JPH06228644A - Production of silicon steel sheet for compact stationary device - Google Patents

Production of silicon steel sheet for compact stationary device

Info

Publication number
JPH06228644A
JPH06228644A JP1537193A JP1537193A JPH06228644A JP H06228644 A JPH06228644 A JP H06228644A JP 1537193 A JP1537193 A JP 1537193A JP 1537193 A JP1537193 A JP 1537193A JP H06228644 A JPH06228644 A JP H06228644A
Authority
JP
Japan
Prior art keywords
less
annealing
sol
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1537193A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
隆 田中
Hiroyoshi Yashiki
裕義 屋鋪
Kazusane Isaka
和実 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1537193A priority Critical patent/JPH06228644A/en
Publication of JPH06228644A publication Critical patent/JPH06228644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide the method for producing a silicon steel sheet for a compact stationary device excellent in low magnetic field properties. CONSTITUTION:Steel stock contg. <=0.005% C, <=0.005% N, <=1.0% Mn, <=0.006% S and >=0.1% sol.Al and satisfying (Si+sol.Al) <2.0% is subjected to hot rolling at 700 to 850 deg.C and is thereafter coiled at <=600 deg.C. Before or after descaling, it is annealed at 700 deg.C to the A3 transformation point and is furthermore subjected to single cold rolling at <=80% draft. After that, its temp. is raised at >=100 deg.C/sec heating rate, and annealing is executed at 750 deg.C to the A3 transformation point. The compsn. of the same steel may be constituted of <=0.005% C, <=0.005% N, <=1.0% Mn, <=0.006% S and <=0.003% sol.Al, and (Si+sol.Al)<2.0 may be regulated as well. The nonoriented silicon steel sheet excellent in low magnetic field properties in the rolling direction and suitable as an iron core material for a compact stationary device can be obtd. without executing a complicated stage such as two time cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型静止器の鉄心材料
として用いられる、圧延方向の低磁場特性に優れた電磁
鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electromagnetic steel sheet which is used as an iron core material for a small static device and which has excellent low magnetic field characteristics in the rolling direction.

【0002】[0002]

【従来の技術】電磁鋼板に対しては、機器の電力損失低
減および小型化のため、低鉄損、高磁束密度化という磁
気特性改善が強く求められている。また、励磁銅損を下
げる意味から、小さい励磁電流でも大きな磁束密度が得
られる低磁場特性に優れた電磁鋼板に対する要求も同様
に強いものがある。
2. Description of the Related Art Magnetic steel sheets are strongly required to have improved magnetic characteristics such as low iron loss and high magnetic flux density in order to reduce power loss and downsize equipment. Further, in order to reduce the exciting copper loss, there is also a strong demand for an electromagnetic steel sheet having excellent low magnetic field characteristics that can obtain a large magnetic flux density even with a small exciting current.

【0003】さらに、変圧器や安定器などの静止器用の
電磁鋼板については、磁化方向が限定されることから、
機器性能上その磁気特性には異方性 (方向性) があるこ
とがむしろ有利となる。すなわち、一方向のみに磁気特
性に優れた方向性電磁鋼板が望ましいことになる。
Further, with respect to magnetic steel sheets for stationary devices such as transformers and ballasts, since the magnetization direction is limited,
In terms of device performance, it is rather advantageous that the magnetic properties have anisotropy (direction). That is, a grain-oriented electrical steel sheet having excellent magnetic properties in only one direction is desirable.

【0004】しかし、方向性電磁鋼板の欠点としては、
長時間の高温焼鈍などの煩雑な工程を含むその製造方法
に起因する高価格が挙げられる。このため、大型静止器
ほど低鉄損を要しない小型静止器に対しては、より低価
格の無方向性電磁鋼板が用いられるが、静止器のように
磁化方向が限定される用途には、できるだけ一方向に方
向性を持つ電磁鋼板の方が好ましいのはいうまでもな
い。このような観点から圧延方向の磁気特性が優れた無
方向性電磁鋼板の開発が進められてきた。
However, the disadvantage of grain-oriented electrical steel sheets is that
High cost due to its manufacturing method including complicated steps such as high temperature annealing for a long time can be mentioned. Therefore, for a small static device that does not require as low iron loss as a large static device, a less expensive non-oriented electrical steel sheet is used, but for applications where the magnetization direction is limited, such as a static device, It goes without saying that an electromagnetic steel sheet having directivity in one direction as much as possible is preferable. From this point of view, the development of non-oriented electrical steel sheets having excellent magnetic properties in the rolling direction has been promoted.

【0005】例えば、特公昭56−43294 号公報には、S
i:0.1〜1.0 %で、トータルAlを0.007 %以下に低く調
整した熱延鋼板を、中間焼鈍をはさむ2回の冷間圧延
で、2回目の圧下率を2〜15%とし、かつ鋼板の表面粗
度を15μ-in,r.m.s 以下とすることにより、圧延方向の
透磁率μ15/50 を4500以上とする透磁率の高い無方向性
電磁鋼板の製造方法が示されている。
For example, Japanese Patent Publication No. 56-43294 discloses S
i: 0.1 to 1.0%, and the total Al was adjusted to 0.007% or less. A hot-rolled steel sheet was cold-rolled twice with intermediate annealing so that the second rolling reduction was 2 to 15%, and A method for producing a non-oriented electrical steel sheet having a high magnetic permeability, which has a surface roughness of 15 μ-in, rms or less, has a magnetic permeability μ 15/50 in the rolling direction of 4500 or more is disclosed .

【0006】特開昭61−119618号公報には、C:0.020%
以下、Si:1.0%以下、Mn:0.1〜1.0%、Al:0.40 %以下
を含む鋼スラブを熱間圧延後、熱延板焼鈍を経ることな
く、中間焼鈍をはさむ2回の冷間圧延で、2回目の圧下
率を3〜7%とする小型静止器の鉄芯材料用電磁鋼板の
製造方法が示されている。
In Japanese Patent Laid-Open No. 61-119618, C: 0.020%
The steel slab containing Si: 1.0% or less, Mn: 0.1 to 1.0%, and Al: 0.40% or less is hot-rolled and then cold-rolled twice with intermediate annealing without hot-rolled sheet annealing. A method for producing a magnetic steel sheet for iron core material of a small static device, in which the second rolling reduction is 3 to 7%, is shown.

【0007】特開平2−305920号公報には、C:0.015%
以下、Si:0.1 〜1.5 %、Mn:0.1〜1.5 %、P:0.15
%以下、S:0.008%以下、sol.Al:0.01〜1.0 %、トー
タルN:0.0050%以下およびトータルO (酸素) :0.02
%以下を含有し、 (sol.Al/Si):0.02以上、 Al2O3 /(
SiO2+ MnO+ Al2O3) ×100:40%以上を満足する鋼スラ
ブを熱間圧延後、中間焼鈍をはさむ2回の冷間圧延で、
2回目の圧下率を3〜10%とし、かつ鋼板の表面粗度を
15μ-in,r.m.s 以下とする磁気特性と溶接性の優れたセ
ミプロセス無方向性電磁鋼板の製造方法が示されてい
る。
In JP-A-2-305920, C: 0.015%
Below, Si: 0.1-1.5%, Mn: 0.1-1.5%, P: 0.15
% Or less, S: 0.008% or less, sol.Al: 0.01 to 1.0%, total N: 0.0050% or less and total O (oxygen): 0.02
% Or less, (sol.Al/Si): 0.02 or more, Al 2 O 3 / (
SiO 2 + MnO + Al 2 O 3 ) × 100: After hot rolling a steel slab satisfying 40% or more, two cold rolling steps with intermediate annealing are performed.
The second rolling reduction is 3-10%, and the surface roughness of the steel sheet is
A method for producing a semi-process non-oriented electrical steel sheet with excellent magnetic properties and weldability of 15 μ-in, rms or less is shown.

【0008】しかし、これらの各号報に示される方法で
は、いずれも中間焼鈍をはさんで2回の冷間圧延を行う
ため、その製造工程が煩雑になり、また経済的にも不利
である。
However, in each of the methods disclosed in these publications, cold rolling is performed twice with intermediate annealing, so that the manufacturing process is complicated and economically disadvantageous. .

【0009】ところで、一般に無方向性電磁鋼板におい
て磁気特性を向上させる手法の一つとして、冷間圧延後
の焼鈍前の加熱速度を速くすることが知られている。例
えば、特開平2−54720 号公報において、冷間圧延後の
焼鈍前の加熱速度を 200℃/分以上とし、Ac3変態点以
上で焼鈍し、10℃/秒以上の速度で冷却することによ
り、円周方向の磁気特性に優れた無方向性電磁鋼板の製
造方法が示されている。
By the way, generally, as one of the methods for improving the magnetic properties of non-oriented electrical steel sheets, it is known to increase the heating rate before annealing after cold rolling. For example, in Japanese Unexamined Patent Publication No. 2-54720, the heating rate after cold rolling before annealing is 200 ° C./min or more, annealing is performed at an Ac 3 transformation point or more, and cooling is performed at a rate of 10 ° C./sec or more. , A method of manufacturing a non-oriented electrical steel sheet having excellent magnetic properties in the circumferential direction is shown.

【0010】しかしながらこの方法では、板面内各方向
の平均磁気特性は向上するが、圧延方向の磁気特性が特
に優れた無方向性電磁鋼板は得られない。
However, this method improves the average magnetic properties in each direction in the plate surface, but cannot obtain a non-oriented electrical steel sheet having particularly excellent magnetic properties in the rolling direction.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解消することができる、圧延方向の特に低磁
場特性に優れた小型静止器用電磁鋼板の製造方法を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a magnetic steel sheet for a small static machine, which is capable of solving the above-mentioned problems and which is excellent in a low magnetic field characteristic in the rolling direction. .

【0012】[0012]

【課題を解決するための手段】本発明の要旨は次の(1)
および(2) の製造方法にある。
Means for Solving the Problems The gist of the present invention is as follows (1)
And the manufacturing method of (2).

【0013】(1) 重量%で、C:0.005%以下、N:0.005
%以下、Mn:1.0 %以下、S:0.006%以下およびsol.A
l:0.1 %以上を含有し、かつ(Si+sol.Al )<2.0 %
を満足し、残部はFeおよび不可避的不純物からなる鋼素
材を、700 ℃以上850 ℃以下の仕上温度で熱間圧延した
後、600 ℃以下の温度で巻取りを行い、次いで脱スケー
ルの前または後に700 ℃以上A3 変態点以下の温度で焼
鈍を行い、更に80%以下の圧下率で1回の冷間圧延を行
った後、100 ℃/秒以上の加熱速度で昇温し、750 ℃以
上A3 変態点以下の温度で焼鈍を施すことを特徴とする
低磁場特性に優れた小型静止器用電磁鋼板の製造方法。
(1) C: 0.005% or less, N: 0.005% by weight
% Or less, Mn: 1.0% or less, S: 0.006% or less and sol.A
l: Containing 0.1% or more, and (Si + sol.Al) <2.0%
The steel material consisting of Fe and unavoidable impurities in the balance is hot-rolled at a finishing temperature of 700 ° C to 850 ° C, and wound at a temperature of 600 ° C or less, and then before descaling or perform annealing at 700 ° C. or higher a 3 transformation point temperature after further after one cold rolling with the following reduction ratio of 80%, the temperature was raised in the above heating rate of 100 ° C. / sec, 750 ° C. A method for manufacturing a magnetic steel sheet for a small stationary device excellent in low magnetic field characteristics, which comprises performing annealing at a temperature not higher than the A 3 transformation point.

【0014】(2) 重量%で、C:0.005%以下、N:0.005
%以下、Mn:1.0 %以下、S:0.006%以下およびsol.A
l:0.003 %以下を含有し、かつ(Si+sol.Al )<2.0
%を満足し、残部はFeおよび不可避的不純物からなる鋼
素材を、700 ℃以上850 ℃以下の仕上温度で熱間圧延し
た後、600 ℃以下の温度で巻取りを行い、次いで脱スケ
ールの前または後に700 ℃以上A3 変態点以下の温度で
焼鈍を行い、更に80%以下の圧下率で1回の冷間圧延を
行った後、100 ℃/秒以上の加熱速度で昇温し、750 ℃
以上A3 変態点以下の温度で焼鈍を施すことを特徴とす
る低磁場特性に優れた小型静止器用電磁鋼板の製造方
法。
(2) C: 0.005% or less, N: 0.005% by weight
% Or less, Mn: 1.0% or less, S: 0.006% or less and sol.A
l: 0.003% or less, and (Si + sol.Al) <2.0
%, With the balance being Fe and unavoidable impurities, hot-rolled at a finishing temperature of 700 ° C to 850 ° C, then wound at a temperature of 600 ° C or less, and then before descaling. Alternatively, after annealing at a temperature of 700 ° C. or higher and A 3 transformation point or lower, and further cold rolling once at a rolling reduction of 80% or lower, the temperature is raised at a heating rate of 100 ° C./sec or higher to 750 ° C. ℃
A method for manufacturing a magnetic steel sheet for a small stationary device excellent in low magnetic field characteristics, which comprises performing annealing at a temperature not higher than the A 3 transformation point.

【0015】本発明者らは、工程が単純な1回冷間圧延
法による上記電磁鋼板の製造方法を検討して次の新知見
を得た。
The inventors of the present invention have studied the method for producing the above electromagnetic steel sheet by the single cold rolling method, which has a simple process, and have obtained the following new findings.

【0016】鋼素材中の(Si+sol.Al )を2.0 %未満
とし、冷間圧延の圧下率を低く抑え、かつ冷間圧延後の
仕上焼鈍前の昇温を100 ℃/秒以上の加熱速度で行うこ
とにより、簡単な工程で圧延方向の低磁場特性に優れた
無方向性電磁鋼板を得ることができる。この100 ℃/秒
以上の加熱速度は、通常の連続焼鈍では不可能である
が、本出願人が開発した直接通電加熱法、すなわち電極
を兼ねた2対以上のピンチロールに鋼板を接触させて鋼
板に直接通電して加熱する方法(例えば、特願平3−14
291 号参照)を併用することにより容易に達成できる。
(Si + sol.Al) in the steel material is less than 2.0% to keep the reduction ratio of cold rolling low, and to raise the temperature before finish annealing after cold rolling at a heating rate of 100 ° C / sec or more. By doing so, it is possible to obtain a non-oriented electrical steel sheet having excellent low magnetic field characteristics in the rolling direction by a simple process. This heating rate of 100 ° C./sec or more is not possible with ordinary continuous annealing, but the direct current heating method developed by the present applicant, that is, by contacting the steel sheet with two or more pairs of pinch rolls that also serve as electrodes A method of heating by directly energizing a steel plate (for example, Japanese Patent Application No. 3-14
(See No. 291) can be easily achieved.

【0017】[0017]

【作用】本発明の基になった知見を図1により説明す
る。
The knowledge on which the present invention is based will be described with reference to FIG.

【0018】図1は、ベース成分として、C:0.002
%、Si:0.7 %、Mn:0.21%、P:0.03%、S:0.0021
%およびsol.Al:0.22 %を含有する鋼素材に対して、冷
間圧延の圧下率を67〜83%の範囲で、仕上焼鈍のための
加熱速度を10〜180 ℃/秒の範囲で、それぞれ変化させ
た場合の、 300A/m の低磁場における磁束密度(B3)
の変化を示す図である。
FIG. 1 shows C: 0.002 as a base component.
%, Si: 0.7%, Mn: 0.21%, P: 0.03%, S: 0.0021
% And sol.Al:0.22%, the cold rolling reduction ratio is in the range of 67 to 83%, the heating rate for finish annealing is in the range of 10 to 180 ° C./sec, Magnetic flux density (B 3 ) in a low magnetic field of 300 A / m when changed respectively
It is a figure which shows the change of.

【0019】ここでは、これらの鋼素材に対し、熱間圧
延の仕上温度を770 ℃、巻取温度を500 ℃とし、板厚3.
0mm に熱間圧延した。これらの熱延板を酸洗による脱ス
ケール後、800 ℃で30秒間の焼鈍を行い、冷間圧延の圧
下率を変化させるために表面研削により板厚を 1.5〜3.
0mm の範囲で変化させ、引き続き冷間圧延により最終板
厚を0.5mm とした。このときの冷間圧延の圧下率が、図
示する67、75および83%である。その後10〜180 ℃/秒
の加熱速度で880 ℃まで通電加熱後、880 ℃で30秒間の
連続焼鈍を施し、得られた鋼板から圧延方向の短冊状試
料を採取してJIS C 2550に定められている方法で磁気特
性を調査した。
Here, for these steel materials, the finishing temperature of hot rolling was 770 ° C., the coiling temperature was 500 ° C., and the sheet thickness was 3.
Hot rolled to 0 mm. After descaling these hot-rolled sheets by pickling, they are annealed at 800 ° C for 30 seconds, and the surface thickness is adjusted to 1.5 to 3 to change the reduction ratio of cold rolling.
The thickness was changed in the range of 0 mm, and then the final thickness was 0.5 mm by cold rolling. The reduction ratios of the cold rolling at this time are 67, 75, and 83% shown in the figure. After that, it was electrically heated to 880 ° C at a heating rate of 10 to 180 ° C / sec, and then continuously annealed at 880 ° C for 30 seconds. A strip-shaped sample in the rolling direction was taken from the obtained steel sheet and specified in JIS C 2550. Method was used to investigate the magnetic properties.

【0020】なお、無方向性電磁鋼板では、上記の磁気
特性は通常、JIS C 2550に定められているように、圧延
方向だけでなく圧延直角方向にも短冊状試料を採取して
行われるが、静止器用の場合には圧延方向の磁気特性の
みが重要となる。
Incidentally, in the non-oriented electrical steel sheet, the above-mentioned magnetic properties are usually obtained by taking strip-shaped samples not only in the rolling direction but also in the direction orthogonal to the rolling direction, as specified in JIS C 2550. In the case of static machines, only the magnetic properties in the rolling direction are important.

【0021】図示するように、冷間圧延の圧下率が80%
を超えると磁束密度(B3)は低下する。この磁束密度の
低下傾向は、加熱速度が 100℃/秒を下廻ると特に顕著
となる。
As shown in the figure, the cold rolling reduction rate is 80%.
If it exceeds, the magnetic flux density (B 3 ) will decrease. This tendency of decreasing the magnetic flux density becomes particularly remarkable when the heating rate is lower than 100 ° C / sec.

【0022】これは次のような理由によるものと考えら
れる。すなわち、冷間圧延の圧下率が高すぎると、特公
昭64−55338 号公報にも示されているように、板面内無
方向に平均した磁気特性に近づくため、圧延方向の磁気
特性としては悪化したものと解される。また、加熱速度
が遅くなると磁束密度が低下する傾向にあるが、これ
は、磁気特性に不利な集合組織が発達しているためと解
される。この原因については明らかではないが、加熱速
度が速くなるにつれて、再結晶時に磁気特性に有利な(1
00) 集合組織が発達しやすいためであると考えられる。
This is considered to be due to the following reason. That is, if the reduction ratio of the cold rolling is too high, as shown in Japanese Examined Patent Publication No. 64-55338, it approaches the magnetic properties averaged in the in-plane direction. It is understood that it has deteriorated. Further, when the heating rate becomes slower, the magnetic flux density tends to decrease, which is considered to be due to the development of texture which is disadvantageous to the magnetic properties. The reason for this is not clear, but as the heating rate increases, the magnetic properties favored during recrystallization (1
00) It is thought that this is because the texture easily develops.

【0023】次に本発明の方法の対象となる鋼素材の組
成を前記のように限定した理由を説明する。
Next, the reason why the composition of the steel material which is the object of the method of the present invention is limited as described above will be explained.

【0024】C:C含有量は磁気時効の観点から少ない
方がよい。C含有量が 0.005%を超えると磁気時効によ
り低磁場特性が悪化することから、 0.005%を上限とし
た。望ましいのは0.003 %以下である。なお、下限につ
いては特に制約はない。
From the viewpoint of magnetic aging, the C: C content is preferably low. If the C content exceeds 0.005%, the low magnetic field characteristics deteriorate due to magnetic aging, so 0.005% was made the upper limit. 0.003% or less is desirable. There is no particular restriction on the lower limit.

【0025】N:N含有量が 0.005%を超えるとAlN な
どの窒化物が生成し、焼鈍時の粒成長を抑制することに
より低磁場特性が劣化することから、 0.005%を上限と
した。望ましいのは0.003 %以下である。なお、下限に
ついてはCと同じく制約はない。
N: If the N content exceeds 0.005%, nitrides such as AlN are generated, and the low magnetic field characteristics are deteriorated by suppressing grain growth during annealing, so 0.005% was made the upper limit. 0.003% or less is desirable. The lower limit is the same as that of C, and there is no restriction.

【0026】Mn:1.0 %を超えて含有させると磁束密度
が低下するため、Mn含有量は1.0 %以下とした。
Mn: If the content exceeds 1.0%, the magnetic flux density decreases, so the Mn content was made 1.0% or less.

【0027】S:Mnと MnSを形成し、S含有量が0.006
%を超えると、この MnSが焼鈍時の結晶粒成長を妨げ低
磁場特性を劣化させるとともに、熱間脆性を引き起こ
す。よって、S含有量は 0.006%以下とした。望ましい
のは0.003 %以下である。なお、下限の限定は、低磁場
特性上不要である。
S: Mn and MnS are formed, and the S content is 0.006.
%, MnS hinders grain growth during annealing, deteriorates low magnetic field characteristics, and causes hot brittleness. Therefore, the S content is set to 0.006% or less. 0.003% or less is desirable. Note that the lower limit is not required in view of the low magnetic field characteristics.

【0028】sol.Al:sol.Al含有量が 0.003%を超え0.
1 %未満の範囲では、AlN が微細に析出して再結晶後の
結晶粒の成長を阻害し、磁気特性に悪影響を及ぼす。よ
って、sol.Al含有量の範囲は0.003 以下、
または0.1 %以上とした。
Sol.Al: sol.Al content exceeds 0.003% and
In the range of less than 1%, AlN is finely precipitated and inhibits the growth of crystal grains after recrystallization, which adversely affects the magnetic properties. Therefore, sol. The range of Al content is 0.003 or less,
Or 0.1% or more.

【0029】Si+sol.Al:Siとsol.Alはともに透磁率を
高め、低磁場特性の向上に有効に寄与する元素である
が、Si+sol.Alで2.0 %を超えて含有させると、磁束密
度の低下を招くので、2.0 %未満とした。
Si + sol.Al: Both Si and sol.Al are elements that enhance the magnetic permeability and effectively contribute to the improvement of the low magnetic field characteristics. However, if Si + sol.Al is contained in excess of 2.0%, the magnetic flux density Since it causes a decrease, it was set to less than 2.0%.

【0030】Pは鋼板の硬度調整のために含有させても
よいが、P含有量が 0.2%を超えると鋼板が脆化し冷間
圧延において破断が生じ易くなるので、 0.2%以下とす
ることが望ましい。
P may be contained in order to adjust the hardness of the steel sheet, but if the P content exceeds 0.2%, the steel sheet becomes brittle and fracture easily occurs in cold rolling. Therefore, it should be 0.2% or less. desirable.

【0031】次に製造工程および製造条件を前記のよう
に限定した理由を説明する。
Next, the reason why the manufacturing process and manufacturing conditions are limited as described above will be explained.

【0032】上記のような組成の鋼素材は常法に従って
転炉等で溶製され、連続鋳造または造塊−分塊圧延を経
てスラブとされる。次いで、このスラブを熱間圧延し、
その後巻取りを行い、脱スケールの前または後に焼鈍を
行い、1回の冷間圧延を施して焼鈍を実施する。熱間圧
延以降の各工程について以下に詳述する。
The steel material having the above composition is melted in a converter or the like according to a conventional method, and is continuously cast or ingot-slab-rolled into a slab. Then, this slab is hot rolled,
After that, winding is performed, annealing is performed before or after descaling, and one cold rolling is performed to perform annealing. Each step after hot rolling will be described in detail below.

【0033】熱間圧延、巻取り この工程は圧延仕上温度を700 ℃以上850 ℃以下とし、
巻取温度を600 ℃以下とすることを条件とする。
Hot rolling, winding In this step, the rolling finishing temperature is 700 ° C. or higher and 850 ° C. or lower,
The condition is that the coiling temperature is 600 ℃ or less.

【0034】本発明の方法は既述したとおり、熱延板の
焼鈍の階段で再結晶および粒成長を促進させることによ
り、磁気特性を向上させるところに重要なポイントがあ
る。
As described above, the method of the present invention has an important point in improving the magnetic characteristics by promoting recrystallization and grain growth in the step of annealing the hot rolled sheet.

【0035】熱延板の焼鈍時に再結晶および粒成長を十
分に促進させるためには、熱間圧延終了時に十分な歪が
蓄積され、またその歪エネルギーが巻取りを経た後まで
解放されずに残っていなければならない。熱間圧延は、
このような観点から圧延仕上温度を850 ℃以下とし、巻
取りはできるだけ歪エネルギーが解放されない低い温度
とするのが良い。
In order to sufficiently promote recrystallization and grain growth during annealing of the hot rolled sheet, sufficient strain is accumulated at the end of hot rolling, and the strain energy is not released until after winding. Must remain. Hot rolling
From this point of view, the rolling finishing temperature is preferably 850 ° C. or lower, and the winding is preferably performed at a low temperature at which strain energy is not released as much as possible.

【0036】この場合、圧延仕上温度は、熱延板の焼鈍
時の再結晶および粒成長の意味からは、850 ℃以下の温
度とする上限限定だけで十分であるが、現実には圧延仕
上温度が700 ℃を下回ると、圧延負荷が大きくなりす
ぎ、通常の圧延機では操業が困難となる。以上のことか
ら、圧延仕上温度は700 ℃以上850 ℃以下とした。
In this case, the rolling finishing temperature is limited to the upper limit of 850 ° C. or less from the meaning of recrystallization and grain growth during annealing of the hot rolled sheet, but in reality, the rolling finishing temperature is If the temperature falls below 700 ° C, the rolling load will be too large, and it will be difficult to operate with ordinary rolling mills. From the above, the rolling finishing temperature was set to 700 ° C to 850 ° C.

【0037】巻取温度については、600 ℃を超える場合
には、鋼板内部の歪エネルギーの解放が進んでこのエネ
ルギーが蓄積されず、さらに再結晶も生じ始めて、その
後の熱延板の焼鈍時の結晶粒成長性が悪くなる。したが
って、巻取温度の上限は 600℃とした。下限は、歪エネ
ルギーの解放抑制という観点から設ける必要はない。
Regarding the coiling temperature, when the temperature exceeds 600 ° C., the strain energy in the steel sheet is released and this energy is not accumulated, and recrystallization also begins to occur. The crystal grain growth becomes poor. Therefore, the upper limit of the coiling temperature was set to 600 ° C. The lower limit need not be set from the viewpoint of suppressing the release of strain energy.

【0038】脱スケール 脱スケールは酸洗いで行う場合が多いが、種々の機械的
な脱スケール法、例えばショットブラストやロールベン
ダなどの組合せで行ってもよい。脱スケールは熱延板の
焼鈍の前または後に実施する。
Descaling Descaling is often carried out by pickling, but various mechanical descaling methods such as shot blasting and roll bender combination may be used. Descaling is performed before or after annealing the hot rolled sheet.

【0039】熱延板の焼鈍 この工程は、前記の熱間圧延、巻取りを経た熱延板を再
結晶および粒成長させるためのものである。
Annealing of hot-rolled sheet This step is for recrystallizing and grain-growing the hot-rolled sheet which has been hot-rolled and wound.

【0040】焼鈍の方法としては、箱焼鈍、連続焼鈍の
いずれでも採用できる。再結晶と結晶粒の成長を安定し
て完了させるには、箱焼鈍の場合700 ℃以上、連続焼鈍
の場合750 ℃以上の温度とする必要がある。焼鈍温度を
700 ℃以上としたのはこれに基づいている。上限につい
ては、オーステナイトに変態すると磁気特性が悪化する
ため、A3 変態点以下とする。
As the annealing method, either box annealing or continuous annealing can be adopted. In order to stably complete the recrystallization and the growth of crystal grains, it is necessary to raise the temperature to 700 ° C or higher for box annealing and 750 ° C or higher for continuous annealing. Annealing temperature
It is based on this that the temperature above 700 ° C is set. The upper limit, because the magnetic characteristics are deteriorated when transitioning to the austenite, or less A 3 transformation point.

【0041】冷間圧延 冷間圧延の圧下率は本発明の重要な条件の一つであり、
80%以下とする必要がある。このような圧下率で冷間圧
延を行うことにより、製品での圧延方向の磁気特性が向
上する。下限はもっぱら操業上の制約から決まるので限
定しない。例えば、板厚が0.5mm の最も一般的な製品の
場合、50%の圧下率を採ろうとすれば熱延板板厚は1mm
であることが必要となるので、この程度が実操業の限界
であり、この50%以下の圧下率での冷間圧延は事実上不
可能といえる。
Cold rolling The reduction ratio of cold rolling is one of the important conditions of the present invention.
It should be below 80%. By performing cold rolling at such a reduction rate, the magnetic properties in the rolling direction of the product are improved. The lower limit is determined solely by operational constraints and is not limited. For example, in the case of the most common product with a plate thickness of 0.5 mm, the hot-rolled plate thickness is 1 mm if 50% reduction is to be achieved.
Therefore, it is practically impossible to carry out cold rolling at a rolling reduction of 50% or less.

【0042】冷間圧延後の焼鈍 冷間圧延後の焼鈍は本発明の重要な条件の一つである。
この焼鈍は、上記冷間圧延後の加工組織を再結晶させる
過程で、磁気特性に有利な再結晶粒を生成させるととも
に再結晶粒を充分に粒成長させることを目的としてい
る。本発明の方法では焼鈍前の加熱速度を速くするの
で、直接通電法による加熱と連続焼鈍法を組合せるのが
よい。
Annealing after cold rolling Annealing after cold rolling is one of the important conditions of the present invention.
This annealing is intended to generate recrystallized grains advantageous for magnetic properties and to sufficiently grow the recrystallized grains in the process of recrystallizing the work structure after the cold rolling. Since the heating rate before annealing is increased in the method of the present invention, it is preferable to combine the heating by the direct current method and the continuous annealing method.

【0043】冷間圧延後の仕上焼鈍のための加熱速度が
100 ℃/秒未満では、磁束密度が低下する(前記の図1
参照)。よって、通電加熱などにより100 ℃/秒以上の
加熱速度とする必要がある。
The heating rate for finish annealing after cold rolling is
At less than 100 ° C / sec, the magnetic flux density decreases (Fig. 1 above).
reference). Therefore, it is necessary to set the heating rate to 100 ° C / sec or more by heating with electricity.

【0044】焼鈍温度としては750 ℃以上A3 変態点以
下とする。750 ℃未満の低い温度では再結晶しないか、
あるいは再結晶しても粒成長が十分起こらない。一方、
3変態点を超えると磁気特性が悪化する。
The annealing temperature is not lower than 750 ° C. and not higher than the A 3 transformation point. Will it not recrystallize at temperatures below 750 ° C?
Alternatively, grain growth does not occur sufficiently even when recrystallized. on the other hand,
If it exceeds the A 3 transformation point, the magnetic properties deteriorate.

【0045】なお、電磁鋼板を製造する場合、通常は上
記の焼鈍後さらに絶縁コーティングを付与する工程が入
る。本発明の方法においても、製造の最終工程としてこ
のコーティング工程を追加することは可能である。ま
た、無方向性電磁鋼板には、所定の磁気特性を施して出
荷されるフルプロセス品と出荷後ユーザー側で打ち抜き
などの加工後に歪み取り焼鈍(750℃×2時間程度)を施
して所定の磁気特性を保有させるセミプロセス品とがあ
る。前者についてもユーザー側で歪み取り焼鈍が施され
ることも当然あり、したがって、この場合では出荷時は
もとよりユーザー側で歪み取り焼鈍をした後も規定の磁
気特性を示すことが要求される。本発明の方法は、上記
いずれの製品であっても適用できる。
When manufacturing an electromagnetic steel sheet, usually, a step of applying an insulating coating after the above annealing is performed. Also in the method of the present invention, it is possible to add this coating step as the final step of manufacturing. In addition, the non-oriented electrical steel sheet is a full-process product that is shipped with the specified magnetic characteristics, and after the shipment, it is subjected to strain relief annealing (750 ° C x 2 hours) after punching and other processing, and then the specified There are semi-processed products that retain magnetic properties. In the former case as well, the user side is naturally subjected to strain relief annealing. Therefore, in this case, it is required that the prescribed magnetic characteristics are exhibited not only at the time of shipment but also after the user side is strain relief annealed. The method of the present invention can be applied to any of the above products.

【0046】[0046]

【実施例】表1(1) に示す各化学組成の鋼を転炉で溶製
し、これらを連続鋳造により鋳片となし、続いて熱間圧
延、熱延板連続焼鈍、冷間圧延および仕上連続焼鈍を行
った。製造工程とその条件を表1(2) に示す。ただし、
仕上連続焼鈍前の加熱速度が100 ℃/秒を超えるもので
は、次に述べる条件で前記直接通電加熱を併用した。な
お、ラインスピードは50m/分、最終板厚は0.5mm 、板幅
は1000mmとした。
[Examples] Steel of each chemical composition shown in Table 1 (1) was melted in a converter and formed into a slab by continuous casting, followed by hot rolling, hot-rolled sheet continuous annealing, cold rolling and Finishing continuous annealing was performed. The manufacturing process and its conditions are shown in Table 1 (2). However,
When the heating rate before finishing continuous annealing was more than 100 ° C./sec, the direct current heating was also used under the following conditions. The line speed was 50 m / min, the final plate thickness was 0.5 mm, and the plate width was 1000 mm.

【0047】直接通電加熱は、ロール径500mm の2対の
ピンチロールを板の進行方向に対して5m 離間させて前
後に配置し、前後のピンチロール間に 1300kWの消費電
力を供給して行った。
Direct energization heating was performed by arranging two pairs of pinch rolls having a roll diameter of 500 mm at the front and rear with a distance of 5 m from the traveling direction of the plate and supplying power consumption of 1300 kW between the front and rear pinch rolls. .

【0048】得られた各鋼板から、JIS C 2550に定めら
れている方法で磁束密度B3 を測定した。このときの短
冊試料も、前記図1の場合と同様の理由で圧延方向のみ
とした。結果を表1(2) の右欄に示す。
From each of the obtained steel plates, the magnetic flux density B 3 was measured by the method specified in JIS C 2550. The strip samples at this time were also limited to the rolling direction for the same reason as in the case of FIG. The results are shown in the right column of Table 1 (2).

【0049】[0049]

【表1(1)】 [Table 1 (1)]

【0050】[0050]

【表1(2)】 [Table 1 (2)]

【0051】No.1、No.2は(Si +sol.Al) 含有量の影響
をみたものである。この含有量が本発明で定める範囲を
超えるNo.2では、磁束密度が低い。
No. 1 and No. 2 show the influence of the (Si + sol.Al) content. In No. 2 in which this content exceeds the range specified in the present invention, the magnetic flux density is low.

【0052】No.3〜No.5はsol.Al含有量の影響をみたも
のである。sol.Al含有量が本発明で定める範囲を外れる
No.5では、AlN が微細に析出し、熱延板焼鈍および冷間
圧延後の仕上焼鈍時の粒成長性を悪化させることによ
り、磁束密度が低い。
No. 3 to No. 5 show the influence of the sol.Al content. sol.Al content is out of the range specified in the present invention
In No. 5, AlN is finely precipitated and the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling is deteriorated, so that the magnetic flux density is low.

【0053】No.6、No.7はC含有量の影響をみたもので
ある。C含有量が本発明で定める上限を超えるNo.7で
は、析出した炭化物が熱延板焼鈍および冷間圧延後の仕
上焼鈍時の粒成長性を悪化させることにより、磁束密度
が低い。
No. 6 and No. 7 show the influence of the C content. In No. 7 in which the C content exceeds the upper limit defined by the present invention, the precipitated carbides deteriorate the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling, so that the magnetic flux density is low.

【0054】No.8、No.9はN含有量の影響をみたもので
ある。N含有量が本発明で定める範囲を超えるNo.9で
は、析出した窒化物が熱延板焼鈍および冷間圧延後の仕
上焼鈍時の粒成長性を悪化させることにより、磁束密度
が低い。
No. 8 and No. 9 show the influence of the N content. In No. 9 in which the N content exceeds the range specified in the present invention, the precipitated nitride deteriorates the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling, so that the magnetic flux density is low.

【0055】No.10 、No.11 はS含有量の、No.12 、N
o.13 はMn含有量の、それぞれ影響をみたものである。
S含有量が本発明で定める範囲を超えるNo.11 では、析
出した硫化物 MnSが熱延板焼鈍および冷間圧延後の仕上
焼鈍時の粒成長性を悪化させることにより、磁束密度が
低い。Mn含有量が本発明で定める範囲を超えるNo.13 で
は、磁束密度が低下している。
No. 10 and No. 11 are S contents, No. 12 and N
o.13 shows the effect of Mn content.
In No. 11 in which the S content exceeds the range specified in the present invention, the precipitated sulfide MnS deteriorates the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling, resulting in a low magnetic flux density. In No. 13 in which the Mn content exceeds the range specified in the present invention, the magnetic flux density is lowered.

【0056】No.14 〜No.21 は、本発明で定める範囲内
の成分系について製造条件の影響をみたものである。こ
れらのうち、その製造条件のいずれかがが本発明で定め
る範囲外のNo.15 〜No.21 では、全て本発明の条件を満
たすNo.14 と比較して磁束密度が低い。No.15 では、熱
間圧延の仕上温度が高すぎて熱延板に歪エネルギーの蓄
積がなく、熱延板焼鈍時に再結晶及び粒成長が十分に行
われなかったため、磁束密度が低くなっている。No.16
では、熱間圧延の巻取温度が高すぎるため、No.15 と同
じ理由でやはり磁束密度が低くなっている。No.17 で
は、熱延板の焼鈍温度が低すぎるため、粒成長が十分起
こらず磁束密度が低くなっている。No.18では、冷間圧
延の圧下率が高すぎて、板面内無方向に平均した磁気特
性を持つ状態に近づくため、圧延方向での磁束密度とし
ては低くなっている。No.19 では、仕上焼鈍前の加熱速
度が遅いため、またNo.20 では、仕上連続焼鈍の温度が
低すぎるため、いずれも充分な粒成長が起こらず磁束密
度が低くなっている。No.21では、仕上連続焼鈍の温度
がA3 変態点を超えて高すぎるため、磁束密度が低くな
っている。
Nos. 14 to 21 are the effects of manufacturing conditions on the component systems within the range defined by the present invention. Among these, in No. 15 to No. 21 in which one of the manufacturing conditions is out of the range defined by the present invention, the magnetic flux density is lower than that of No. 14 satisfying the condition of the present invention. In No. 15, the finishing temperature of hot rolling was too high, strain energy did not accumulate in the hot rolled sheet, and recrystallization and grain growth were not sufficiently performed during hot rolled sheet annealing, so the magnetic flux density became low. There is. No.16
However, since the coiling temperature of hot rolling is too high, the magnetic flux density is still low for the same reason as No.15. In No. 17, since the annealing temperature of the hot-rolled sheet was too low, grain growth did not occur sufficiently and the magnetic flux density was low. In No. 18, the reduction ratio of the cold rolling is too high, and the state is close to the state where the magnetic properties are averaged in the in-plane non-direction, so the magnetic flux density in the rolling direction is low. In No. 19, the heating rate before finish annealing was slow, and in No. 20, the temperature of finish continuous annealing was too low, so that sufficient grain growth did not occur and the magnetic flux density was low. In No. 21, since the temperature of the finish continuous annealing is too high, exceeding the A 3 transformation point, the magnetic flux density is low.

【0057】[0057]

【発明の効果】本発明の方法によれば、小型静止器の鉄
芯用材料として好適な、圧延方向の低磁場における磁束
密度が高い、優れた低磁場特性を有する無方向性電磁鋼
板を製造することができる。しかも、従来技術のような
2回冷間圧延などの煩雑な工程を経る必要がない。
According to the method of the present invention, a non-oriented electrical steel sheet having a high magnetic field density and a high magnetic field density in a low magnetic field in the rolling direction, which is suitable as an iron core material for a small static machine, is manufactured. can do. Moreover, there is no need to go through complicated processes such as double cold rolling as in the prior art.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間圧延の圧下率および仕上焼鈍前の加熱速度
と 300A/m の低磁場における磁束密度B3 との関係を
示す図である。
FIG. 1 is a diagram showing a relationship between a reduction rate of cold rolling, a heating rate before finish annealing, and a magnetic flux density B 3 in a low magnetic field of 300 A / m 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.005%以下、N:0.005%以
下、Mn:1.0 %以下、S:0.006%以下およびsol.Al:0.
1 %以上を含有し、かつ(Si+sol.Al )<2.0 %を満
足し、残部はFeおよび不可避的不純物からなる鋼素材
を、700 ℃以上850 ℃以下の仕上温度で熱間圧延した
後、600 ℃以下の温度で巻取りを行い、次いで脱スケー
ルの前または後に700 ℃以上A3 変態点以下の温度で焼
鈍を行い、更に80%以下の圧下率で1回の冷間圧延を行
った後、100 ℃/秒以上の加熱速度で昇温し、750℃以
上A3 変態点以下の温度で焼鈍を施すことを特徴とする
低磁場特性に優れた小型静止器用電磁鋼板の製造方法。
1. By weight%, C: 0.005% or less, N: 0.005% or less, Mn: 1.0% or less, S: 0.006% or less and sol.Al: 0.
A steel material containing 1% or more and (Si + sol.Al) <2.0% with the balance being Fe and unavoidable impurities is hot-rolled at a finishing temperature of 700 ℃ to 850 ℃, and then 600 After coiling at a temperature of ℃ or less, then annealing before or after descaling at a temperature of 700 ℃ or more and A 3 transformation point or less, and further cold rolling once at a rolling reduction of 80% or less. A method for manufacturing a magnetic steel sheet for a small static device excellent in low magnetic field characteristics, which comprises heating at a heating rate of 100 ° C./sec or more and annealing at a temperature of 750 ° C. or more and A 3 transformation point or less.
【請求項2】重量%で、C:0.005%以下、N:0.005%以
下、Mn:1.0 %以下、S:0.006%以下およびsol.Al:0.
003 %以下を含有し、かつ(Si+sol.Al )<2.0 %を
満足し、残部はFeおよび不可避的不純物からなる鋼素材
を、700 ℃以上850 ℃以下の仕上温度で熱間圧延した
後、600 ℃以下の温度で巻取りを行い、次いで脱スケー
ルの前または後に700 ℃以上A3 変態点以下の温度で焼
鈍を行い、更に80%以下の圧下率で1回の冷間圧延を行
った後、100 ℃/秒以上の加熱速度で昇温し、750 ℃以
上A3 変態点以下の温度で焼鈍を施すことを特徴とする
低磁場特性に優れた小型静止器用電磁鋼板の製造方法。
2. C. 0.005% or less, N: 0.005% or less, Mn: 1.0% or less, S: 0.006% or less and sol.Al: 0.
A steel material containing less than 003% and satisfying (Si + sol.Al) <2.0% with the balance being Fe and inevitable impurities was hot-rolled at a finishing temperature of 700 ℃ to 850 ℃, and then 600 After coiling at a temperature of ℃ or less, then annealing before or after descaling at a temperature of 700 ℃ or more and A 3 transformation point or less, and further cold rolling once at a rolling reduction of 80% or less. A method of manufacturing a magnetic steel sheet for a small static device having excellent low magnetic field characteristics, which comprises heating at a heating rate of 100 ° C./sec or more and annealing at a temperature of 750 ° C. or more and A 3 transformation point or less.
JP1537193A 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device Pending JPH06228644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1537193A JPH06228644A (en) 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1537193A JPH06228644A (en) 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device

Publications (1)

Publication Number Publication Date
JPH06228644A true JPH06228644A (en) 1994-08-16

Family

ID=11886929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1537193A Pending JPH06228644A (en) 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device

Country Status (1)

Country Link
JP (1) JPH06228644A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
WO2020111006A1 (en) * 2018-11-26 2020-06-04 Jfeスチール株式会社 Manufacturing method for non-oriented magnetic steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
JP2012132070A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel plate
EP2657355A1 (en) * 2010-12-22 2013-10-30 JFE Steel Corporation Process for production of non-oriented electromagnetic steel sheet
EP2657355A4 (en) * 2010-12-22 2014-07-09 Jfe Steel Corp Process for production of non-oriented electromagnetic steel sheet
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
WO2020111006A1 (en) * 2018-11-26 2020-06-04 Jfeスチール株式会社 Manufacturing method for non-oriented magnetic steel sheet
JP6769580B1 (en) * 2018-11-26 2020-10-14 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet
TWI717914B (en) * 2018-11-26 2021-02-01 日商杰富意鋼鐵股份有限公司 Method for manufacturing non-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
US7846271B2 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
JP2006501361A5 (en)
JP2024041844A (en) Method for producing non-oriented magnetic steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JPH06228644A (en) Production of silicon steel sheet for compact stationary device
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US4326899A (en) Method of continuous annealing low-carbon electrical sheet steel and duplex product produced thereby
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH09283316A (en) Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP7288215B2 (en) Non-oriented electrical steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
KR20030052139A (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06116641A (en) Production of silicon steel sheet for compact stationary device
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPS58204126A (en) Production of nondirectional electrical steel strip having excellent magnetic characteristic
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH10226854A (en) Silicon steel hot rolled sheet excellent in magnetic property and its production
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties