配置した熱間圧延設備列に、被圧延材を通して圧延を行う熱間圧延方法において、
前記ガス式加熱炉から被圧延材を抽出した後、連続仕上圧延機での圧延を開始するに先立ち、前記縦型電気式加熱炉に被圧延材を挿入し、次いで縦型電気式加熱炉から取り出した被圧延材を転回して被圧延材の幅方向を180度反転させたのち、再度前記縦型電気式加熱炉に被圧延材を挿入し、その後連続仕上圧延を行うことを特徴とする熱間圧延方法。
(3) Hot rolling equipment in which a gas heating furnace, a rough rolling mill and a continuous finishing rolling mill are sequentially connected via a roller table, and at least one vertical electric heating furnace is disposed in the vicinity of the roller table. In the hot rolling method in which rolling is performed through the material to be rolled in a row,
After extracting the material to be rolled from the gas heating furnace, before starting rolling in the continuous finish rolling mill, the material to be rolled is inserted into the vertical electric heating furnace, and then from the vertical electric heating furnace. The rolled material taken out is rotated to reverse the width direction of the rolled material by 180 degrees, and then the rolled material is inserted again into the vertical electric heating furnace, and then continuous finish rolling is performed. Hot rolling method.

本発明の熱間圧延方法によれば、縦型電気式加熱炉を用いて被圧延材の加熱を、その幅方向に均等に行うことができる。従って、この熱間圧延方法を、特に方向性電磁鋼板の製造に適用すれば、スラブの高温加熱が幅方向に均等に実現する結果、幅方向に均一な磁気特性を有する製品が安定して得られ、併せて生産性の向上も達成される。   According to the hot rolling method of the present invention, the material to be rolled can be heated uniformly in the width direction using a vertical electric heating furnace. Therefore, if this hot rolling method is applied particularly to the production of grain-oriented electrical steel sheets, high-temperature heating of the slab can be realized evenly in the width direction, resulting in stable production of products having uniform magnetic properties in the width direction. In addition, productivity can be improved.

以下に、本発明の熱間圧延方法について、図面を参照して詳細に説明する。
図1は、本発明の熱間圧延方法に用いる連続式熱間圧延設備列の典型例を示す図であって、図において符号1はガス式加熱炉、同2、3および4は粗圧延機、そして5は連続仕上圧延機であって、これらを符号6で示すローラテーブルを介して相互に接続して設備列を構成している。なお、粗圧延機および連続仕上圧延機は、必要に応じて増減することができる。
Below, the hot rolling method of this invention is demonstrated in detail with reference to drawings.
FIG. 1 is a diagram showing a typical example of a continuous hot rolling equipment line used in the hot rolling method of the present invention. In the figure, reference numeral 1 denotes a gas heating furnace, and 2, 3, and 4 denote rough rolling mills. , And 5 are continuous finish rolling mills which are connected to each other via a roller table denoted by reference numeral 6 to constitute an equipment row. In addition, a rough rolling mill and a continuous finishing rolling mill can be increased / decreased as needed.

また、符号7はエッジ加熱装置であって、粗圧延機4と連続仕上圧延機5との間に設け、粗圧延されたシートバーの保熱あるいは加熱を行うものであり、一方符号8は連続仕上圧延機の前に設けてクロップ等を切断処理する半製品処理装置であり、いずれも必要に応じて適宜設置する。さらに、粗圧延機2、3および4の各入側には、必要に応じて幅圧下用の縦型粗圧延機を設置してもよい。   Reference numeral 7 denotes an edge heating device, which is provided between the rough rolling mill 4 and the continuous finishing mill 5, and performs heat retention or heating of the rough-rolled sheet bar, while reference numeral 8 indicates continuous. This is a semi-finished product processing apparatus that is provided in front of a finishing mill and cuts crops and the like, and each is installed as needed. Furthermore, a vertical rough rolling mill for width reduction may be installed on each entry side of the rough rolling mills 2, 3 and 4 as necessary.

この熱間圧延設備列において、粗圧延機2、3および4の周辺とガス式加熱炉1周辺(上流側を含む)であってローラテーブル6の片側で少なくとも1台両側で少なくとも2台の縦型電気式加熱炉を配置することが肝要である。
すなわち、図1の例では、粗圧延機2の入側のローラテーブル6の片側に縦型電気式加熱炉9を配置するとともに、粗圧延機2と3との間であって、かつローラテーブル6の縦型電気式加熱炉9とは逆側に縦型電気式加熱炉10を配置し、ローラテーブル6を挟む形で縦型電気式加熱炉9と10とを設置して成る。
In this hot rolling equipment row, there are at least two longitudinal rollers on both sides of the rough rolling mills 2, 3 and 4 and the gas heating furnace 1 (including the upstream side) and at least one on one side of the roller table 6. It is important to arrange a type electric heating furnace.
That is, in the example of FIG. 1, a vertical electric heating furnace 9 is disposed on one side of the roller table 6 on the entry side of the rough rolling mill 2 and between the rough rolling mills 2 and 3 and the roller table. The vertical electric heating furnace 9 is arranged on the opposite side of the vertical electric heating furnace 9, and the vertical electric heating furnaces 9 and 10 are installed so as to sandwich the roller table 6.

以上の構成の熱間圧延設備列において、まず被圧延材であるスラブは、ガス式加熱炉1で1000〜1250℃に加熱されたのち、ローラテーブル6上を移動し、縦型電気式加熱炉9に挿入される。ここでは、後述するスラブ挿入装置を介して縦型電気式加熱炉9に近い側のスラブ幅方向端部(側面)が例えば下になるように90度回転させ、その後縦型炉内に挿入する。挿入されたスラブは、縦型電気式加熱炉9にて1300℃以上の所望温度に加熱したのち、挿入された順と逆にローラテーブル6上に戻される。   In the hot rolling equipment row having the above-described configuration, first, the slab as the material to be rolled is heated to 1000 to 1250 ° C. in the gas heating furnace 1, then moves on the roller table 6, and the vertical electric heating furnace 9 is inserted. Here, the slab width direction end (side surface) close to the vertical electric heating furnace 9 is rotated by 90 degrees, for example, through the slab insertion device described later, and then inserted into the vertical furnace. . The inserted slab is heated to a desired temperature of 1300 ° C. or higher in the vertical electric heating furnace 9 and then returned to the roller table 6 in the reverse order of insertion.

次いで、ローラテーブル6上のスラブを縦型電気式加熱炉10の前まで移動し、縦型電気式加熱炉10に近い側のスラブ側面が下になるように縦型炉内に挿入し、再度1300℃以上の所望温度まで加熱する。ここで、粗圧延機2を用いて、例えば3〜20%程度の予備圧延を行ってもよい。
以上、ローラテーブル6を挟む片側毎に配置した縦型電気式加熱炉9および10にてスラブを加熱することによって、スラブの同じ側面が縦型電気式加熱炉の炉床側と天井側となる配置の下で順次に加熱される結果、スラブは幅方向に均一に加熱されることになる。
Next, the slab on the roller table 6 is moved to the front of the vertical electric heating furnace 10 and inserted into the vertical furnace so that the side surface of the slab close to the vertical electric heating furnace 10 faces down. Heat to a desired temperature of 1300 ° C or higher. Here, for example, about 3 to 20% of preliminary rolling may be performed using the rough rolling mill 2.
As described above, by heating the slab in the vertical electric heating furnaces 9 and 10 arranged on each side sandwiching the roller table 6, the same side surface of the slab becomes the hearth side and the ceiling side of the vertical electric heating furnace. As a result of the sequential heating under the arrangement, the slab is heated uniformly in the width direction.

ここで、スラブは、ガス式加熱炉1で加熱後に粗圧延機を用いて3〜20%程度の予備圧延をしたのち、縦型電気式加熱炉に挿入してもよいし、上記したように、縦型電気式加熱炉9でスラブ加熱した後、縦型電気式加熱炉10に挿入するに先立ち3〜20%の予備圧延をしてもよい。この予備圧延の目的は、連鋳スラブ特有の内部欠陥を圧着したり、スラブに転位を導入することによって、スラブに必要以上の粒径粗大化が発生するのを防止することが目的である。   Here, the slab may be inserted into a vertical electric heating furnace after being pre-rolled by about 3 to 20% using a roughing mill after being heated in the gas heating furnace 1, as described above. After slab heating in the vertical electric heating furnace 9, 3-20% pre-rolling may be performed prior to insertion into the vertical electric heating furnace 10. The purpose of this pre-rolling is to prevent the grain size from becoming larger than necessary in the slab by crimping internal defects peculiar to continuous cast slabs or introducing dislocations into the slab.

上記の2回目の電気式加熱を終了した後のスラブは、挿入と逆の手順で抽出されてローラテーブル6に移送され、ローラテーブル6上を搬送された後、粗圧延機で圧延される。これ以降、定法に従って2〜5パスの粗圧延を実施し、20〜60mmのシートバーとし、その後、連続式仕上圧延機5にて圧延し、最終的にコイルに巻き取って方向性電磁鋼板用熱延板となる。そして、この熱延鋼板を冷間圧延および焼鈍等、通常の方向性電磁鋼板の製造工程に従って処理すれば、表面性状及び磁気特性が幅方向で均一な最終製品を安定して得ることが出来る。   The slab after the second electric heating is finished is extracted in the reverse procedure of insertion, transferred to the roller table 6, transported on the roller table 6, and then rolled by a roughing mill. Thereafter, rough rolling of 2 to 5 passes is performed in accordance with a regular method to form a sheet bar of 20 to 60 mm, and then rolled with a continuous finishing rolling mill 5 and finally wound on a coil for a grain-oriented electrical steel sheet. It becomes a hot-rolled sheet. And if this hot-rolled steel sheet is processed in accordance with a normal grain-oriented electrical steel sheet manufacturing process such as cold rolling and annealing, a final product having a uniform surface texture and magnetic properties in the width direction can be stably obtained.

なお、ローラテーブル6を挟んで設置する縦型電気式加熱炉9および10は、図1に示した配置に限らず、図2や図3に示す配置であってもよい。要は、ローラテーブル6を挟む一方側と他方側とに縦型電気式加熱炉を設置すればよく、さらにはいずれか一方側または両側で複数の縦型電気式加熱炉を設置することも可能である。   The vertical electric heating furnaces 9 and 10 installed with the roller table 6 interposed therebetween are not limited to the arrangement shown in FIG. 1, but may be the arrangement shown in FIG. 2 or FIG. In short, it is only necessary to install a vertical electric heating furnace on one side and the other side across the roller table 6, and it is also possible to install a plurality of vertical electric heating furnaces on one or both sides. It is.

ここで、縦型電気式加熱炉にスラブの挿入を上記のように行うために、縦型電気式加熱炉の各々に対して、スラブを挿入するためのスラブ挿入装置をローラテーブル6側に配備することが好ましい。このスラブ挿入装置の一例を図4に示す。
すなわち、各縦型電気式加熱炉のローラテーブル6側に配備するスラブ挿入装置11は、基軸12を支点として回転する支持腕13と垂直方向に上昇する炉床を兼ねた架台14とから成る。
Here, in order to insert the slab into the vertical electric heating furnace as described above, a slab insertion device for inserting the slab is provided on the roller table 6 side for each of the vertical electric heating furnaces. It is preferable to do. An example of this slab insertion device is shown in FIG.
That is, the slab insertion device 11 provided on the roller table 6 side of each vertical electric heating furnace includes a support arm 13 that rotates with the base shaft 12 as a fulcrum and a gantry 14 that also serves as a hearth that rises in the vertical direction.

そして、ローラテーブル6上のスラブ15を挿入するには、ローラテーブル6で縦型電気式加熱炉の正面まで搬送した時点で、該テーブル6上面より低い位置に待機していた支持腕13を上方に回転させることによってローラテーブル6上のスラブ15をすくい上げ、更に90度位置まで回転させて支持腕13から架台14上にスラブ15を移送し、さらに、この架台14をスラブ積載状態で上昇させればよい。   In order to insert the slab 15 on the roller table 6, when the roller table 6 is transported to the front of the vertical electric heating furnace, the support arm 13 waiting at a position lower than the upper surface of the table 6 is moved upward. The slab 15 on the roller table 6 is scooped up by rotating it to 90 °, and further rotated to a 90 ° position to transfer the slab 15 from the support arm 13 onto the gantry 14, and the gantry 14 can be raised in the slab loading state. That's fine.

以上のスラブ挿入装置を用いれば、縦型電気式加熱炉に近い側のスラブ幅方向端部(側面)が該縦型電気式加熱炉内において炉床側となる配置の下にするか、または同スラブ幅方向端部(側面)が該縦型電気式スラブ加熱炉内において天井側となる配置の下にすれば、上述したスラブ幅方向の均等加熱が実現する。   If the above slab insertion device is used, the slab width direction end (side surface) on the side close to the vertical electric heating furnace is placed below the arrangement in which the slab width side becomes the hearth side in the vertical electric heating furnace, or If the end portion (side surface) in the slab width direction is placed on the ceiling side in the vertical electric slab heating furnace, the above-described uniform heating in the slab width direction is realized.

さらに、本発明に従う別の熱間圧延方法について、図5〜8を参照して説明する。
なお、図において、上記した図1〜3に示したところと同じ設備構成については、同符号1〜9を付して説明を省略する。
すなわち、図5に示す熱間圧延設備列では、粗圧延機2の上流側に縦型電気式加熱炉9を配置し、かつ縦型電気式加熱炉9の上流側のローラテーブル6内にスラブ転回装置20を設置して成る。
Furthermore, another hot rolling method according to the present invention will be described with reference to FIGS.
In the figure, the same equipment configurations as those shown in FIGS.
That is, in the hot rolling equipment row shown in FIG. 5, the vertical electric heating furnace 9 is arranged on the upstream side of the roughing mill 2, and the slab is placed in the roller table 6 on the upstream side of the vertical electric heating furnace 9. A turning device 20 is installed.

この熱間圧延設備列において、まずスラブは、ガス式加熱炉1で1000〜1250℃に加熱されたのち、ローラテーブル6上を移動し、縦型電気式加熱炉9に挿入される。ここでは、スラブ挿入装置を介して縦型電気式加熱炉9に近い側のスラブ幅方向端部(側面)が例えば下になるように起立させ、その後縦型炉内に挿入する。挿入されたスラブは、縦型電気式加熱炉9にて1300℃以上の所望温度に加熱したのち、挿入された順序と逆にローラテーブル6上に戻される。   In this hot rolling equipment row, the slab is first heated to 1000 to 1250 ° C. in the gas heating furnace 1, then moved on the roller table 6 and inserted into the vertical electric heating furnace 9. Here, the slab width direction end portion (side surface) close to the vertical electric heating furnace 9 is erected, for example, downward via the slab insertion device, and then inserted into the vertical furnace. The inserted slab is heated to a desired temperature of 1300 ° C. or higher in the vertical electric heating furnace 9 and then returned to the roller table 6 in the reverse order of insertion.

次いで、ローラテーブル6上のスラブをスラブ転回装置20の前まで移動し、スラブの幅方向が180度反転するようにスラブを転回したのち、スラブを縦型電気式加熱炉9の前まで移動し、縦型電気式加熱炉9に近い側のスラブ側面が下になるように縦型炉内に挿入し、再度1300℃以上の所望温度まで加熱する。ここで、粗圧延機2を用いて、例えば3〜20%程度の予備圧延を行ってもよい。
以上、ローラテーブル6の片側に配置した縦型電気式加熱炉9およびスラブ転回装置20を用いてスラブを2回加熱することによって、スラブの同じ側面が縦型電気式加熱炉の炉床側と天井側となる配置の下で順次に加熱される結果、スラブは幅方向に均一に加熱されることになる。
Next, the slab on the roller table 6 is moved to the front of the slab turning device 20, and the slab is turned so that the width direction of the slab is reversed by 180 degrees, and then the slab is moved to the front of the vertical electric heating furnace 9. Then, it is inserted into the vertical furnace so that the side surface of the slab close to the vertical electric heating furnace 9 faces down, and heated again to a desired temperature of 1300 ° C. or higher. Here, you may perform pre-rolling of about 3 to 20%, for example, using the rough rolling mill 2.
As described above, by heating the slab twice using the vertical electric heating furnace 9 and the slab turning device 20 arranged on one side of the roller table 6, the same side surface of the slab becomes the hearth side of the vertical electric heating furnace. As a result of the sequential heating under the arrangement on the ceiling side, the slab is uniformly heated in the width direction.

ここで、スラブは、ガス式加熱炉1で加熱後に粗圧延機を用いて3〜20%程度の予備圧延をしたのち、縦型電気式加熱炉に挿入してもよいし、上記したように、縦型電気式加熱炉9でスラブ加熱した後、180度転回して再度縦型電気式加熱炉9に挿入するに先立ち、3〜20%の予備圧延をしてもよい。この予備圧延の目的は、連鋳スラブ特有の内部欠陥を圧着したり、スラブに転位を導入することによって、スラブに必要以上の粒径粗大化が発生するのを防止することが目的である。   Here, the slab may be inserted into the vertical electric heating furnace after being pre-rolled by about 3 to 20% using a roughing mill after being heated in the gas heating furnace 1, as described above. Then, after slab heating in the vertical electric heating furnace 9, it may be pre-rolled 3 to 20% before being rotated 180 degrees and inserted into the vertical electric heating furnace 9 again. The purpose of this pre-rolling is to prevent the grain size from becoming larger than necessary in the slab by crimping internal defects peculiar to continuous cast slabs or introducing dislocations into the slab.

上記の2回目の電気式加熱を終了した後のスラブは、挿入と逆の手順で抽出してローラテーブル6で移送し、ローラテーブル6上を搬送した後、粗圧延機で圧延する。これ以降、定法に従って2〜5パスの粗圧延を実施し、20〜60mmのシートバーとし、その後、連続式仕上圧延機5にて圧延し、最終的にコイルに巻き取って方向性電磁鋼板用熱延板とする。そして、この熱延鋼板を冷間圧延および焼鈍等、通常の方向性電磁鋼板の製造工程に従って処理すれば、表面性状及び磁気特性が幅方向で均一な最終製品を安定して得ることが出来る。   The slab after the completion of the second electric heating is extracted in the reverse order of insertion, transferred by the roller table 6, transported on the roller table 6, and then rolled by a roughing mill. Thereafter, rough rolling of 2 to 5 passes is carried out in accordance with a regular method to form a sheet bar of 20 to 60 mm, and then rolled with a continuous finish rolling mill 5 and finally wound on a coil for a grain-oriented electrical steel sheet. Use hot-rolled sheet. And if this hot-rolled steel sheet is processed in accordance with a normal grain-oriented electrical steel sheet manufacturing process such as cold rolling and annealing, a final product having a uniform surface texture and magnetic properties in the width direction can be stably obtained.

なお、ローラテーブル6の周辺に設置する縦型電気式加熱炉9およびスラブ転回装置20は、図5に示した配置に限らず、図6や図7に示す配置であってもよい。
すなわち、図6では、ガス式加熱炉1の上流側のローラテーブル6に面して縦型電気式加熱炉9を設置するとともに、ガス式加熱炉1と粗圧延機2との間のローラテーブル6に面したテーブル6外部にスラブ転回装置20を設置したものである。
The vertical electric heating furnace 9 and the slab turning device 20 installed around the roller table 6 are not limited to the arrangement shown in FIG. 5 but may be the arrangement shown in FIG. 6 or 7.
That is, in FIG. 6, the vertical electric heating furnace 9 is installed facing the roller table 6 on the upstream side of the gas heating furnace 1, and the roller table between the gas heating furnace 1 and the roughing mill 2 is installed. The slab turning device 20 is installed outside the table 6 facing 6.

図7では、ガス式加熱炉1と粗圧延機2との間のローラテーブル6に面して縦型電気式加熱炉9を設置するとともに、縦型電気式加熱炉9とローラテーブル6との間にスラブ転回装置20を設置したものである。
要は、ローラテーブル6の周囲に縦型電気式加熱炉9およびスラブ転回装置20を少なくとも1台ずつ設置すればよく、さらにはいずれか一方側または両側で複数の縦型電気式加熱炉を設置することも可能である。
In FIG. 7, the vertical electric heating furnace 9 is installed facing the roller table 6 between the gas heating furnace 1 and the roughing mill 2, and the vertical electric heating furnace 9 and the roller table 6 are A slab turning device 20 is installed between them.
In short, it is only necessary to install at least one vertical electric heating furnace 9 and one slab turning device 20 around the roller table 6, and further install a plurality of vertical electric heating furnaces on one or both sides. It is also possible to do.

ここで、縦型電気式加熱炉9で1回加熱した後のスラブを180度転回させて、再度加熱を行う際に用いる、スラブ転回装置20の一例を図8に示す。
すなわち、この例のスラブ転回装置20は、複数本の転回ロール21を並列に配置して成る。この転回ロール21は、そのロール軸方向中央部を境に径が異なっており、その大径部と小径部とが交互に並ぶ配置とし、交互に並べられた転回ロール21のそれぞれが互いに逆回転することにより、転回ロール21上のスラブ15を180度転回することができる。
Here, FIG. 8 shows an example of the slab turning device 20 that is used when the slab after being heated once in the vertical electric heating furnace 9 is turned 180 degrees and heated again.
That is, the slab turning device 20 of this example is formed by arranging a plurality of turning rolls 21 in parallel. The turning rolls 21 have different diameters at the center in the roll axial direction, and the large diameter part and the small diameter part are alternately arranged, and the alternately arranged turning rolls 21 rotate in reverse with each other. By doing so, the slab 15 on the turning roll 21 can be turned 180 degrees.

例えば、図5に示した設備列において、縦型電気式加熱炉9からローラテーブル6上に戻されたスラブ15は、ローラテーブル6にてスラブ転回装置20上まで搬送した時点で、上記スラブ転回装置20の転回ロール21を互いに逆回転させることにより、スラブ15を180度転回し、しかるのちローラテーブル6により縦型電気式加熱炉9まで再び搬送し、再度スラブ15に加熱が施される。   For example, in the equipment row shown in FIG. 5, when the slab 15 returned from the vertical electric heating furnace 9 onto the roller table 6 is conveyed onto the slab turning device 20 by the roller table 6, the slab turning is performed. The slab 15 is rotated 180 degrees by rotating the rotating rolls 21 of the apparatus 20 in the opposite directions, and thereafter, the slab 15 is again conveyed to the vertical electric heating furnace 9 by the roller table 6 and the slab 15 is heated again.

以上のスラブ転回装置を用いれば、スラブ幅方向両端部(側面)が縦型電気式加熱炉内において炉床側となる配置および同天井側となる配置の下でそれぞれ加熱される結果、上述したスラブ幅方向の均等加熱が実現する。   When the above slab turning device is used, both ends (side surfaces) in the slab width direction are heated in the vertical electric furnace under the arrangement on the hearth side and the arrangement on the ceiling side, respectively. Uniform heating in the slab width direction is realized.

質量%で、C:0.065%、Si:3.50%、Mn:0.065%、Al:0.023%、N:0.0090%、S:0.027%、Sn:0.20%、Cu:0.12%およびCr:0.01%を含み残部が実質的にFeからなる、厚さ230mmの方向性電磁鋼板用連続鋳造スラブを10本製造した。   By mass%, C: 0.065%, Si: 3.50%, Mn: 0.065%, Al: 0.023%, N: 0.0090%, S: 0.027%, Sn: 0.00. Ten continuous cast slabs for a grain-oriented electrical steel sheet having a thickness of 230 mm containing 20%, Cu: 0.12%, and Cr: 0.01% and the balance being substantially Fe were manufactured.

このうちの5本のスラブについて、図2に示した熱間圧延設備列を用いて、ガス式加熱炉1にて1190℃×2時間加熱した後、縦型電気式(誘導式)加熱炉9に挿入し、1380℃まで20分で昇熱して5分間均熱後に炉外に抽出した。ついで、縦型電気式(誘導式)加熱炉10で1420℃まで10分で昇熱して10分間均熱後に炉から抽出し、その後粗圧延機に搬送して3パスの熱間圧延を行って50mm厚のシートバーとした。いずれのスラブも、縦型電気式(誘導式)加熱炉に近い側のスラブ幅方向端部(側面)を、同炉の炉床側とした。次に、シートバー幅方向端部の保熱を目的としたエッジ加熱を行いながら、熱間仕上圧延を行ってコイラーで巻き取ることによって、2.2mm厚さの方向性電磁鋼板用熱延鋼板を得た(発明例)。   Five of these slabs were heated in a gas heating furnace 1 at 1190 ° C. for 2 hours using the hot rolling equipment array shown in FIG. 2, and then a vertical electric (induction) heating furnace 9 was used. And heated to 1380 ° C. in 20 minutes, soaked for 5 minutes and extracted outside the furnace. Next, the temperature was increased to 1420 ° C. in a vertical electric (induction) heating furnace 10 in 10 minutes, soaked for 10 minutes, extracted from the furnace, and then transported to a roughing mill to perform three-pass hot rolling. The sheet bar was 50 mm thick. In any slab, the end (side surface) in the slab width direction on the side close to the vertical electric (induction) heating furnace was set as the hearth side of the furnace. Next, a hot rolled steel sheet for directional electrical steel sheets having a thickness of 2.2 mm is obtained by performing hot finish rolling and winding with a coiler while performing edge heating for heat retention at the end of the sheet bar width direction. (Invention example).

一方、残りの5本のスラブは、図2に示す熱間圧延設備列を用いて、ガス式加熱炉で1190℃×2時間加熱したのち、電気式(誘導式)加熱炉9に挿入し、1420℃まで30分で加熱し15分間均熱ののち炉外に抽出し、その後3パスの熱間圧延を行って50mm厚のシートバーとした。次に、シートバー幅方向端部の保熱を目的としたエッジ加熱を行いながら、熱間仕上圧延を行ってコイラーで巻き取ることによって、2.2mm厚さの方向性電磁鋼板用熱延鋼板を得た(比較例)。   On the other hand, the remaining five slabs were heated at 1190 ° C. for 2 hours in a gas heating furnace using the hot rolling equipment row shown in FIG. 2 and then inserted into an electric (induction) heating furnace 9. It was heated to 1420 ° C. for 30 minutes, soaked for 15 minutes, extracted outside the furnace, and then hot-rolled for 3 passes to obtain a 50 mm thick sheet bar. Next, a hot rolled steel sheet for directional electrical steel sheets having a thickness of 2.2 mm is obtained by performing hot finish rolling and winding with a coiler while performing edge heating for heat retention at the end of the sheet bar width direction. (Comparative Example).

上記の2つの熱間圧延工程において、熱間仕上圧延機の入側における、シートバー幅方向の温度分布について調査した結果を図9に示す。図9に示す様に、発明例では幅方向の温度分布が対称的であり、一方比較例では縦型電気式加熱炉にー度しか挿入していないため温度分布は非対称であった。   FIG. 9 shows the results of investigation on the temperature distribution in the sheet bar width direction on the entry side of the hot finish rolling mill in the above two hot rolling processes. As shown in FIG. 9, in the inventive example, the temperature distribution in the width direction is symmetric, while in the comparative example, the temperature distribution is asymmetric because it is inserted only in the vertical electric furnace.

次いで、これら異なるスラブ加熱条件にて得られた方向性電磁鋼板用熱延板を、常法に従って処理して最終製品に仕上げた。すなわち、熱延板焼鈍を1130℃×60秒で行って200℃まで30℃/sで冷却し、酸洗後に0.27mm厚に圧下率88%で冷間圧延した。その後、この冷間圧延板に、水素60vol%および窒素40vol%で露点60℃の雰囲気にて820℃×120秒間の脱炭焼鈍を施し、MgOを主体とする焼鈍分離剤を塗布し、1180℃×15hの最終仕上焼鈍を行い、ついで未反応分離剤を除去した後コーティングを施し、平坦化焼鈍を行って製品とした。
かくして得られた製品の幅方向における磁気特性(磁束密度)の平均値を図10に示す。図10に示すように、発明例による製品は幅方向の磁気特性が比較例に比べて均一であることがわかる。
Subsequently, the hot-rolled sheet for grain-oriented electrical steel sheets obtained under these different slab heating conditions was processed into a final product by processing according to a conventional method. That is, hot-rolled sheet annealing was performed at 1130 ° C. × 60 seconds, cooled to 200 ° C. at 30 ° C./s, and cold-rolled to a thickness of 0.27 mm after pickling at a reduction rate of 88%. Thereafter, this cold-rolled sheet was subjected to decarburization annealing at 820 ° C. for 120 seconds in an atmosphere of 60 vol% hydrogen and 40 vol% nitrogen, and a dew point of 60 ° C., and an annealing separator mainly composed of MgO was applied to 1180 ° C. A final finish annealing for 15 hours was performed, and then the unreacted separating agent was removed, followed by coating and flattening annealing to obtain a product.
FIG. 10 shows the average value of the magnetic characteristics (magnetic flux density) in the width direction of the product thus obtained. As shown in FIG. 10, it can be seen that the product according to the invention example has uniform magnetic characteristics in the width direction as compared with the comparative example.

質量%で、C:0.075%、Si:3.25%、Mn:0.080%、Al:0.023%、N:0.0090%、Se:0.027%、Sn:0.20%、Cr:0.12%およびBi:0.0010%を含み残部が実質的にFeからなる、厚さ240mmの方向性電磁鋼板用連続鋳造スラブを10本製造した。   In mass%, C: 0.075%, Si: 3.25%, Mn: 0.080%, Al: 0.023%, N: 0.0090%, Se: 0.027%, Sn: 0.00. Ten continuous cast slabs for a grain-oriented electrical steel sheet having a thickness of 240 mm including 20%, Cr: 0.12%, and Bi: 0.0010% and the balance being substantially Fe were manufactured.

このうちの5本のスラブについて、図3に示した熱間圧延設備列を用いて、ガス式加熱炉1にて1100℃×2時間加熱した後、粗圧延機2で220mm厚に予備圧延した。ついで、縦型電気式(誘導式)加熱炉9に挿入し、1410℃まで25分で昇熱して5分間均熱後に炉外に抽出した。さらに、縦型電気式(誘導式)加熱炉10で1405℃まで12分加熱して10分間灼熱後に、炉から抽出して粗圧延機に搬送し、4パスの熱間圧延を行って40mm厚のシートバーとした。いずれも、縦型電気式加熱炉に近い側のスラブ幅方向端部(側面)を同炉の天井側とした。次に、熱間仕上圧延を行ってコイラーで巻き取ることによって、2.4mm厚さの方向性電磁鋼板用熱延鋼板を得た(本発明)。   Five of these slabs were heated at 1100 ° C. for 2 hours in the gas heating furnace 1 using the hot rolling equipment array shown in FIG. . Subsequently, it was inserted into a vertical electric (induction type) heating furnace 9, heated to 1410 ° C. in 25 minutes, soaked for 5 minutes and extracted outside the furnace. Furthermore, after heating to 1405 ° C. for 12 minutes in a vertical electric (induction) heating furnace 10 and heating for 10 minutes, the material is extracted from the furnace and conveyed to a roughing mill, subjected to 4 passes of hot rolling and 40 mm thick. The sheet bar. In either case, the end (side surface) in the slab width direction on the side close to the vertical electric heating furnace was the ceiling side of the furnace. Next, hot finish rolling was performed, and the steel sheet was wound with a coiler to obtain a 2.4 mm thick hot rolled steel sheet for grain-oriented electrical steel sheet (the present invention).

一方、残りの5本のスラブは、図3に示す熱間圧延設備列を用いて、ガス式加熱炉1で1100℃×2時間加熱したのち、粗圧延機2で220mmに予備圧延してから縦型電気式(誘導式)加熱炉9に挿入し、1420℃まで30分で加熱し15分間の均熱後に炉外に抽出し、その後4パスの粗圧延を行って40mm厚のシートバーとした。熱間仕上圧延をおこない、コイラーで巻き取り2.4mm厚さの方向性電磁鋼板用熱延鋼板とした(比較例)。   On the other hand, the remaining five slabs were heated at 1100 ° C. for 2 hours in the gas heating furnace 1 using the hot rolling equipment row shown in FIG. Inserted into a vertical electric (induction type) heating furnace 9, heated to 1420 ° C. in 30 minutes, soaked for 15 minutes, extracted outside the furnace, then subjected to 4 passes of rough rolling, and a 40 mm thick sheet bar did. Hot finish rolling was performed, and the steel sheet was wound with a coiler to obtain a hot rolled steel sheet for a grain-oriented electrical steel sheet having a thickness of 2.4 mm (comparative example).

上記の2つの熱間圧延工程において、熱間仕上圧延機の入側における、シートバー幅方向の温度分布について調査した結果を図11に示す。図11に示す様に、発明例では幅方向の温度分布が対称的であり、一方比較例では縦型電気式加熱炉にー度しか挿入していないため温度分布は非対称であった。   FIG. 11 shows the result of investigation on the temperature distribution in the sheet bar width direction on the entry side of the hot finish rolling mill in the above two hot rolling processes. As shown in FIG. 11, in the inventive example, the temperature distribution in the width direction is symmetric, whereas in the comparative example, the temperature distribution is asymmetric because it is inserted only in the vertical electric furnace.

次いで、これら異なるスラブ加熱条件にて得られた方向性電磁鋼板用熱延板を、常法に従って処理して最終製品に仕上げた。すなわち、熱延板焼鈍を1000℃×60秒で行って200℃まで20℃/sで冷却し、酸洗後に1.7mm厚に冷間圧延した。その後、この冷間圧延板を水素50vol%および窒素50vol%で露点60℃の雰囲気で1120℃×120秒間の中間焼鈍後150℃まで35℃/sで冷却した。その後、圧下率87%で0.22mm厚まで圧延した。次いで、この冷間圧延板に、水素60vol%および窒素40vol%で露点60℃の雰囲気にて1120℃×120秒間の中間焼鈍を施した後、150℃まで35℃/sで冷却した。その後、この冷間圧延板を水素60%、窒素40%、露点60℃の雰囲気で840℃×100秒間の脱炭焼鈍を施し、MgOを主体とする焼鈍分離剤を塗布し、1180℃×15hの最終仕上焼鈍を行い、ついで未反応分離剤を除去した後コーティングを施し、平坦化焼鈍を行って製品とした。   Subsequently, the hot-rolled sheet for grain-oriented electrical steel sheets obtained under these different slab heating conditions was processed into a final product by processing according to a conventional method. That is, hot-rolled sheet annealing was performed at 1000 ° C. for 60 seconds, cooled to 200 ° C. at 20 ° C./s, and cold-rolled to a thickness of 1.7 mm after pickling. Then, this cold-rolled sheet was cooled at 35 ° C./s to 150 ° C. after intermediate annealing at 1120 ° C. for 120 seconds in an atmosphere with a dew point of 60 ° C. with 50 vol% hydrogen and 50 vol% nitrogen. Thereafter, it was rolled to a thickness of 0.22 mm at a reduction ratio of 87%. Next, this cold-rolled sheet was subjected to intermediate annealing at 1120 ° C. for 120 seconds in an atmosphere with a dew point of 60 ° C. with 60 vol% hydrogen and 40 vol% nitrogen, and then cooled to 150 ° C. at 35 ° C./s. Thereafter, this cold-rolled sheet was subjected to decarburization annealing at 840 ° C. for 100 seconds in an atmosphere of 60% hydrogen, 40% nitrogen, and 60 ° C. dew point, and an annealing separator mainly composed of MgO was applied to 1180 ° C. × 15 h. The final finish annealing was performed, and then the unreacted separating agent was removed, followed by coating and flattening annealing to obtain a product.

かくして得られた製品の幅方向における磁気特性(磁束密度)の平均値を図12に示す。図12に示すように、発明例による製品は幅方向の磁気特性が比較例に比べて均一であることがわかる。
さらに、図13に最終製品板の幅方向の板厚プロフィールを示す。図13に示す様に、比較例では左右非対称の板厚プロフィールとなり、トランスに組むため多数枚を積層した場合に大きな問題が生じる。
The average value of the magnetic characteristics (magnetic flux density) in the width direction of the product thus obtained is shown in FIG. As shown in FIG. 12, it can be seen that the product according to the invention example has more uniform magnetic characteristics in the width direction than the comparative example.
Further, FIG. 13 shows a plate thickness profile in the width direction of the final product plate. As shown in FIG. 13, in the comparative example, the plate thickness profile is asymmetrical, and a large problem arises when a large number of sheets are laminated to form a transformer.

質量%で、C:0.065%、Si:3.50%、Mn:0.065%、Al:0.023%、N:0.0090%、S:0.027%、Sn:0.20%、Cu:0.12%およびCr:0.01%を含み残部が実質的にFeからなる、厚さ23Ommの方向性電磁鋼板用連続鋳造スラブを10本製造した。   In mass%, C: 0.065%, Si: 3.50%, Mn: 0.065%, Al: 0.023%, N: 0.0090%, S: 0.027%, Sn: 0.20%, Cu: 0.12% and Cr: 0.01% Ten continuous cast slabs for a grain-oriented electrical steel sheet having a thickness of 23 Omm, the balance being substantially made of Fe, were manufactured.

このうちの5本のスラブについて、図6に示す熱間圧延設備列を用いて、ガス式加熱炉1にて1190℃×2時間加熱した後、縦型電気式(誘導式)加熱炉9に挿入し、1380℃まで20分で昇熱して5分間均熱後に炉外に抽出した。ついで、スラブ転回装置20で180度転回した後、縦型電気式(誘導式)加熱炉9で1420℃まで10分で昇熱して10分間均熱後に炉から抽出し、その後粗圧延機に搬送して3パスの熱間圧延を行って50mm厚のシートバーとした。いずれのスラブも、縦型電気式(誘導式)加熱炉に近い例のスラブ幅方向端部(側面)を、同炉の炉床側とした。次に、シートバー幅方向端部の保熱を目的としたエッジ加熱を行いながら、熱間仕上圧延を行ってコイラーで巻き取ることによって、2.2mm厚さの方向性電磁鋼板用熱延鋼板を得た(発明例)。   Five of these slabs were heated in a gas heating furnace 1 at 1190 ° C. for 2 hours using the hot rolling equipment row shown in FIG. 6, and then placed in a vertical electric (induction) heating furnace 9. It was inserted, heated to 1380 ° C. in 20 minutes, soaked for 5 minutes and extracted outside the furnace. Next, after turning 180 degrees with the slab turning device 20, the temperature was raised to 1420 ° C in 10 minutes in a vertical electric (induction) heating furnace 9, soaked for 10 minutes, extracted from the furnace, and then transferred to the roughing mill Then, hot rolling of 3 passes was performed to obtain a sheet bar having a thickness of 50 mm. In any slab, the end portion (side surface) in the slab width direction in the example close to the vertical electric (induction) heating furnace was the hearth side of the furnace. Next, a hot rolled steel sheet for directional electrical steel sheets with a thickness of 2.2 mm is obtained by performing hot finish rolling and winding with a coiler while performing edge heating for heat retention at the end of the sheet bar width direction. Obtained (Invention Example).

一方、残りの5本のスラブは、図6に示す熱間圧延設備列を用いて、ガス式加熱炉で1190℃×2時間加熱したのち、電気式(誘導式)加熱炉9に挿入し、1420℃まで30分で加熱し15分間均熱ののち炉外に抽出し、その後3パスの熱間圧延を行って50mm厚のシートバーとした。次に、シートバー幅方向端部の保熱を目的としたエッジ加熱を行いながら、熱間仕上圧延を行ってコイラーで巻き取ることによって、2.2mm厚さの方向性電磁鋼板用熱延鋼板を得た(比較例)。   On the other hand, the remaining five slabs were heated in a gas heating furnace at 1190 ° C. for 2 hours using the hot rolling equipment row shown in FIG. 6 and then inserted into an electric (induction) heating furnace 9. It was heated to 1420 ° C. for 30 minutes, soaked for 15 minutes, extracted outside the furnace, and then hot-rolled for 3 passes to obtain a 50 mm thick sheet bar. Next, a hot rolled steel sheet for directional electrical steel sheets with a thickness of 2.2 mm is obtained by performing hot finish rolling and winding with a coiler while performing edge heating for heat retention at the end of the sheet bar width direction. Obtained (comparative example).

上記の2つの熱間圧延工程において、熱間仕上圧延機の入側における、シートバー幅方向の温度分布について調査した結果を図14に示す。図14に示す様に、発明例では幅方向の温度分布が対称的であり、一方比較例では縦型電気式加熱炉に一度しか挿入していないため温度分布は非対称であった。   FIG. 14 shows the results of investigation on the temperature distribution in the sheet bar width direction on the entry side of the hot finish rolling mill in the above two hot rolling processes. As shown in FIG. 14, in the inventive example, the temperature distribution in the width direction is symmetric, while in the comparative example, the temperature distribution is asymmetric because it is inserted only once into the vertical electric furnace.

次いで、これら異なるスラブ加熱条件にて得られた方向性電磁鋼板用熱延板を、常法に従って処理して最終製品に仕上げた。すなわち、熱延板焼鈍を1130℃×60秒で行って200℃まで30℃/sで冷却し、酸洗後に0.27mm厚に圧下率88%で冷間圧延した。その後、この冷間圧延板に、水素60vol%および窒素40vol%で露点60℃の雰囲気にて820℃×120秒間の脱炭焼鈍を施し、MgOを主体とする焼鈍分離剤を塗布し、1180℃×15hの最終仕上焼鈍を行い、ついで未反応分離剤を除去した後コーティングを施し、平坦化焼鈍を行って製品とした。
かくして得られた製品の幅方向における磁気特性(磁束密度)の平均値を図15に示す。図15に示すように、発明例による製品は幅方向の磁気特性が比較例に比べて均一であることがわかる。
Subsequently, the hot-rolled sheet for grain-oriented electrical steel sheets obtained under these different slab heating conditions was processed into a final product by processing according to a conventional method. That is, hot-rolled sheet annealing was performed at 1130 ° C. × 60 seconds, cooled to 200 ° C. at 30 ° C./s, and after pickling, cold rolled to a thickness of 0.27 mm at a reduction rate of 88%. After that, this cold-rolled sheet was decarburized and annealed at 820 ° C for 120 seconds in an atmosphere with 60vol% hydrogen and 40vol% nitrogen at a dew point of 60 ° C, and an annealing separator mainly composed of MgO was applied to A final finish annealing for 15 hours was performed, and then the unreacted separating agent was removed, followed by coating and flattening annealing to obtain a product.
The average value of the magnetic properties (magnetic flux density) in the width direction of the product thus obtained is shown in FIG. As shown in FIG. 15, it can be seen that the product according to the invention example has more uniform magnetic characteristics in the width direction than the comparative example.

質量%で、C:0.075%、Si:3.25%、Mn:0.080%、Al:0.023%、N:0.0090%、Se:0.027%、Sn:0.20%、Cr:0.12%およびBi:0.0010%を含み残部が実質的にFeからなる、厚さ240mmの方向性電磁鋼板用連続鋳造スラブを10本製造した。   In mass%, C: 0.075%, Si: 3.25%, Mn: 0.080%, Al: 0.023%, N: 0.0090%, Se: 0.027%, Sn: 0.20%, Cr: 0.12% and Bi: 0.0010% Ten continuous cast slabs for a grain-oriented electrical steel sheet having a thickness of 240 mm, the balance being substantially made of Fe, were manufactured.

このうちの5本のスラブについて、図7に示す熱間圧延設備列を用いて、ガス式加熱炉1にて1100℃×2時間加熱した後、粗圧延機2で220mm厚に予備圧延した。ついで、縦型電気式(誘導式)加熱炉9に挿入し、1410℃まで25分で昇熱して5分間均熱後に炉外に抽出した。スラブ転回装置20でスラブを180度転回し、さらに縦型電気式(誘導式)加熱炉9で1405℃まで12分加熱して10分間均熱後に、炉から抽出して粗圧延機に搬送し、4パスの熱間圧延を行って40mm厚のシートバーとした。いずれも、縦型電気式加熱炉に近い側のスラブ幅方向端部(側面)を同炉の天井側とした。次に、熱間仕上圧延を行ってコイラーで巻き取ることによって、2.4mm厚さの方向性電磁鋼板用熱延鋼板を得た(発明例)。   Five of these slabs were heated at 1100 ° C. for 2 hours in the gas heating furnace 1 using the hot rolling equipment row shown in FIG. Subsequently, it was inserted into a vertical electric (induction type) heating furnace 9, heated to 1410 ° C. in 25 minutes, soaked for 5 minutes and extracted outside the furnace. The slab is turned 180 degrees with the slab turning device 20, and further heated to 1405 ° C for 12 minutes in a vertical electric (induction) heating furnace 9, soaked for 10 minutes, extracted from the furnace, and conveyed to the roughing mill. Four-pass hot rolling was performed to obtain a 40 mm thick sheet bar. In either case, the end (side surface) in the slab width direction on the side close to the vertical electric heating furnace was the ceiling side of the furnace. Next, hot finish rolling was performed, and the steel sheet was wound with a coiler to obtain a hot-rolled steel sheet for a grain-oriented electrical steel sheet having a thickness of 2.4 mm (invention example).

一方、残りの5本のスラブは、図7に示す熱間圧延設備列を用いて、ガス式加熱炉1で1100℃×2時間加熱したのち、粗圧延機2で220mmに予備圧延してから縦型電気式(誘導式)加熱炉9に挿入し、1420℃まで30分で加熱し15分間の均熱後に炉外に抽出し、その後4パスの粗圧延を行って40mm厚のシートバーとした。次いで、熱間仕上圧延を行い、コイラーで巻き取り2.4mm厚さの方向性電磁鋼板用熱延鋼板とした(比較例)。   On the other hand, the remaining five slabs were heated at 1100 ° C. for 2 hours in the gas heating furnace 1 using the hot rolling equipment row shown in FIG. Inserted into a vertical electric (induction type) heating furnace 9, heated to 1420 ° C in 30 minutes, soaked for 15 minutes, extracted outside the furnace, and then subjected to 4 passes of rough rolling to obtain a 40 mm thick sheet bar did. Subsequently, hot finish rolling was performed, and the steel sheet was wound with a coiler to obtain a hot rolled steel sheet for a grain-oriented electrical steel sheet having a thickness of 2.4 mm (comparative example).

上記の2つの熱間圧延工程において、熱間仕上圧延機の入側における、シートバー幅方向の温度分布について調査した結果を図16に示す。図16に示す様に、発明例では幅方向の温度分布が対称的であり、一方比較例では縦型電気式加熱炉に一度しか挿入していないため温度分布は非対称であった。   FIG. 16 shows the results of investigation on the temperature distribution in the sheet bar width direction on the entry side of the hot finish rolling mill in the above two hot rolling processes. As shown in FIG. 16, in the inventive example, the temperature distribution in the width direction was symmetric, while in the comparative example, the temperature distribution was asymmetric because it was inserted only once into the vertical electric furnace.

次いで、これら異なるスラブ加熱条件にて得られた方向性電磁鋼板用熱延板を、常法に従って処理して最終製品に仕上げた。すなわち、熱延枚焼鈍を1000℃×60秒で行って200℃まで20℃/sで冷却し、酸洗後に1.7mm厚に冷間圧延した。その後、この冷間圧延板を水素50vo1%および窒素50vol%で露点60℃の雰囲気で1120℃×120秒間の中間焼鈍後150℃まで85℃/sで冷却した。その後、圧下率87%で0.22mm厚まで圧延した。次いで、この冷間圧延板に、水素60vol%および窒素40vol%で露点60℃の雰囲気にて1120℃×120秒間の中間焼鈍を施した後、150℃まで35℃/sで冷却した。その後、この冷間圧延板を水素60%、窒素40%、露点60℃の雰囲気で840℃×100秒間の脱炭焼鈍を施し、MgOを主体とする焼鈍分離剤を塗布し、1180℃×15時間の最終仕上焼鈍を行い、ついで未反応分離剤を除去した後コーティングを施し、平坦化焼鈍を行って製品とした。   Subsequently, the hot-rolled sheet for grain-oriented electrical steel sheets obtained under these different slab heating conditions was processed into a final product by processing according to a conventional method. That is, hot-rolled sheet annealing was performed at 1000 ° C. for 60 seconds, cooled to 200 ° C. at 20 ° C./s, and cold-rolled to a thickness of 1.7 mm after pickling. Then, this cold-rolled sheet was cooled at 85 ° C./s to 150 ° C. after intermediate annealing at 1120 ° C. for 120 seconds in an atmosphere of 50 ° C. hydrogen and 50 vol% nitrogen and a dew point of 60 ° C. Thereafter, it was rolled to a thickness of 0.22 mm at a reduction ratio of 87%. Next, this cold-rolled sheet was subjected to intermediate annealing at 1120 ° C. for 120 seconds in an atmosphere of 60 vol.% Hydrogen and 40 vol.% Nitrogen at a dew point of 60 ° C., and then cooled to 150 ° C. at 35 ° C./s. After that, this cold-rolled sheet was decarburized and annealed at 840 ° C for 100 seconds in an atmosphere of 60% hydrogen, 40% nitrogen, and 60 ° C dew point, and an annealing separator mainly composed of MgO was applied. A final finish annealing was performed for a period of time, and then the unreacted separating agent was removed, followed by coating and flattening annealing to obtain a product.

かくして得られた製品の幅方向における磁気特性(磁束密度)の平均値を図17に示す。図17に示すように、発明例による製品は幅方向の磁気特性が比較例に比べて均一であることがわかる。
さらに、図18に最終製品板の幅方向の板厚プロフィールを示す。図18に示す様に、比較例では左右非対称の板厚プロフィールとなり、トランスに組むため多数枚を積層した場合に大きな問題が生じる。
FIG. 17 shows the average value of the magnetic characteristics (magnetic flux density) in the width direction of the product thus obtained. As shown in FIG. 17, it can be seen that the product according to the invention example has a uniform magnetic property in the width direction as compared with the comparative example.
Further, FIG. 18 shows a plate thickness profile in the width direction of the final product plate. As shown in FIG. 18, in the comparative example, the thickness profile is asymmetrical, and a large problem arises when a large number of sheets are laminated to form a transformer.

実施例1と同様の成分を有するスラブ32本を、実施例1の発明例と同様の方法で圧延し、また同成分のスラブ48本を、実施例1の比較例と同様の方法で圧延した。その際の粗圧延機出側における幅方向の温度差と仕上圧延後のクロップ部(熱間圧延後の交代の先尾端に生じる板幅が不足した部分)の切り捨て重量との関係を、図19に示す。
図19から、本発明により、クロップ部の形状がほぼ対称となる結果、切り捨てる重量が減少し、歩留まりも改善されることがわかる。
32 slabs having the same components as in Example 1 were rolled in the same manner as the inventive example of Example 1, and 48 slabs of the same components were rolled in the same manner as in the comparative example of Example 1. . The relationship between the temperature difference in the width direction on the exit side of the roughing mill and the cut-off weight of the crop part after finish rolling (the part where the plate width is insufficient at the leading end of the turn after hot rolling) is shown. It is shown in 19.
As can be seen from FIG. 19, according to the present invention, as a result of the shape of the cropped portion being substantially symmetrical, the weight to be cut off is reduced and the yield is also improved.

本発明の熱間圧延方法は、上記した方向性電磁鋼板の製造に適用することの他、一般的な鋼板の製造にも適していることは勿論であり、幅方向に均等なスラブ加熱を実現することは全ての鋼板の製造において有意義である。   The hot rolling method of the present invention is applicable not only to the production of the above-mentioned grain-oriented electrical steel sheet but also to the production of a general steel sheet, and realizes uniform slab heating in the width direction. This is meaningful in the production of all steel sheets.

本発明の熱間圧延方法に用いる連続式熱間圧延設備列を示す説明図である。It is explanatory drawing which shows the continuous hot rolling equipment row | line | column used for the hot rolling method of this invention. 本発明の熱間圧延方法に用いる連続式熱間圧延設備列を示す説明図である。It is explanatory drawing which shows the continuous hot rolling equipment row | line | column used for the hot rolling method of this invention. 本発明の熱間圧延方法に用いる連続式熱間圧延設備列を示す説明図である。It is explanatory drawing which shows the continuous hot rolling equipment row | line | column used for the hot rolling method of this invention. 縦型電気式加熱炉に付随するスラブ挿入装置の一例を示す説明図である。It is explanatory drawing which shows an example of the slab insertion apparatus accompanying a vertical type electric heating furnace. 本発明の熱間圧延方法に用いる連続式熱間圧延設備列を示す説明図である。It is explanatory drawing which shows the continuous hot rolling equipment row | line | column used for the hot rolling method of this invention. 本発明の熱間圧延方法に用いる連続式熱間圧延設備列を示す説明図である。It is explanatory drawing which shows the continuous hot rolling equipment row | line | column used for the hot rolling method of this invention. 本発明の熱間圧延方法に用いる連続式熱間圧延設備列を示す説明図である。It is explanatory drawing which shows the continuous hot rolling equipment row | line | column used for the hot rolling method of this invention. 連続式熱間圧延設備列におけるスラブ転回装置の一例を示す説明図である。It is explanatory drawing which shows an example of the slab turning apparatus in a continuous hot rolling equipment row | line | column. スラブ幅方向位置における仕上圧延機入側での温度分布を示す図である。It is a figure which shows the temperature distribution by the side of a finishing rolling mill in a slab width direction position. 製品板の板幅方向位置における磁束密度を示す図である。It is a figure which shows the magnetic flux density in the board width direction position of a product board. スラブ幅方向位置における仕上圧延機入側での温度分布を示す図である。It is a figure which shows the temperature distribution by the side of a finishing rolling mill in a slab width direction position. 製品板の板幅方向位置における磁束密度を示す図である。It is a figure which shows the magnetic flux density in the board width direction position of a product board. 製品板の板幅方向位置における板厚分布を示す図である。It is a figure which shows the board thickness distribution in the board width direction position of a product board. スラブ幅方向位置における仕上圧延機入側での温度分布を示す図である。It is a figure which shows the temperature distribution by the side of a finishing rolling mill in a slab width direction position. 製品板の板幅方向位置における磁束密度を示す図である。It is a figure which shows the magnetic flux density in the board width direction position of a product board. スラブ幅方向位置における仕上圧延機入側での温度分布を示す図である。It is a figure which shows the temperature distribution by the side of a finishing rolling mill in a slab width direction position. 製品板の板幅方向位置における磁束密度を示す図である。It is a figure which shows the magnetic flux density in the board width direction position of a product board. 製品板の板幅方向位置における板厚分布を示す図である。It is a figure which shows the board thickness distribution in the board width direction position of a product board. 粗圧延機出側における幅方向の温度差と仕上圧延後のクロップ部の切り捨て重量との関係を示す図である。It is a figure which shows the relationship between the temperature difference of the width direction in a rough rolling mill delivery side, and the cut-off weight of the crop part after finish rolling.

符号の説明Explanation of symbols

1 ガス式加熱炉
2、3、4 粗圧延機
5 連続仕上圧延機
6 ローラテーブル
7 エッジ加熱装置
8 半製品処理装置
9、10 縦型電気式加熱炉
11 スラブ挿入装置
12 支持腕回転軸
13 スラブ支持腕
14 スラブ昇降架台
15 スラブ
20 スラブ転回装置
21 転回ロール
DESCRIPTION OF SYMBOLS 1 Gas type heating furnace 2, 3, 4 Rough rolling mill 5 Continuous finishing rolling mill 6 Roller table 7 Edge heating apparatus 8 Semi-finished product processing apparatus 9, 10 Vertical electric heating furnace 11 Slab insertion apparatus 12 Support arm rotating shaft 13 Slab Support arm 14 Slab lifting base 15 Slab 20 Slab turning device 21 Turning roll

Claims (3)

ローラテーブルを介して、ガス式加熱炉、粗圧延機および連続仕上圧延機を順次に接続し、さらにローラテーブルの片側に少なくとも1台両側に少なくとも2台の縦型電気式加熱炉を配置した熱間圧延設備列に、被圧延材を通して圧延を行う熱間圧延方法において、
前記ガス式加熱炉から被圧延材を抽出した後、連続仕上圧延機での圧延を開始するに先立ち、前記ローラテーブルのいずれか一方の側に配置した縦型電気式加熱炉に、被圧延材を挿入し、次いで当該縦型電気式加熱炉から取り出した被圧延材を、前記ローラテーブルのいずれか他方の側に配置した縦型電気式加熱炉に挿入する際、縦型電気式加熱炉に近い側の、被圧延材幅方向端部が、該縦型電気式加熱炉内において炉床側となる配置の下に、被圧延材の挿入を行い、その後連続仕上圧延を行うことを特徴とする熱間圧延方法。
A gas heating furnace, a roughing mill and a continuous finishing rolling mill are sequentially connected via a roller table, and at least two vertical electric heating furnaces are arranged on one side of the roller table. In the hot rolling method of rolling through the material to be rolled,
After extracting the material to be rolled from the gas heating furnace, prior to starting rolling in the continuous finish rolling mill, the material to be rolled is placed in a vertical electric heating furnace arranged on either side of the roller table. Then, when the material to be rolled taken out from the vertical electric heating furnace is inserted into the vertical electric heating furnace disposed on the other side of the roller table, the vertical electric heating furnace is inserted into the vertical electric heating furnace. It is characterized by inserting the material to be rolled under the arrangement in which the width direction end of the material to be rolled is the hearth side in the vertical electric heating furnace, and then performing continuous finish rolling. Hot rolling method to do.
ローラテーブルを介して、ガス式加熱炉、粗圧延機および連続仕上圧延機を順次に接続し、さらにローラテーブルの片側に少なくとも1台両側に少なくとも2台の縦型電気式加熱炉を配置した熱間圧延設備列に、被圧延材を通して圧延を行う熱間圧延方法において、
前記ガス式加熱炉から被圧延材を抽出した後、連続仕上圧延機での圧延を開始するに先立ち、前記ローラテーブルのいずれか一方の側に配置した縦型電気式加熱炉に、被圧延材を挿入し、次いで当該縦型電気式加熱炉から取り出した被圧延材を、前記ローラテーブルのいずれか他方の側に配置した縦型電気式加熱炉に挿入する際、縦型電気式加熱炉に近い側の、被圧延材幅方向端部が、該縦型電気式加熱炉内において天井側となる配置の下に、被圧延材の挿入を行い、その後連続仕上圧延を行うことを特徴とする熱間圧延方法。
A gas heating furnace, a roughing mill and a continuous finishing rolling mill are sequentially connected via a roller table, and at least two vertical electric heating furnaces are arranged on one side of the roller table. In the hot rolling method of rolling through the material to be rolled,
After extracting the material to be rolled from the gas heating furnace, prior to starting rolling in the continuous finish rolling mill, the material to be rolled is placed in a vertical electric heating furnace arranged on either side of the roller table. Then, when the material to be rolled taken out from the vertical electric heating furnace is inserted into the vertical electric heating furnace disposed on the other side of the roller table, the vertical electric heating furnace is inserted into the vertical electric heating furnace. Under the arrangement in which the end in the width direction of the material to be rolled is the ceiling side in the vertical electric heating furnace, the material to be rolled is inserted, and then continuous finish rolling is performed. Hot rolling method.
ローラテーブルを介して、ガス式加熱炉、粗圧延機および連続仕上圧延機を順次に接続し、さらにローラテーブル近傍に少なくとも1台の縦型電気式加熱炉を配置した熱間圧延設備列に、被圧延材を通して圧延を行う熱間圧延方法において、
前記ガス式加熱炉から被圧延材を抽出した後、連続仕上圧延機での圧延を開始するに先立ち、前記縦型電気式加熱炉に被圧延材を挿入し、次いで縦型電気式加熱炉から取り出した被圧延材を転回して被圧延材の幅方向を180度反転させたのち、再度前記縦型電気式加熱炉に被圧延材を挿入し、その後連続仕上圧延を行うことを特徴とする熱間圧延方法。
Through a roller table, a gas heating furnace, a rough rolling mill, and a continuous finishing rolling mill are sequentially connected, and further to a hot rolling equipment row in which at least one vertical electric heating furnace is disposed in the vicinity of the roller table, In the hot rolling method of rolling through the material to be rolled,
After extracting the material to be rolled from the gas heating furnace, before starting rolling in the continuous finish rolling mill, the material to be rolled is inserted into the vertical electric heating furnace, and then from the vertical electric heating furnace. The rolled material taken out is rotated to reverse the width direction of the rolled material by 180 degrees, and then the rolled material is inserted again into the vertical electric heating furnace, and then continuous finish rolling is performed. Hot rolling method.
JP2003419222A 2003-12-17 2003-12-17 Hot rolling method Expired - Lifetime JP4085975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419222A JP4085975B2 (en) 2003-12-17 2003-12-17 Hot rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419222A JP4085975B2 (en) 2003-12-17 2003-12-17 Hot rolling method

Publications (2)

Publication Number Publication Date
JP2005177781A true JP2005177781A (en) 2005-07-07
JP4085975B2 JP4085975B2 (en) 2008-05-14

Family

ID=34781177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419222A Expired - Lifetime JP4085975B2 (en) 2003-12-17 2003-12-17 Hot rolling method

Country Status (1)

Country Link
JP (1) JP4085975B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134992A1 (en) 2005-06-17 2006-12-21 Matsushita Electric Industrial Co., Ltd. Post filter, decoder, and post filtering method
JP2013035028A (en) * 2011-08-08 2013-02-21 Toshiba Mitsubishi-Electric Industrial System Corp Manufacturing line and induction heating device for directional electromagnetic steel sheet
US8950227B2 (en) 2009-04-09 2015-02-10 Siemens Vai Metals Technologies Gmbh Method and device for preparing hot-rolling stock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662678U (en) * 1993-02-08 1994-09-02 東京電子工業株式会社 Video camera device with illumination color switching function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134992A1 (en) 2005-06-17 2006-12-21 Matsushita Electric Industrial Co., Ltd. Post filter, decoder, and post filtering method
US8950227B2 (en) 2009-04-09 2015-02-10 Siemens Vai Metals Technologies Gmbh Method and device for preparing hot-rolling stock
JP2013035028A (en) * 2011-08-08 2013-02-21 Toshiba Mitsubishi-Electric Industrial System Corp Manufacturing line and induction heating device for directional electromagnetic steel sheet

Also Published As

Publication number Publication date
JP4085975B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
CN104451378B (en) A kind of orientation silicon steel having excellent magnetic characteristics and production method
JP7052391B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JPWO2018151296A1 (en) Method of manufacturing directional magnetic steel sheet
JP4085975B2 (en) Hot rolling method
JPWO2008133337A1 (en) Manufacturing method of unidirectional electrical steel sheet
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JP4321248B2 (en) Continuous hot rolling equipment line
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JP4753558B2 (en) Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JP4604370B2 (en) Method for producing grain-oriented electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3536304B2 (en) Manufacturing method of oriented silicon steel sheet with excellent surface properties and stable magnetic properties
JP3392698B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent magnetic properties
JP2001262233A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet small in defect in shape
JPH06228644A (en) Production of silicon steel sheet for compact stationary device
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH01176032A (en) Production of anisotropic silicon steel sheet having uniform magnetic characteristic in cross direction
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JP3903494B2 (en) Manufacturing method of electrical steel sheet
JPH0763725B2 (en) Series of continuous hot rolling equipment for unidirectional electrical steel sheets
JP4565264B2 (en) Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JP2002212638A (en) Method for producing grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4085975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term