JPH06228645A - Production of silicon steel sheet for compact stationary device - Google Patents

Production of silicon steel sheet for compact stationary device

Info

Publication number
JPH06228645A
JPH06228645A JP1576093A JP1576093A JPH06228645A JP H06228645 A JPH06228645 A JP H06228645A JP 1576093 A JP1576093 A JP 1576093A JP 1576093 A JP1576093 A JP 1576093A JP H06228645 A JPH06228645 A JP H06228645A
Authority
JP
Japan
Prior art keywords
annealing
rolling
less
steel sheet
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1576093A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
隆 田中
Hiroyoshi Yashiki
裕義 屋鋪
Kazusane Isaka
和実 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1576093A priority Critical patent/JPH06228645A/en
Publication of JPH06228645A publication Critical patent/JPH06228645A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for producing a silicon steel sheet for a compact stationary device excellent in magnetic properties in the rolling direction. CONSTITUTION:Steel stock contg. <=0.005% C, <=0.005% N, <=1.0% Mn, <=0.006% S and >=0.1% sol.Al and satisfying (Si+sol.Al): 2.0 to 4.0% is subjected to hot rolling at a finishing temp. of 700 to 850 deg.C and is thereafter coiled at <=600 deg.C. Next, before or after descaling, it is annealed at >=800 deg.C and is furthermore subjected to a single cold rolling at <=80% draft. After that, its temp. is raised at >=100 deg.C/sec heating rate, and it is annealed at 800 to 1100 deg.C. In this way, the non-oriented silicon steel sheet having low core loss and high magnetic flux density and suitable as the iron core material for a compact stationary device can be produced without executing a complicated stage such as two times cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型静止器の鉄心材料
として用いられる、圧延方向に磁気特性の優れた電磁鋼
板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electromagnetic steel sheet having excellent magnetic properties in the rolling direction, which is used as an iron core material for a small static device.

【0002】[0002]

【従来の技術】電磁鋼板に対しては、機器の電力損失低
減および小型化のため、低鉄損、高磁束密度化という磁
気特性改善が強く求められている。なかでも、変圧器や
安定器などの静止器用の電磁鋼板については、磁化方向
が限定されることから、機器性能上その磁気特性に異方
性 (方向性) があることがむしろ有利となる。すなわ
ち、一方向のみに磁気特性の優れた方向性電磁鋼板が望
ましいことになる。
2. Description of the Related Art Magnetic steel sheets are strongly required to have improved magnetic characteristics such as low iron loss and high magnetic flux density in order to reduce power loss and downsize equipment. Among them, magnetic steel sheets for stationary devices such as transformers and ballasts have a limited magnetization direction, and therefore it is rather advantageous in terms of device performance that the magnetic properties have anisotropy (direction). That is, a grain-oriented electrical steel sheet having excellent magnetic properties in only one direction is desirable.

【0003】しかし、方向性電磁鋼板の欠点としては、
長時間の高温焼鈍などの煩雑な工程を含むその製造方法
に起因する高価格が挙げられる。このため、大型静止器
ほど低鉄損を要しない小型静止器に対しては、より低価
格の無方向性電磁鋼板が用いられるが、静止器のように
磁化方向が限定される用途には、できるだけ一方向に方
向性を持ち、かつできるだけ低鉄損の電磁鋼板の方が好
ましいのはいうまでもない。このような観点から圧延方
向に磁気特性の優れた無方向性電磁鋼板の開発が進めら
れてきた。
However, the disadvantages of grain-oriented electrical steel sheets are:
High cost due to its manufacturing method including complicated steps such as high temperature annealing for a long time can be mentioned. Therefore, for a small static device that does not require as low iron loss as a large static device, a less expensive non-oriented electrical steel sheet is used, but for applications where the magnetization direction is limited, such as a static device, It goes without saying that it is preferable to use an electromagnetic steel sheet having directionality in one direction as much as possible and having as low iron loss as possible. From such a viewpoint, development of non-oriented electrical steel sheets having excellent magnetic properties in the rolling direction has been promoted.

【0004】例えば、特公昭56−43294 号公報には、S
i:0.1〜1.0 %で、トータルAlを0.007 %以下に低く調
整した熱延鋼板を、中間焼鈍をはさむ2回の冷間圧延
で、2回目の圧下率を2〜15%とし、かつ鋼板の表面粗
度を15μ-in,r.m.s 以下とすることにより、圧延方向の
透磁率μ15/50 を4500以上とする透磁率の高い無方向性
電磁鋼板の製造方法が示されている。
For example, Japanese Patent Publication No. 56-43294 discloses S
i: 0.1 to 1.0%, and the total Al was adjusted to 0.007% or less. A hot-rolled steel sheet was cold-rolled twice with intermediate annealing so that the second rolling reduction was 2 to 15%, and A method for producing a non-oriented electrical steel sheet having a high magnetic permeability, which has a surface roughness of 15 μ-in, rms or less, has a magnetic permeability μ 15/50 in the rolling direction of 4500 or more is disclosed .

【0005】特開昭61−119618号公報には、C:0.020%
以下、Si:1.0%以下、Mn:0.1〜1.0%、Al:0.40 %以下
を含む鋼スラブを熱間圧延後、熱延板焼鈍を経ることな
く、中間焼鈍をはさむ2回の冷間圧延で、2回目の圧下
率を3〜7%とする小型静止器の鉄芯材料用電磁鋼板の
製造方法が示されている。
In Japanese Patent Laid-Open No. 61-119618, C: 0.020%
The steel slab containing Si: 1.0% or less, Mn: 0.1 to 1.0%, and Al: 0.40% or less is hot-rolled and then cold-rolled twice with intermediate annealing without hot-rolled sheet annealing. A method for producing a magnetic steel sheet for iron core material of a small static device, in which the second rolling reduction is 3 to 7%, is shown.

【0006】特開平2−305920号公報には、C:0.015%
以下、Si:0.1 〜1.5 %、Mn:0.1〜1.5 %、P:0.15
%以下、S:0.008%以下、sol.Al:0.01〜1.0 %、トー
タルN:0.0050%以下およびトータルO (酸素) :0.02
%以下を含有し、 (sol.Al/Si):0.02以上、 Al2O3 /(
SiO2+ MnO+ Al2O3) ×100:40%以上を満足する鋼スラ
ブを熱間圧延後、中間焼鈍をはさむ2回の冷間圧延で、
2回目の圧下率を3〜10%とし、かつ鋼板の表面粗度を
15μ-in,r.m.s 以下とする磁気特性と溶接性の優れたセ
ミプロセス無方向性電磁鋼板の製造方法が示されてい
る。
In Japanese Patent Laid-Open No. 2-305920, C: 0.015%
Below, Si: 0.1-1.5%, Mn: 0.1-1.5%, P: 0.15
% Or less, S: 0.008% or less, sol.Al: 0.01 to 1.0%, total N: 0.0050% or less and total O (oxygen): 0.02
% Or less, (sol.Al/Si): 0.02 or more, Al 2 O 3 / (
SiO 2 + MnO + Al 2 O 3 ) × 100: After hot rolling a steel slab satisfying 40% or more, two cold rolling steps with intermediate annealing are performed.
The second rolling reduction is 3-10%, and the surface roughness of the steel sheet is
A method for producing a semi-process non-oriented electrical steel sheet with excellent magnetic properties and weldability of 15 μ-in, rms or less is shown.

【0007】しかし、これらの各号報に示される方法で
は、いずれも中間焼鈍をはさんで2回の冷間圧延を行う
ため、その製造工程が煩雑になり、また経済的にも不利
である。さらにSi含有量が1.5 %以下と低いため、特に
低鉄損を要求される用途には適しない無方向性電磁鋼板
しか得られない。
However, in each of the methods disclosed in these publications, cold rolling is carried out twice with intermediate annealing, so that the manufacturing process is complicated and economically disadvantageous. . Furthermore, since the Si content is as low as 1.5% or less, only non-oriented electrical steel sheets suitable for applications that require low iron loss can be obtained.

【0008】ところで、一般に無方向性電磁鋼板におい
て磁気特性を向上させる手法の一つとして、冷間圧延後
の焼鈍前の加熱速度を速くすることが知られている。例
えば、特開平2−54720 号公報において、冷間圧延後の
焼鈍前の加熱速度を 200℃/分以上とし、Ac3変態点以
上で焼鈍し、10℃/秒以上の速度で冷却することによ
り、円周方向の磁気特性に優れた無方向性電磁鋼板の製
造方法が示されている。
By the way, generally, as one of the methods for improving the magnetic properties of a non-oriented electrical steel sheet, it is known to increase the heating rate before annealing after cold rolling. For example, in Japanese Unexamined Patent Publication No. 2-54720, the heating rate after cold rolling before annealing is 200 ° C./min or more, annealing is performed at an Ac 3 transformation point or more, and cooling is performed at a rate of 10 ° C./sec or more. , A method of manufacturing a non-oriented electrical steel sheet having excellent magnetic properties in the circumferential direction is shown.

【0009】しかしながら、この方法では、板面内各方
向の平均磁気特性は向上するが、圧延方向の磁気特性が
特に優れた無方向性電磁鋼板は得られない。
However, this method improves the average magnetic properties in each direction in the plate surface, but cannot obtain a non-oriented electrical steel sheet having particularly excellent magnetic properties in the rolling direction.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解消することができる、圧延方向の磁気特性
に優れた小型静止器用電磁鋼板の製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a magnetic steel sheet for a small stationary machine, which is capable of solving the above-mentioned problems and is excellent in magnetic characteristics in the rolling direction.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は次の製造
方法にある。
The gist of the present invention resides in the following manufacturing method.

【0012】重量%で、C:0.005%以下、N:0.005%以
下、Mn:1.0 %以下、S:0.006%以下およびsol.Al:0.
1 %以上を含有し、かつ(Si+sol.Al):2.0〜4.0 %を
満足し、残部はFeおよび不可避的不純物からなる鋼素材
を、700 ℃以上850 ℃以下の仕上温度で熱間圧延した
後、600 ℃以下の温度で巻取りを行い、次いで脱スケー
ルの前または後に800 ℃以上の温度で焼鈍を行い、更に
80%以下の圧下率で1回の冷間圧延を行った後、100 ℃
/秒以上の加熱速度で昇温し、800 ℃以上1100℃以下の
温度で焼鈍を施すことを特徴とする磁気特性に優れた小
型静止器用電磁鋼板の製造方法。
% By weight, C: 0.005% or less, N: 0.005% or less, Mn: 1.0% or less, S: 0.006% or less and sol.Al: 0.
After hot rolling a steel material containing 1% or more and satisfying (Si + sol.Al): 2.0 to 4.0% with the balance being Fe and unavoidable impurities at a finishing temperature of 700 ° C to 850 ° C. , Coiling at a temperature of 600 ° C or less, then annealing at a temperature of 800 ° C or more before or after descaling, and
After cold rolling once at a rolling reduction of 80% or less, 100 ℃
A method of manufacturing a magnetic steel sheet for a small static device having excellent magnetic properties, which comprises heating at a heating rate of not less than 1 / sec and annealing at a temperature of 800 ° C or more and 1100 ° C or less.

【0013】本発明者らは、工程が単純な1回冷間圧延
法による上記電磁鋼板の製造方法を検討して次の新知見
を得た。
The inventors of the present invention have studied the manufacturing method of the above-mentioned magnetic steel sheet by the single cold rolling method having a simple process, and have obtained the following new findings.

【0014】冷間圧延の圧下率を低く抑え、かつ冷間圧
延後の仕上焼鈍前の昇温を100 ℃/秒以上の加熱速度で
行うことにより、簡単な工程で圧延方向の磁気特性に優
れた無方向性電磁鋼板を得ることができる。この100 ℃
/秒以上の加熱速度は、通常の連続焼鈍では不可能であ
るが、本出願人が開発した直接通電加熱法、すなわち電
極を兼ねた2対以上のピンチロールに鋼板を接触させて
鋼板に直接通電して加熱する方法(例えば、特願平3−
14291 号参照)を併用することにより容易に達成でき
る。
By suppressing the reduction ratio of cold rolling to a low level and performing the temperature rise before finish annealing after cold rolling at a heating rate of 100 ° C./sec or more, excellent magnetic properties in the rolling direction can be obtained in a simple process. It is possible to obtain a non-oriented electrical steel sheet. This 100 ℃
Although a heating rate of at least 1 second / second is not possible with ordinary continuous annealing, the direct current heating method developed by the present applicant, that is, by contacting two or more pairs of pinch rolls that also serve as electrodes with the steel sheet, Method of heating by energizing (for example, Japanese Patent Application No. 3-
This can be easily achieved by using together (see No. 14291).

【0015】[0015]

【作用】本発明の基になった知見を図1により説明す
る。
The knowledge on which the present invention is based will be described with reference to FIG.

【0016】図1は、ベース成分として、C:0.002
%、Si:2.7 %、Mn:0.24%、P:0.01%、S:0.0012
%およびsol.Al:0.22 %を含有する鋼素材に対して、冷
間圧延の圧下率を67〜83%の範囲で、仕上焼鈍のための
加熱速度を10〜180 ℃/秒の範囲で、それぞれ変化させ
た場合の、鉄損(W15/50)と磁束密度(B50) の変化を
示す図である。ここでは、これらの鋼素材に対し、熱間
圧延の仕上温度を780 ℃、巻取温度を500 ℃とし、板厚
3.0mm に熱間圧延した。これらの熱延板を酸洗による脱
スケール後、850 ℃で30秒間の焼鈍を行い、冷間圧延の
圧下率を変化させるために表面研削により板厚を 1.5〜
3.0mm の範囲で変化させ、引き続き冷間圧延により最終
板厚を0.5mm とした。このときの冷間圧延圧下率が、図
示する67、75および83%である。その後10〜180 ℃/秒
の加熱速度で950 ℃まで直接通電加熱法によって加熱
後、950 ℃で30秒間の連続焼鈍を施し、得られた鋼板か
ら圧延方向の短冊状試料を採取し、JIS C 2550に定めら
れている方法で磁気特性を調査した。
In FIG. 1, C: 0.002 is used as the base component.
%, Si: 2.7%, Mn: 0.24%, P: 0.01%, S: 0.0012
% And sol.Al:0.22%, the cold rolling reduction ratio is in the range of 67 to 83%, the heating rate for finish annealing is in the range of 10 to 180 ° C./sec, in the case where each varied, a graph showing changes in iron loss (W 15/50) and flux density (B 50). Here, for these steel materials, the finishing temperature for hot rolling was 780 ° C, the coiling temperature was 500 ° C, and
Hot rolled to 3.0 mm. After descaling these hot-rolled sheets by pickling, they are annealed at 850 ℃ for 30 seconds, and the surface thickness is reduced to 1.5 ~ by changing the reduction ratio of cold rolling.
The thickness was changed in the range of 3.0 mm, and then the final thickness was 0.5 mm by cold rolling. The cold rolling reduction ratios at this time are 67, 75 and 83% shown in the figure. After heating by direct current heating method to 950 ° C at a heating rate of 10 to 180 ° C / sec, continuous annealing was performed at 950 ° C for 30 seconds, and strip samples in the rolling direction were taken from the obtained steel sheet. The magnetic properties were investigated by the method specified in 2550.

【0017】なお、無方向性電磁鋼板では、上記の磁気
特性は通常、JIS C 2550に定められているように、圧延
方向だけでなく圧延直角方向にも短冊状試料を採取して
行われるが、静止器用の場合には圧延方向の磁気特性の
みが重要となる。
Incidentally, in the non-oriented electrical steel sheet, the above-mentioned magnetic properties are usually obtained by collecting strip-shaped samples not only in the rolling direction but also in the direction perpendicular to the rolling direction, as defined in JIS C 2550. In the case of static machines, only the magnetic properties in the rolling direction are important.

【0018】図示するように、冷間圧延の圧下率が80%
を超えると鉄損は増大し磁束密度は低下する。この磁束
密度の低下傾向は、加熱速度が 100℃/秒を下廻ると特
に顕著となる。
As shown in the figure, the cold rolling reduction rate is 80%.
If it exceeds, the iron loss increases and the magnetic flux density decreases. This tendency of decreasing the magnetic flux density becomes particularly remarkable when the heating rate is lower than 100 ° C / sec.

【0019】これは次のような理由によるものと考えら
れる。すなわち、冷間圧延の圧下率が高すぎると、特公
昭64−55338 号公報にも示されているように、板面内無
方向に平均した磁気特性に近づくため、圧延方向の磁気
特性としては悪化したものと解される。また、加熱速度
が遅くなると磁束密度が低下する傾向にあるが、これ
は、磁気特性に不利な集合組織が発達しているためと解
される。この原因については明らかではないが、加熱速
度が速くなるにつれて、再結晶時に磁気特性に有利な(1
00) 集合組織が発達しやすいためであると考えられる。
This is considered to be due to the following reason. That is, if the reduction ratio of the cold rolling is too high, as shown in Japanese Examined Patent Publication No. 64-55338, it approaches the magnetic properties averaged in the in-plane direction. It is understood that it has deteriorated. Further, when the heating rate becomes slower, the magnetic flux density tends to decrease, which is considered to be due to the development of texture which is disadvantageous to the magnetic properties. The reason for this is not clear, but as the heating rate increases, the magnetic properties favored during recrystallization (1
00) It is thought that this is because the texture easily develops.

【0020】次に本発明の方法の対象となる鋼素材の組
成を前記のように限定した理由を説明する。
Next, the reason why the composition of the steel material which is the object of the method of the present invention is limited as described above will be explained.

【0021】C:C含有量は鉄損低減の観点から少ない
方がよい。C含有量が 0.005%を超えると磁気時効によ
る鉄損増加が生じることから、 0.005%を上限とした。
望ましいのは0.003 %以下である。なお、下限について
は特に制約はない。
C: The C content is preferably as small as possible from the viewpoint of reducing iron loss. If the C content exceeds 0.005%, iron loss increases due to magnetic aging, so 0.005% was made the upper limit.
0.003% or less is desirable. There is no particular restriction on the lower limit.

【0022】N:N含有量も鉄損低減の観点から少ない
方がよい。N含有量が 0.005%を超えるとAlN などの窒
化物が生成し、焼鈍時の粒成長を抑制することにより、
磁気特性が劣化することから、 0.005%を上限とした。
望ましいのは0.003 %以下である。なお、Cと同じく下
限については制約はない。
The N: N content is also preferably low from the viewpoint of reducing iron loss. If the N content exceeds 0.005%, nitrides such as AlN are generated, and by suppressing grain growth during annealing,
Since the magnetic properties deteriorate, 0.005% was made the upper limit.
0.003% or less is desirable. There is no restriction on the lower limit as with C.

【0023】Mn:MnはSiなどと同じく固有抵抗を増加さ
せ、渦電流損の低下による鉄損低下に有効に寄与する元
素であり、積極的に含有させることが望ましい。しか
し、1.0 %を超えて含有させると磁束密度が低下するた
め、Mn含有量は1.0 %以下とした。
Mn: Mn is an element that increases the specific resistance like Si or the like and effectively contributes to the reduction of iron loss due to the reduction of eddy current loss, and it is desirable to positively contain it. However, if the content exceeds 1.0%, the magnetic flux density decreases, so the Mn content was made 1.0% or less.

【0024】S:Mnと MnSを形成し、S含有量が0.006
%を超えると、この MnSが焼鈍時の結晶粒成長を妨げ鉄
損の低下を阻む方向に作用するとともに、熱間脆性を引
き起こす。また、熱延板の再結晶と粒成長を促進する上
で有害である。よって、S含有量は 0.006%以下とし
た。望ましいのは0.003 %以下である。なお、下限の限
定は、磁気特性上不要である。
S: Mn and MnS are formed, and the S content is 0.006.
%, MnS acts to prevent the growth of crystal grains during annealing and to prevent the reduction of iron loss, and causes hot brittleness. It is also harmful in promoting recrystallization and grain growth of the hot rolled sheet. Therefore, the S content is set to 0.006% or less. 0.003% or less is desirable. Note that the lower limit is not necessary in terms of magnetic characteristics.

【0025】sol.Al:sol.Al含有量が 0.1%未満では、
溶鋼での脱酸が不十分となる上、AlN が微細に析出して
再結晶後の結晶粒の成長を阻害し、磁気特性に悪影響を
及ぼす。よって、sol.Al含有量は0.1 %以上とした。
Sol.Al: If the sol.Al content is less than 0.1%,
In addition to insufficient deoxidation in molten steel, AlN precipitates finely and inhibits the growth of crystal grains after recrystallization, which adversely affects the magnetic properties. Therefore, the sol.Al content is set to 0.1% or more.

【0026】Si+sol.Al:Siとsol.Alはともに固有抵抗
を増加させ、渦電流損の低下による鉄損低下に有効に寄
与する元素であり、特に低鉄損が要求される用途ではSi
+sol.Alで2.0 %以上を含有させる必要がある。一方、
Si+sol.Alで4.0 %を超えると、鋼板が脆くなって冷間
圧延時に板割れなどの問題を生じるので、4.0 %以下と
した。
Si + sol.Al: Si and sol.Al are elements that both increase the specific resistance and effectively contribute to the reduction of iron loss due to the reduction of eddy current loss. Especially, Si is used in applications where low iron loss is required.
+ Sol.Al must be contained at 2.0% or more. on the other hand,
If the content of Si + sol.Al exceeds 4.0%, the steel plate becomes brittle and problems such as plate cracking occur during cold rolling, so the content was made 4.0% or less.

【0027】Pは鋼板の硬度調整のために含有させても
よいが、P含有量が 0.1%を超えると鋼板が脆化し冷間
圧延において破断が生じ易くなるので、 0.1%以下とす
ることが望ましい。
P may be contained in order to adjust the hardness of the steel sheet, but if the P content exceeds 0.1%, the steel sheet becomes brittle and fracture easily occurs in cold rolling. Therefore, it should be 0.1% or less. desirable.

【0028】次に製造工程および製造条件を前記のよう
に限定した理由を説明する。
Next, the reason why the manufacturing process and manufacturing conditions are limited as described above will be explained.

【0029】上記のような組成の鋼素材は常法に従って
転炉等で溶製され、連続鋳造または造塊−分塊圧延を経
てスラブとされる。次いで、このスラブを熱間圧延し、
その後巻取りを行い、脱スケールの前または後に焼鈍を
行い、1回の冷間圧延を施して焼鈍を実施する。熱間圧
延以降の各工程について以下に詳述する。
The steel material having the above composition is melted in a converter or the like according to a conventional method, and is continuously cast or ingot-slab-rolled into a slab. Then, this slab is hot rolled,
After that, winding is performed, annealing is performed before or after descaling, and one cold rolling is performed to perform annealing. Each step after hot rolling will be described in detail below.

【0030】熱間圧延、巻取り この工程は圧延仕上温度を700 ℃以上850 ℃以下とし、
巻取温度を600 ℃以下とすることを条件とする。
Hot rolling, winding In this step, the rolling finishing temperature is 700 ° C. or higher and 850 ° C. or lower,
The condition is that the coiling temperature is 600 ℃ or less.

【0031】本発明の方法は既述したとおり、熱延板の
焼鈍の階段で再結晶および粒成長を促進させることによ
り、磁気特性を向上させるところに重要なポイントがあ
る。
As described above, the method of the present invention has an important point in improving the magnetic properties by promoting recrystallization and grain growth in the step of annealing the hot rolled sheet.

【0032】熱延板の焼鈍時に再結晶および粒成長を十
分に促進させるためには、熱間圧延終了時に十分な歪が
蓄積され、またその歪エネルギーが巻取りを経た後まで
解放されずに残っていなければならない。熱間圧延は、
このような観点から圧延仕上温度を850 ℃以下とし、巻
取りはできるだけ歪エネルギーが解放されない低い温度
とするのが良い。
In order to sufficiently promote recrystallization and grain growth during annealing of the hot rolled sheet, sufficient strain is accumulated at the end of hot rolling, and the strain energy is not released until after winding. Must remain. Hot rolling
From this point of view, the rolling finishing temperature is preferably 850 ° C. or lower, and the winding is preferably performed at a low temperature at which strain energy is not released as much as possible.

【0033】この場合、圧延仕上温度は、熱延板の焼鈍
時の再結晶および粒成長の意味からは、850 ℃以下の温
度とする上限限定だけで十分であるが、現実には圧延仕
上温度が700 ℃を下廻ると、圧延負荷が大きくなりす
ぎ、通常の圧延機では操業が困難となる。以上のことか
ら、圧延仕上温度は700 ℃以上850 ℃以下とした。
In this case, the rolling finishing temperature is limited to the upper limit of 850 ° C. or less from the meaning of recrystallization and grain growth during annealing of the hot rolled sheet, but in reality it is the rolling finishing temperature. If the temperature falls below 700 ° C, the rolling load will become too large and it will be difficult to operate with ordinary rolling mills. From the above, the rolling finishing temperature was set to 700 ° C to 850 ° C.

【0034】巻取温度については、600 ℃を超える場合
には、鋼板内部の歪エネルギーの解放が進んでこのエネ
ルギーが蓄積されず、さらに再結晶も生じ始めて、その
後の熱延板の焼鈍時の結晶粒成長性が悪くなる。したが
って、巻取温度の上限は 600℃とした。下限は、歪エネ
ルギーの解放抑制という観点から設ける必要はない。
Regarding the coiling temperature, when the temperature exceeds 600 ° C., the strain energy in the steel sheet is released and this energy is not accumulated, and recrystallization also begins to occur. The crystal grain growth becomes poor. Therefore, the upper limit of the coiling temperature was set to 600 ° C. The lower limit need not be set from the viewpoint of suppressing the release of strain energy.

【0035】脱スケール 脱スケールは酸洗いで行う場合が多いが、種々の機械的
な脱スケール法、例えばショットブラストやロールベン
ダなどの組合せで行ってもよい。脱スケールは熱延板の
焼鈍の前または後に実施する。
Descaling Descaling is often carried out by pickling, but various mechanical descaling methods such as shot blasting and roll bender combination may be used. Descaling is performed before or after annealing the hot rolled sheet.

【0036】熱延板の焼鈍 この工程は、前記の熱間圧延、巻取りを経た熱延板を再
結晶および粒成長させるためのものである。
Annealing of Hot Rolled Sheet This step is for recrystallization and grain growth of the hot rolled sheet which has been hot rolled and wound.

【0037】焼鈍の方法としては、箱焼鈍、連続焼鈍の
いずれでも採用できる。再結晶と結晶粒の成長を安定し
て完了させるには、箱焼鈍の場合800 ℃以上、連続焼鈍
の場合850 ℃以上の温度とする必要がある。焼鈍温度を
800 ℃以上としたのはこれに基づいている。上限につい
ては特に限定しないが性能改善の効果と設備費とのバラ
ンスの観点から自ずと定まる。すなわち、本来焼鈍温度
はその効果の点からは高い方が有利であるが、上記の上
限を超える温度に設定するには非常に高価な設備が必要
となり、この場合、設備費に見合うだけの性能改善が期
待できないことになるのである。
As the annealing method, either box annealing or continuous annealing can be adopted. In order to stably complete the recrystallization and the growth of crystal grains, the temperature must be 800 ° C or higher for box annealing and 850 ° C or higher for continuous annealing. Annealing temperature
It is based on this that the temperature above 800 ℃ is set. The upper limit is not particularly limited, but is naturally determined from the viewpoint of the balance between the effect of performance improvement and the equipment cost. That is, originally, it is advantageous that the annealing temperature is higher from the viewpoint of its effect, but very expensive equipment is required to set the temperature above the upper limit, and in this case, performance sufficient to meet the equipment cost is required. No improvement can be expected.

【0038】冷間圧延 冷間圧延の圧下率は本発明の重要な条件の一つであり、
80%以下とする必要がある。このような圧下率で冷間圧
延を行うことにより、製品での圧延方向の磁気特性が向
上する。下限はもっぱら操業上の制約から決まるので限
定しない。例えば、板厚が0.5mm の最も一般的な製品の
場合、50%の圧下率を採ろうとすれば熱延板板厚は1mm
であることが必要となるので、この程度が実操業の限界
であり、この50%以下の圧下率での冷間圧延は事実上不
可能といえる。
Cold rolling The reduction ratio of cold rolling is one of the important conditions of the present invention.
It should be below 80%. By performing cold rolling at such a reduction rate, the magnetic properties in the rolling direction of the product are improved. The lower limit is determined solely by operational constraints and is not limited. For example, in the case of the most common product with a plate thickness of 0.5 mm, the hot-rolled plate thickness is 1 mm if 50% reduction is to be achieved.
Therefore, it is practically impossible to carry out cold rolling at a rolling reduction of 50% or less.

【0039】冷間圧延後の焼鈍 冷間圧延後の焼鈍は本発明の重要な条件の一つである。
この焼鈍は、上記冷間圧延後の加工組織を再結晶させる
過程で、磁気特性に有利な再結晶粒を生成させるととも
に再結晶粒を充分に粒成長させることを目的としてい
る。本発明の方法では焼鈍前の加熱速度を速くするの
で、直接通電法による加熱と連続焼鈍法を組合せるのが
よい。
Annealing after cold rolling Annealing after cold rolling is one of the important conditions of the present invention.
This annealing is intended to generate recrystallized grains advantageous for magnetic properties and to sufficiently grow the recrystallized grains in the process of recrystallizing the work structure after the cold rolling. Since the heating rate before annealing is increased in the method of the present invention, it is preferable to combine the heating by the direct current method and the continuous annealing method.

【0040】冷間圧延後の仕上焼鈍のための加熱速度が
100 ℃/秒未満では、鉄損は増大し磁束密度は低下する
(前記の図1参照)。よって、直接通電加熱などにより
100℃/秒以上の加熱速度とする必要がある。
The heating rate for finish annealing after cold rolling is
At less than 100 ° C / sec, iron loss increases and magnetic flux density decreases (see Fig. 1 above). Therefore, by direct current heating, etc.
It is necessary to set the heating rate to 100 ° C / sec or more.

【0041】焼鈍温度としては800 ℃以上1100℃以下と
する。800 ℃未満の低い温度では再結晶しないか、ある
いは再結晶しても粒成長が十分起こらない。一方、1100
℃を超えると結晶粒が成長しすぎて、かえって磁気特
性、特に鉄損が悪化する。
The annealing temperature is 800 ° C. or higher and 1100 ° C. or lower. It does not recrystallize at low temperatures below 800 ° C, or grain growth does not occur sufficiently even if recrystallized. On the other hand, 1100
If the temperature exceeds ℃, the crystal grains will grow too much and the magnetic properties, especially the iron loss, will deteriorate.

【0042】なお、電磁鋼板を製造する場合、通常は上
記の焼鈍後さらに絶縁コーティングを施す工程が入る。
本発明の方法においても、製造の最終工程としてこのコ
ーティング工程を追加することは可能である。また、無
方向性電磁鋼板には、所定の磁気特性を付与して出荷さ
れるフルプロセス品と出荷後ユーザー側で打ち抜きなど
の加工後に歪み取り焼鈍(750℃×2時間程度)を施して
所定の磁気特性を保有させるセミプロセス品とがある。
前者についてもユーザー側で歪み取り焼鈍が施されるこ
とも当然あり、したがって、この場合では出荷時はもと
よりユーザー側で歪み取り焼鈍をした後も規定の磁気特
性を示すことが要求される。本発明の方法は、上記いず
れの製品であっても適用できる。
In the case of producing an electromagnetic steel sheet, a step of applying an insulating coating after the above annealing is usually performed.
Also in the method of the present invention, it is possible to add this coating step as the final step of manufacturing. In addition, non-oriented electrical steel sheets are given full-process products that are shipped with given magnetic properties, and after shipping, they are subjected to strain relief annealing (750 ° C x 2 hours) after punching and other processing, and then predetermined There are semi-processed products that retain the magnetic properties of.
In the former case as well, the user side is naturally subjected to strain relief annealing. Therefore, in this case, it is required that the prescribed magnetic characteristics are exhibited not only at the time of shipment but also after the user side is strain relief annealed. The method of the present invention can be applied to any of the above products.

【0043】[0043]

【実施例】表1(1) に示す各化学組成の鋼を転炉で溶製
し、これらを連続鋳造により鋳片となし、続いて熱間圧
延、熱延板連続焼鈍、冷間圧延および仕上連続焼鈍を行
った。製造工程とその条件を表1(2) に示す。ただし、
仕上連続焼鈍前の加熱速度が100 ℃/秒を超えるもので
は、次に述べる条件で前記直接通電加熱を併用した。な
お、ラインスピードは50m/分、最終板厚は0.5mm 、板幅
は1000mmとした。
[Examples] Steel of each chemical composition shown in Table 1 (1) was melted in a converter and formed into a slab by continuous casting, followed by hot rolling, hot-rolled sheet continuous annealing, cold rolling and Finishing continuous annealing was performed. The manufacturing process and its conditions are shown in Table 1 (2). However,
When the heating rate before finishing continuous annealing was more than 100 ° C./sec, the direct current heating was also used under the following conditions. The line speed was 50 m / min, the final plate thickness was 0.5 mm, and the plate width was 1000 mm.

【0044】直接通電加熱は、ロール径500mm の2対の
ピンチロールを板の進行方向に対して5m 離間させて前
後に配置し、前後のピンチロール間に 1300kWの消費電
力を供給して行った。
The direct electric heating was performed by arranging two pairs of pinch rolls having a roll diameter of 500 mm in front and back with a distance of 5 m from the traveling direction of the plate, and supplying power consumption of 1300 kW between the front and rear pinch rolls. .

【0045】得られた各鋼板から、JIS C 2550に定めら
れている方法で磁束密度B50と鉄損W15/50 を測定し
た。このときの短冊試料も、前記図1の場合と同様の理
由で圧延方向のみとした。結果を表1(2) の右欄に示
す。
The magnetic flux density B 50 and the iron loss W 15/50 were measured from each of the obtained steel plates by the methods specified in JIS C 2550. The strip samples at this time were also limited to the rolling direction for the same reason as in the case of FIG. The results are shown in the right column of Table 1 (2).

【0046】[0046]

【表1(1)】 [Table 1 (1)]

【0047】[0047]

【表1(2)】 [Table 1 (2)]

【0048】No.1〜No.3は(Si +sol.Al) 含有量の影響
をみたものである。この含有量が本発明で定める範囲を
超えるNo.2では、冷間圧延時に破断した。一方、この含
有量が本発明で定める範囲より低いNo.3では、鉄損が悪
化している。
No. 1 to No. 3 show the effects of the (Si + sol.Al) content. In No. 2 in which this content exceeds the range specified in the present invention, fracture occurred during cold rolling. On the other hand, in No. 3 in which this content is lower than the range specified in the present invention, the iron loss is deteriorated.

【0049】No.4、No.5はsol.Al含有量の影響をみたも
のである。sol.Al含有量が本発明で定める範囲より低い
No.5では、AlN が微細に析出し、熱延板焼鈍および冷間
圧延後の仕上焼鈍時の粒成長性を悪化させることによ
り、特に鉄損が悪化する。
No. 4 and No. 5 show the influence of the sol.Al content. sol.Al content is lower than the range specified in the present invention
In No. 5, AlN is finely precipitated, and the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling is deteriorated, so that iron loss is particularly deteriorated.

【0050】No.6、No.7はC含有量の影響をみたもので
ある。C含有量が本発明で定める上限を超えるNo.7で
は、析出した炭化物が熱延板焼鈍および冷間圧延後の仕
上焼鈍時の粒成長性を悪化させることにより、特に鉄損
が悪化する。
No. 6 and No. 7 show the influence of the C content. In No. 7 in which the C content exceeds the upper limit defined in the present invention, the precipitated carbide deteriorates the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling, so that iron loss is particularly deteriorated.

【0051】No.8、No.9はN含有量の影響をみたもので
ある。N含有量が本発明で定める範囲を超えるNo.9で
は、析出した窒化物が熱延板焼鈍および冷間圧延後の仕
上焼鈍時の粒成長性を悪化させることにより、特に鉄損
が悪化する。
No. 8 and No. 9 show the influence of N content. In No. 9 in which the N content exceeds the range specified in the present invention, the precipitated nitride deteriorates the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling, and thus iron loss is particularly deteriorated. .

【0052】No.10 、No.11 はS含有量の、No.12 、N
o.13 はMn含有量の、それぞれ影響をみたものである。
S含有量が本発明で定める範囲を超えるNo.11 では、析
出した硫化物 MnSが熱延板焼鈍および冷間圧延後の仕上
焼鈍時の粒成長性を悪化させることにより、特に鉄損が
悪化している。Mn含有量が本発明で定める範囲を超える
No.13 では、磁束密度が低下している。
No. 10 and No. 11 are S contents, No. 12 and N
o.13 shows the effect of Mn content.
In No. 11 in which the S content exceeds the range specified in the present invention, the precipitated sulfide MnS deteriorates the grain growth property during finish annealing after hot-rolled sheet annealing and cold rolling, and thus iron loss is particularly deteriorated. is doing. Mn content exceeds the range specified in the present invention
In No. 13, the magnetic flux density is low.

【0053】No.14 〜No.20 は、本発明で定める範囲内
の成分系について製造条件の影響をみたものである。こ
れらのうち、その製造条件のいずれかが本発明で定める
範囲外のNo.15 〜No.20 では、全て本発明の条件を満た
すNo.14 と比較して磁束密度、鉄損ともに悪い。No.15
では、熱間圧延の仕上温度が高すぎて熱延板に歪エネル
ギーの蓄積がなく、熱延板焼鈍時に再結晶および粒成長
が十分に行われなかったため、磁気特性の向上が認めら
れない。No.16 では、熱間圧延の巻取温度が高すぎるた
め、No.15 と同じ理由でやはり磁気特性の向上がみられ
ない。No.17 では、熱延板の焼鈍温度が低すぎるため、
粒成長が十分起こらず磁気特性は向上しない。No.18 で
は、冷間圧延の圧下率が高すぎて、板面内無方向に平均
した磁気特性を持つ状態に近づくため、圧延方向での磁
気特性としては悪化している。No.19 では、仕上焼鈍前
の加熱速度が遅いため、磁束密度が悪化している。また
No.20 では、仕上連続焼鈍の温度が低すぎるため、充分
な粒成長が起こらず磁気特性の向上がみられない。
Nos. 14 to 20 are the effects of the manufacturing conditions on the component systems within the range defined by the present invention. Of these, in No. 15 to No. 20 in which any one of the manufacturing conditions is out of the range defined by the present invention, both magnetic flux density and iron loss are worse than No. 14 satisfying the conditions of the present invention. No.15
However, since the finishing temperature of hot rolling was too high, strain energy was not accumulated in the hot rolled sheet, and recrystallization and grain growth were not sufficiently performed during annealing of the hot rolled sheet, so that improvement in magnetic properties was not observed. In No. 16, the coiling temperature for hot rolling was too high, so no improvement in magnetic properties was observed for the same reason as No. 15. In No. 17, since the annealing temperature of the hot rolled sheet is too low,
Grain growth does not occur sufficiently and magnetic properties are not improved. In No. 18, the reduction ratio of cold rolling was too high, and the magnetic properties approached in the in-plane non-direction averaged magnetic properties, so the magnetic properties in the rolling direction deteriorated. In No. 19, since the heating rate before finish annealing was slow, the magnetic flux density deteriorated. Also
In No. 20, since the temperature of continuous annealing is too low, sufficient grain growth does not occur and magnetic properties are not improved.

【0054】[0054]

【発明の効果】本発明の方法によれば、小型静止器の鉄
芯用材料として好適な、低鉄損、かつ高磁束密度の、優
れた磁気特性を有する無方向性電磁鋼板を製造すること
ができる。しかも、従来技術のような2回冷間圧延など
の煩雑な工程を経る必要がない。
According to the method of the present invention, it is possible to produce a non-oriented electrical steel sheet having a low iron loss, a high magnetic flux density, and excellent magnetic properties, which is suitable as a material for an iron core of a small static device. You can Moreover, there is no need to go through complicated processes such as double cold rolling as in the prior art.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間圧延の圧下率および仕上焼鈍前の加熱速度
と磁束密度および鉄損Wとの関係を示す図である。
FIG. 1 is a diagram showing a relationship between a reduction rate in cold rolling, a heating rate before finish annealing, a magnetic flux density, and an iron loss W.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.005%以下、N:0.005%以
下、Mn:1.0 %以下、S:0.006%以下およびsol.Al:0.
1 %以上を含有し、かつ(Si+sol.Al):2.0〜4.0 %を
満足し、残部はFeおよび不可避的不純物からなる鋼素材
を、700 ℃以上850 ℃以下の仕上温度で熱間圧延した
後、600 ℃以下の温度で巻取りを行い、次いで脱スケー
ルの前または後に800 ℃以上の温度で焼鈍を行い、更に
80%以下の圧下率で1回の冷間圧延を行った後、100 ℃
/秒以上の加熱速度で昇温し、800 ℃以上1100℃以下の
温度で焼鈍を施すことを特徴とする磁気特性の優れた小
型静止器用電磁鋼板の製造方法。
1. By weight%, C: 0.005% or less, N: 0.005% or less, Mn: 1.0% or less, S: 0.006% or less and sol.Al: 0.
After hot rolling a steel material containing 1% or more and satisfying (Si + sol.Al): 2.0 to 4.0% with the balance being Fe and unavoidable impurities at a finishing temperature of 700 ° C to 850 ° C. , Coiling at a temperature of 600 ° C or less, then annealing at a temperature of 800 ° C or more before or after descaling, and
After cold rolling once at a rolling reduction of 80% or less, 100 ℃
A method of manufacturing a magnetic steel sheet for a small static device having excellent magnetic properties, which comprises heating at a heating rate of not less than 1 / sec and annealing at a temperature of 800 ° C to 1100 ° C.
JP1576093A 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device Pending JPH06228645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1576093A JPH06228645A (en) 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1576093A JPH06228645A (en) 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device

Publications (1)

Publication Number Publication Date
JPH06228645A true JPH06228645A (en) 1994-08-16

Family

ID=11897744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1576093A Pending JPH06228645A (en) 1993-02-02 1993-02-02 Production of silicon steel sheet for compact stationary device

Country Status (1)

Country Link
JP (1) JPH06228645A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
JP2013010982A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
US20130146187A1 (en) * 2010-08-30 2013-06-13 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
WO2013137092A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Method for producing non-oriented magnetic steel sheet
WO2014129034A1 (en) * 2013-02-21 2014-08-28 Jfeスチール株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
TWI484043B (en) * 2012-02-23 2015-05-11 Jfe Steel Corp Manufacturing method of electromagnetic steel plate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2612933A4 (en) * 2010-08-30 2016-07-06 Jfe Steel Corp Method for producing non-oriented magnetic steel sheet
US20130146187A1 (en) * 2010-08-30 2013-06-13 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
EP2508629A4 (en) * 2010-10-25 2016-11-30 Baoshan Iron & Steel Method for manufacturing non-oriented silicon steel with high-magnetic induction
KR101404101B1 (en) * 2010-10-25 2014-06-09 바오샨 아이론 앤 스틸 유한공사 Method for manufacturing non-oriented silicon steel with high-magnetic induction
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
CN103270179A (en) * 2010-12-22 2013-08-28 杰富意钢铁株式会社 Method of producing non-oriented electrical steel sheet
US20130263981A1 (en) * 2010-12-22 2013-10-10 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
EP2657355A1 (en) * 2010-12-22 2013-10-30 JFE Steel Corporation Process for production of non-oriented electromagnetic steel sheet
EP2657355A4 (en) * 2010-12-22 2014-07-09 Jfe Steel Corp Process for production of non-oriented electromagnetic steel sheet
JP2012132070A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel plate
TWI490342B (en) * 2010-12-22 2015-07-01 Jfe Steel Corp Manufacturing method of non - directional electromagnetic steel sheet
KR101508082B1 (en) * 2010-12-22 2015-04-07 제이에프이 스틸 가부시키가이샤 Method of producing non-oriented electrical steel sheet
JP2013010982A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
TWI484043B (en) * 2012-02-23 2015-05-11 Jfe Steel Corp Manufacturing method of electromagnetic steel plate
WO2013137092A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Method for producing non-oriented magnetic steel sheet
CN104136637A (en) * 2012-03-15 2014-11-05 杰富意钢铁株式会社 Method for producing non-oriented magnetic steel sheet
JP2013189693A (en) * 2012-03-15 2013-09-26 Jfe Steel Corp Method for producing non-oriented magnetic steel sheet
CN104136637B (en) * 2012-03-15 2017-05-31 杰富意钢铁株式会社 The manufacture method of non orientation electromagnetic steel plate
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
EP2960345A4 (en) * 2013-02-21 2016-06-08 Jfe Steel Corp Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
WO2014129034A1 (en) * 2013-02-21 2014-08-28 Jfeスチール株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP6008157B2 (en) * 2013-02-21 2016-10-19 Jfeスチール株式会社 Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
JPWO2014129034A1 (en) * 2013-02-21 2017-02-02 Jfeスチール株式会社 Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
RU2617304C2 (en) * 2013-02-21 2017-04-24 ДжФЕ СТИЛ КОРПОРЕЙШН Method of semi-finished sheet manufacture from electrical steel with excellent magnetic properties
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties

Similar Documents

Publication Publication Date Title
US20080121314A1 (en) Non-Oriented Electrical Steel Sheets with Excellent Magnetic Properties and Method for Manufacturing the Same
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
JP2006501361A5 (en)
CN111566245A (en) Dual-orientation electrical steel sheet and method for manufacturing the same
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP2024041844A (en) Manufacturing method of non-oriented electrical steel sheet
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2000256810A (en) Grain oriented silicon steel sheet excellent in magnetic property in low magnetic field and high-frequency and punching workability and its production
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JP2000104144A (en) Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JPH06228644A (en) Production of silicon steel sheet for compact stationary device
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH09283316A (en) Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06116641A (en) Production of silicon steel sheet for compact stationary device
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP2001262233A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet small in defect in shape
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density