JP4259155B2 - Finish annealing method for grain-oriented electrical steel sheets - Google Patents

Finish annealing method for grain-oriented electrical steel sheets Download PDF

Info

Publication number
JP4259155B2
JP4259155B2 JP2003080591A JP2003080591A JP4259155B2 JP 4259155 B2 JP4259155 B2 JP 4259155B2 JP 2003080591 A JP2003080591 A JP 2003080591A JP 2003080591 A JP2003080591 A JP 2003080591A JP 4259155 B2 JP4259155 B2 JP 4259155B2
Authority
JP
Japan
Prior art keywords
coil
temperature
plate
finish annealing
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003080591A
Other languages
Japanese (ja)
Other versions
JP2004285442A (en
Inventor
泰成 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003080591A priority Critical patent/JP4259155B2/en
Publication of JP2004285442A publication Critical patent/JP2004285442A/en
Application granted granted Critical
Publication of JP4259155B2 publication Critical patent/JP4259155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、方向性電磁鋼板の仕上焼鈍方法に係わり、より詳しくは、変圧器や発電機の鉄芯に利用される該方向性電磁鋼板からなるコイルを、バッチ炉で昇温時間を通常より短くして仕上焼鈍する際に発生していた該コイル内での温度の不均一を低減する技術に関する。
【0002】
【従来の技術】
方向性電磁鋼板は、所定の成分組成に調整して製造した鋼鋳片(以下、スラブという)を熱間圧延し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延にて最終板厚とした後に脱炭焼鈍を行い、次いで焼鈍分離剤を塗布してから、コイル状に巻き取り、さらに該コイルを所謂「バッチ焼鈍炉」内で所定の雰囲気ガス中で高温に加熱して仕上焼鈍することによって製造される。
【0003】
方向性電磁鋼板の製造では、前記したように、脱炭焼鈍後に高温の仕上焼鈍を行うが、特に、高磁束密度や低鉄損等の磁気特性に優れる高級な方向性電磁鋼板の場合には、該仕上焼鈍の前半において800〜900℃で所定の時間だけ均熱処理して二次再結晶を完了させ、その後1100〜1200℃で鋼中に残存する析出物を純化させる。この前半の均熱処理においては、コイル素材に特有な最適二次再結晶温度域が存在し、該最適二次再結晶温度域で二次再結晶させれば良好な結晶粒が発生して鋼板の特性が向上するが、最適二次再結晶温度域を外れると、好適な結晶方位から外れた結晶粒が生成したり、二次再結晶が発現しなかったりして所謂「二次再結晶不良」が起るという問題がある。
【0004】
また、仕上焼鈍は、バッチ式の焼鈍炉に前記コイルを挿入し、このコイルにインナーケースと称されるベル型のカバーを被せた状態で加熱して行うが、通常は上部からバーナーもしくは電熱線等により加熱するので、昇温時には、コイルの上部、特にその外周部の温度が他の部分より先に上昇し、温度分布ができる。ゆっくりと温度を上昇させれば、コイル内での最高温部と最低温部との温度差を小さくすることができるので、そのような温度分布はある程度解消する。しかしながら、最近は、生産性を向上させるため、少しでも加熱時間を短縮させる必要に迫られている。
【0005】
ところが、加熱時間を短縮すると、最高温部の過度の温度上昇(オーバーシュートと称する)が著しくなって、鋼材は、最適な二次再結晶温度域から乖離した部分の範囲が広くなり、この部分が二次再結晶不良となって、逆に歩留りが低下し、生産性が悪化するという問題も生じていた。
【0006】
このようなオーバーシュートを防ぐ技術として、インナーケースの側壁面に断熱材を設置する方法が提案されている(例えば、特許文献1参照)。また、周縁部に断熱材を設けた円板をコイル上部に被せる方法も開示されている(例えば、特許文献2参照)。
【0007】
【特許文献1】
実開昭60−110459号公報
【特許文献2】
実開昭61−69267号公報
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1記載の技術では、インナーケースの側面に断熱材を施しているので、上部からの入熱による温度上昇が支配的になる。そのため、コイル上部のオーバーシュートが抑制されないばかりか、側面の温度が低下して、コイル内部の温度差が逆に拡大してしまうという問題があった。また、引用文献2記載の技術では、断熱材が設置されたコイル周縁部の温度上昇は避けられるが、昇温速度が速くなるにつれ、断熱材が設置されない部位との温度差が大きくなって、コイル内部の温度の不均一は依然として解消されない。
【0009】
本発明は、かかる事情に鑑み、仕上焼鈍のコイル加熱時における昇温速度を通常より速めても、製品歩留りを低下させることなく、オーバーシュート等によるコイル内部の温度の不均一を低減可能な方向性電磁鋼板の仕上焼鈍方法を提案することを目的としている。
【0010】
【課題を解決するための手段】
発明者らは、方向性電磁鋼板の磁気特性についてコイル内でばらつきを生じる原因について、鋭意究明したところ、仕上焼鈍における加熱時の昇温速度が高まると、コイル内での最高温部と最低温部の差が拡大し、その結果、仕上焼鈍の均熱時において最適な二次再結晶温度から外れる部分が拡大し、この部分の磁気特性が劣化するという知見を得た。そこで、コイルに生じる温度分布を解消すべく鋭意研究を重ね、その成果を本発明に具現化した。
【0011】
すなわち、本発明は、コイル状に巻き取った方向性電磁鋼板を、バッチ式焼鈍炉へコイルの巻取軸方向を鉛直にして装入、加熱する方向性電磁鋼板の仕上焼鈍方法において、前記コイルの上部端を、厚さが10mm以上あり、コイル状鋼板の熱伝導度に対して0.5〜3.0倍の熱伝導度を有する材料からなるプレートで覆うことを特徴とする方向性電磁鋼板の仕上焼鈍方法である。
【0012】
本発明では、熱伝導度が鋼板に比較的近い材料からなるプレートでコイルを覆うようにしたので、該プレート内において温度勾配が高くなり、コイル内の温度勾配が小さくなる。その結果、仕上焼鈍のコイル加熱時における昇温速度を通常より速めても、製品歩留りを低下させることなく、オーバーシュート等によるコイル内部の温度の不均一を低減できるようになる。
【0013】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を詳しく説明する。
【0014】
一般に、方向性電磁鋼板は、例えばC:0.08mass%以下、Si:2〜4mass%及びMn:0.03〜3.50mass%と、インヒビターの形成成分とを含有するスラブを素材とする。そして、該スラブを熱間圧延し、1回若しくは2回以上の冷間圧延にて最終板厚とした後に脱炭焼鈍し、表面に焼鈍分離剤を塗布してから該鋼板をコイル状に巻き取り、該コイルをバッチ式焼鈍炉に装入して仕上焼鈍することで製造される。その仕上焼鈍は、例えば高級方向性電磁鋼板の場合には、該仕上焼鈍の前半において800〜900℃で所定の時間だけ均熱処理して二次再結晶を完了させ、後半には1100〜1200℃に昇温して鋼中に残存する析出物を純化させる。
【0015】
ところで、バッチ式焼鈍炉内には、コイル1が、図6に示すように、炉床2に設置されたコイル受台3上に、その巻取軸方向を鉛直にして載置される。また、該コイル受台3及びコイル1を包むようにしてインナーケース4と称する覆いが設けられ、該インナーケース4の内部を適切な雰囲気(ガス組成、温度等)に保った状態で、インナーケース4の外側から加熱が行われる。その加熱は、インナーケース4の上部に、ガスバーナー等の加熱手段(図示しない)を設置し、インナーケース4の上方から行われる。そのため、仕上焼鈍の加熱時には、コイル1は鉛直方向の上端(以下、コイル上端とする)がまず昇温し、他の部分が遅れて昇温することになる。その際、加熱時の昇温速度が遅ければ(例えば、10℃/時間程度)、コイル上部の温度が最も高くなる部位(以下、最高温部という)の温度に対して、コイル内の最も温度が低い部位(以下、最低温部という)の温度が容易に追随できるので、両部位間の温度差は小さく、コイル内での温度分布は比較的均一となる。しかしながら、加熱時の昇温が速ければ(例えば、20℃/時間以上)、最高温部の温度上昇に対して最低温部での温度が追随できず、両者の温度差が拡大してしまう。
【0016】
この様子を、図2(a)及び図2(b)を用いて説明すると、まず、図2(a)は、目標炉温(例えば、800℃)の設定を従来の通りとした焼鈍炉にコイル1を装入し、比較的緩やかにコイル1を昇温した場合である(等高線の間隔は1℃程度)。この場合、コイル1内の温度分布、すなわち最高温部と最低温部との温度差は4℃程度であった(従来例)。一方、図2(b)は、昇温速度の上昇を意図して、前記した従来の目標炉温に対して20℃高く設定した焼鈍炉にコイル1を装入した場合であり、コイル1の昇温速度は上記の従来例に比べて速くなった。この場合には、別途図5に示すように、最高温部と最低温部の温度差は平均8℃程度に拡大してしまった。
【0017】
次に、焼鈍炉ではコイル上方からの加熱により最高温部が上方に位置するので、この最高温部への熱輻射を軽減するために、コイル上端を断熱性のセラミックス(TiC)からなるプレート5で覆い、且つ設定炉温を前記の従来例より20℃高くする実験を試みた。しかしながら、コイル上部が断熱されてしまうためか、昇温速度は期待した通りには速まらず、かえって昇温に時間がかかるという結果となった。この昇温速度を重視して、さらに炉温の設定温度を高くしたところ(従来より40℃高)、昇温速度は上昇した。ところが、図3(a)に示すように、プレート直下のコイル上端から数10mm程度下方の位置での温度が上昇し、コイル内の温度差が10℃程度に一層拡がってしまった。
【0018】
そこで、発明者らは、コイル1を覆うプレート5の材質について検討するため、上記したセラミックスのような熱伝導度の小さい材質ではなく、焼鈍するコイル1の材質に近い熱伝導度を有する材料からなるプレート5でコイル上端を覆ってみた。その結果、プレート5内において温度勾配が高くなり、コイル1内で温度勾配が小さくなるという好ましい現象を見出した。なお、その際、同一材質のプレート5で、その厚みも種々変更している。一例として、プレート5にFe−3質量%Si合金(コイルとほぼ同素材)を選択した場合を図3(b)に示す。温度差を図5に示すが、コイル1内の温度勾配は平均3℃程度に軽減できた。
【0019】
また、この実験における昇温速度を図4に示す。図4より、コイル1の材質と同程度の熱伝導度を有したプレート5で該コイル1を覆い、昇温速度の上昇を意図して目標炉温を前記した従来例より20℃高めに設定した方が(実線)、従来の炉温のままでプレート5を使用しない場合(破線)に比べて、2割程度昇温に有する時間が削減されていることが明らかである。また、プレート5を使用せずに、目標炉温を従来より20℃高めに設定した場合(点線)に生じたようなオーバーシュートも生じていなかった。
【0020】
そこで、この焼鈍するコイル1の材質に近い熱伝導度を有する材料からなるプレート5でコイル上端を覆う仕上焼鈍方法を本発明としたのである。なお、本発明では、プレート5に用いる素材の熱伝導度は、コイル素材(方向性電磁鋼板)の熱伝導度(800℃)に対して0.5〜3倍である。つまり、熱伝導度が0.5倍に満たないと、前述したTiCのプレートのごとく、上方からの熱を遮断してしまいコイル1の昇温を速くできないばかりか、逆に温度分布も拡大してしまうからである。また、3倍を超えると、温度勾配が大きくなる部位をプレート5内にだけ留められず、コイル1内においても温度勾配が大きくなり、コイル内の温度分布が不均一となるからである。さらに、プレート5の材質としては、例えば、コイル素材と同等のFe−3質量%Si鋼やSUS 304で代表される各種合金鋼やその他の金属材料が利用できる。例えば、タングステン合金やモリブデン合金等の高融点の合金を利用することが好ましい。また、セラミックスであっても、SiC等ように、比較的熱伝導度の大きいものは、使用しても良い。さらに、プレートの厚さは10mm以上とし、該厚さの上限は、素材の熱伝導度や、コイル重量、設定炉温等に応じて適宜決めれば良い。加えて、温度分布の均一化の観点からは、プレートの外径をコイル外径以上とするのが好ましい。しかしながら、プレート5がコイル外径より1.2倍を超えて大きいと、コイルの昇温時間が長くなるので、プレートの外径は、コイル外径の1.2倍以内とするのが好ましい。さらに加えて、プレート形状は、ほぼ円板状として、コイルには上面から見て同心円状に載置するのが良い。
【0021】
【実施例】
C:0.043mass%以下、Si:3.31mass%、Mn:0.062mass%、Se:0.024mass%及びSb:0.025mass%の成分組成よりなるスラブを熱間圧延し、1回もしくは2回以上の冷間圧延にて最終板厚0.23mmの鋼帯とした。引き続き、該鋼帯に脱炭焼鈍を兼ねた1次再結晶焼鈍を施し、表面に焼鈍分離剤(MgOにTiO2を1mass%及びSrSO4を2mass%添加)を塗布してから、コイル状に巻き取った。なお、該鋼帯の熱伝導度は25W/K・m(800℃)で、コイルの外径は1200mmであった。
【0022】
次に、該コイルを、上端を表1に示した各種のプレートで覆ったり、あるいは何によっても全く覆わずに、バッチ式焼鈍炉へ装入し、仕上焼鈍が行われた。その焼鈍条件は、前期が2次再結晶を狙い、インナーケース内をN2雰囲気として800℃×70時間の加熱であり、後期が純化を狙いにH2雰囲気で1250℃×10時間の加熱である。なお、実施に際しては、昇温速度を高めるため、従来のプレートなしの状態においてコイルを800℃に昇温する場合の炉温を基準に、各ケースの炉温を従来より高く設定した。実施条件及び成績を表1に一括して示す。
【0023】
【表1】

Figure 0004259155
【0024】
表1より、プレートを設置せず、昇温速度を高めた比較例1では、昇温時間は従来に比べて短縮されているが、コイル内の温度差は拡大していることが明らかである。また、本発明に係るプレートを使用しない比較例2〜3では、コイル内の温度差が従来より拡大するか、もしくはコイルの昇温時間を短縮できなかった。一方、本発明に係るプレートを用いた場合には、コイル内の温度差は3℃程度に低減し、且つコイルの昇温時間も従来の8割程度に短縮できている。
【0025】
【発明の効果】
以上述べたように、本発明により、仕上焼鈍のコイル加熱時における昇温速度を通常より速めても、製品歩留りを低下させることなく、オーバーシュート等によるコイル内部の温度の不均一を低減できるようになる。
【図面の簡単な説明】
【図1】本発明に係る方向性電磁鋼板の仕上焼鈍方法を示すインナーケース内の透視図である。
【図2】コイル上部をプレートで覆わない仕上焼鈍で生じたコイル内の温度分布を示す側面図であり、(a)は従来の設定炉温で昇温した場合、(b)は従来の設定炉温より20℃高い温度に設定した場合である。
【図3】コイル上部をプレートで覆った仕上焼鈍で生じたコイル内の温度分布を示す側面図であり、(a)はプレートの材料を熱伝導度が小さいセラミックスとし、従来の設定炉温より40℃高い温度に設定した場合、(b)はプレート材料を熱伝導度がコイル素材と同等のものとし、且つ従来の設定炉温より20℃高い温度に設定した場合である。
【図4】図2(a)、図2(b)及び図3(b)に示した仕上焼鈍の初期における炉温及びコイル温度の経時変化を示す図である。
【図5】本発明及び従来の仕上焼鈍方法による実施結果を、それぞれのコイル内温度差で評価した図である。
【図6】一般的な方向性電磁鋼板の仕上焼鈍方法を説明するインナーケース内の透視図である。
【符号の説明】
1 コイル
2 炉床
3 コイル受台
4 インナーケース
5 プレート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for finish annealing of grain-oriented electrical steel sheets. More specifically, the coil made of grain-oriented electrical steel sheets used for iron cores of transformers and generators is heated at a higher temperature than usual in a batch furnace. The present invention relates to a technique for reducing temperature non-uniformity in the coil, which has been generated when finishing annealing by shortening.
[0002]
[Prior art]
The grain-oriented electrical steel sheet is obtained by hot-rolling a steel slab (hereinafter referred to as a slab) that has been prepared to have a predetermined component composition, and then performing the final sheet thickness by one or two or more cold rollings with intermediate annealing. After decarburization annealing, after applying an annealing separator, the coil is wound into a coil, and the coil is further heated to a high temperature in a predetermined atmosphere gas in a so-called “batch annealing furnace” for finish annealing. Manufactured by doing.
[0003]
In the production of grain-oriented electrical steel sheets, as described above, high-temperature finish annealing is performed after decarburization annealing, but in particular, in the case of high-grade grain-oriented electrical steel sheets that are excellent in magnetic properties such as high magnetic flux density and low iron loss. In the first half of the finish annealing, soaking is performed for a predetermined time at 800 to 900 ° C. to complete the secondary recrystallization, and then the precipitates remaining in the steel are purified at 1100 to 1200 ° C. In the first half of the soaking process, there is an optimum secondary recrystallization temperature range unique to the coil material. If secondary recrystallization is performed in the optimum secondary recrystallization temperature range, good crystal grains are generated and Although the characteristics are improved, if the temperature is outside the optimum secondary recrystallization temperature range, crystal grains deviating from the preferred crystal orientation are generated, or secondary recrystallization does not occur, so-called `` secondary recrystallization failure '' There is a problem that happens.
[0004]
Finish annealing is performed by inserting the coil into a batch-type annealing furnace and heating the coil with a bell-shaped cover called an inner case, usually from the top with a burner or heating wire. Therefore, when the temperature is raised, the temperature of the upper portion of the coil, particularly the outer peripheral portion thereof, rises before the other portions, and a temperature distribution is formed. If the temperature is raised slowly, the temperature difference between the highest temperature portion and the lowest temperature portion in the coil can be reduced, and such temperature distribution is eliminated to some extent. However, recently, in order to improve productivity, it is necessary to shorten the heating time as much as possible.
[0005]
However, when the heating time is shortened, the excessive temperature rise (called overshoot) of the highest temperature part becomes remarkable, and the steel material has a wide range of parts that deviate from the optimum secondary recrystallization temperature range. However, secondary recrystallization failure has occurred, and on the contrary, the yield has been lowered, and the productivity has deteriorated.
[0006]
As a technique for preventing such overshoot, a method of installing a heat insulating material on the side wall surface of the inner case has been proposed (for example, see Patent Document 1). Moreover, the method of covering the coil upper part with the disk which provided the heat insulating material in the peripheral part is also disclosed (for example, refer patent document 2).
[0007]
[Patent Document 1]
Japanese Utility Model Publication No. 60-110459 [Patent Document 2]
Japanese Utility Model Publication No. 61-69267 [0008]
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1, since the heat insulating material is applied to the side surface of the inner case, the temperature rise due to heat input from the upper part becomes dominant. Therefore, there is a problem that the overshoot at the upper part of the coil is not suppressed, and the temperature of the side surface is lowered, and the temperature difference inside the coil is enlarged. Further, in the technique described in the cited document 2, a temperature rise in the peripheral portion of the coil where the heat insulating material is installed can be avoided, but as the rate of temperature increase increases, the temperature difference from the part where the heat insulating material is not installed becomes large, The uneven temperature inside the coil is still not resolved.
[0009]
In view of such circumstances, the present invention is capable of reducing non-uniformity of the temperature inside the coil due to overshoot and the like without reducing the product yield even if the temperature rising rate during coil heating in finish annealing is increased than usual. It aims at proposing the finish annealing method of a heat-resistant electrical steel sheet.
[0010]
[Means for Solving the Problems]
The inventors diligently investigated the cause of variation in the magnetic properties of grain-oriented electrical steel sheets in the coil. As the heating rate during heating in finish annealing increased, the highest temperature part and the lowest temperature in the coil increased. As a result, it was found that the portion deviating from the optimum secondary recrystallization temperature during soaking of the finish annealing expanded and the magnetic properties of this portion deteriorated. Therefore, intensive research was conducted to eliminate the temperature distribution generated in the coil, and the results were embodied in the present invention.
[0011]
That is, the present invention relates to a finish annealing method for a directional electrical steel sheet in which a directional electrical steel sheet wound in a coil shape is charged into a batch-type annealing furnace with the coil winding axis direction vertical and heated. A directionality characterized by covering the upper end of the plate with a plate made of a material having a thickness of 10 mm or more and a thermal conductivity of 0.5 to 3.0 times the thermal conductivity of the coiled steel plate This is a finish annealing method for electrical steel sheets.
[0012]
In the present invention, since the coil is covered with a plate made of a material whose thermal conductivity is relatively close to that of the steel plate, the temperature gradient in the plate increases and the temperature gradient in the coil decreases. As a result, even if the rate of temperature increase at the time of coil heating in finish annealing is made higher than usual, nonuniformity of the temperature inside the coil due to overshoot or the like can be reduced without reducing the product yield.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the present invention will be described in detail based on the circumstances leading to the invention.
[0014]
Generally, grain-oriented electrical steel sheets are made of a slab containing, for example, C: 0.08 mass% or less, Si: 2-4 mass%, Mn: 0.03-3.50 mass%, and an inhibitor forming component. Then, the slab is hot-rolled to obtain a final sheet thickness by one or more cold rollings, and then decarburized and annealed. After applying an annealing separator on the surface, the steel sheet is wound into a coil shape. The coil is charged into a batch-type annealing furnace and finish-annealed. For example, in the case of a high-grade grain-oriented electrical steel sheet, the finish annealing is soaked at 800 to 900 ° C. for a predetermined time in the first half of the finish annealing to complete secondary recrystallization, and in the latter half 1100 to 1200 ° C. The precipitate remaining in the steel is purified by raising the temperature.
[0015]
By the way, in the batch type annealing furnace, the coil 1 is placed on a coil cradle 3 installed on the hearth 2 with its winding axis direction vertical as shown in FIG. Further, a cover referred to as an inner case 4 is provided so as to enclose the coil cradle 3 and the coil 1, and the inner case 4 is kept in an appropriate atmosphere (gas composition, temperature, etc.) inside the inner case 4. Heating is performed from the outside. The heating is performed from above the inner case 4 by installing a heating means (not shown) such as a gas burner on the upper part of the inner case 4. For this reason, at the time of finishing annealing, the coil 1 is first heated at the upper end in the vertical direction (hereinafter referred to as the upper end of the coil), and the other portions are heated with a delay. At that time, if the heating rate during heating is slow (for example, about 10 ° C./hour), the highest temperature in the coil with respect to the temperature of the highest part of the coil (hereinafter referred to as the highest temperature part) Therefore, the temperature difference between the two parts is small, and the temperature distribution in the coil is relatively uniform. However, if the temperature rise at the time of heating is fast (for example, 20 ° C./hour or more), the temperature at the lowest temperature part cannot follow the temperature rise at the highest temperature part, and the temperature difference between them increases.
[0016]
This state will be described with reference to FIGS. 2 (a) and 2 (b). First, FIG. 2 (a) is an annealing furnace in which the setting of the target furnace temperature (for example, 800 ° C.) is set as before. This is a case where the coil 1 is inserted and the coil 1 is heated relatively slowly (the interval between contour lines is about 1 ° C.). In this case, the temperature distribution in the coil 1, that is, the temperature difference between the highest temperature part and the lowest temperature part was about 4 ° C. (conventional example). On the other hand, FIG. 2B shows a case where the coil 1 is inserted into an annealing furnace set to be 20 ° C. higher than the above-described conventional target furnace temperature in order to increase the heating rate. The rate of temperature increase was faster than the conventional example. In this case, as shown in FIG. 5, the temperature difference between the highest temperature part and the lowest temperature part has increased to about 8 ° C. on average.
[0017]
Next, in the annealing furnace, the highest temperature portion is located above by heating from above the coil. Therefore, in order to reduce heat radiation to the highest temperature portion, the upper end of the coil is a plate 5 made of heat insulating ceramics (TiC). And an experiment was attempted in which the set furnace temperature was 20 ° C. higher than that of the conventional example. However, because the upper part of the coil is insulated, the rate of temperature increase does not increase as expected, and it takes time to increase the temperature. When the temperature increase rate was emphasized and the set temperature of the furnace temperature was further increased (40 ° C. higher than before), the temperature increase rate increased. However, as shown in FIG. 3A, the temperature at a position several tens of millimeters below the upper end of the coil directly below the plate increased, and the temperature difference in the coil further expanded to about 10 ° C.
[0018]
Therefore, in order to examine the material of the plate 5 that covers the coil 1, the inventors do not use a material having a low thermal conductivity such as the above-described ceramics, but a material having a thermal conductivity close to that of the annealed coil 1. The upper end of the coil was covered with the following plate 5. As a result, a preferable phenomenon has been found in which the temperature gradient is increased in the plate 5 and the temperature gradient is decreased in the coil 1. At that time, the thickness of the plate 5 made of the same material is variously changed. As an example, a case where an Fe-3 mass% Si alloy (substantially the same material as the coil) is selected for the plate 5 is shown in FIG. Although the temperature difference is shown in FIG. 5, the temperature gradient in the coil 1 can be reduced to about 3 ° C. on average.
[0019]
Moreover, the temperature increase rate in this experiment is shown in FIG. As shown in FIG. 4, the coil 1 is covered with a plate 5 having the same thermal conductivity as the material of the coil 1, and the target furnace temperature is set 20 ° C. higher than the conventional example in order to increase the heating rate. It is clear that the time required for the temperature increase by about 20% is reduced compared to the case where the plate 5 is not used at the conventional furnace temperature (broken line) (solid line). Further, no overshoot occurred when the target furnace temperature was set 20 ° C. higher than before without using the plate 5 (dotted line).
[0020]
Therefore, the finish annealing method in which the upper end of the coil is covered with the plate 5 made of a material having a thermal conductivity close to the material of the coil 1 to be annealed is set as the present invention. In the present invention, the thermal conductivity of the material used for the plate 5 is 0.5 to 3 times the thermal conductivity (800 ° C.) of the coil material (directional magnetic steel sheet). In other words, if the thermal conductivity is less than 0.5 times, the heat from the upper side is cut off as in the case of the TiC plate described above, and not only the temperature of the coil 1 can be raised quickly, but also the temperature distribution is expanded. Because it will end up. Further, if the ratio is more than three times, the portion where the temperature gradient becomes large cannot be kept only in the plate 5, but the temperature gradient becomes large in the coil 1 and the temperature distribution in the coil becomes non-uniform. Furthermore, as the material of the plate 5, for example, Fe-3 mass% Si steel equivalent to the coil material, various alloy steels represented by SUS 304, and other metal materials can be used. For example, it is preferable to use a high melting point alloy such as a tungsten alloy or a molybdenum alloy. Moreover, even if it is ceramics, you may use the thing with comparatively large thermal conductivity like SiC. Further, the thickness of the plate is not less than 10 mm, the upper limit of said thickness, the thermal conductivity and the material, the coil weight, have good be appropriately determined in accordance with the set oven temperature and the like. In addition, it is preferable that the outer diameter of the plate be equal to or larger than the outer diameter of the coil from the viewpoint of uniform temperature distribution. However, if the plate 5 is larger than the coil outer diameter by more than 1.2 times, the coil heating time becomes longer, so the outer diameter of the plate is preferably within 1.2 times the coil outer diameter. In addition, it is preferable that the plate shape is substantially a disk shape and is placed concentrically on the coil as viewed from above.
[0021]
【Example】
C: 0.043 mass% or less, Si: 3.31 mass%, Mn: 0.062 mass%, Se: 0.024 mass%, and Sb: 0.025 mass%, hot-rolled a slab once, or once A steel strip having a final thickness of 0.23 mm was obtained by cold rolling at least twice. Subsequently, the steel strip is subjected to primary recrystallization annealing that also serves as decarburization annealing, and the surface is coated with an annealing separator (1 mass% of TiO 2 and 2 mass% of SrSO 4 added to MgO), and then coiled. Winded up. The steel strip had a thermal conductivity of 25 W / K · m (800 ° C.) and an outer diameter of the coil of 1200 mm.
[0022]
Next, the upper end of the coil was covered with various plates shown in Table 1 or not covered at all, and was charged into a batch type annealing furnace, and finish annealing was performed. The annealing conditions were for the second recrystallization in the first half, heating in the inner case with N 2 atmosphere at 800 ° C x 70 hours, and in the second half in H 2 atmosphere for purification in 1250 ° C x 10 hours for purification. is there. In the implementation, in order to increase the rate of temperature increase, the furnace temperature in each case was set higher than before, based on the furnace temperature when the coil was heated to 800 ° C. in the state without a conventional plate. Implementation conditions and results are collectively shown in Table 1.
[0023]
[Table 1]
Figure 0004259155
[0024]
From Table 1, it is clear that in Comparative Example 1 in which the temperature raising rate was increased without installing a plate, the temperature raising time was shortened compared to the conventional case, but the temperature difference in the coil was increased. . Further, in Comparative Examples 2 to 3 in which the plate according to the present invention is not used, the temperature difference in the coil is larger than before, or the temperature raising time of the coil cannot be shortened. On the other hand, when the plate according to the present invention is used, the temperature difference in the coil is reduced to about 3 ° C., and the temperature raising time of the coil can be shortened to about 80% of the conventional one.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce non-uniformity of the temperature inside the coil due to overshoot or the like without reducing the product yield even when the heating rate is higher than usual during coil heating in finish annealing. become.
[Brief description of the drawings]
FIG. 1 is a perspective view in an inner case showing a finish annealing method for grain-oriented electrical steel sheets according to the present invention.
FIG. 2 is a side view showing a temperature distribution in a coil generated by finish annealing in which the upper part of the coil is not covered with a plate. FIG. 2A shows a case where the temperature is raised at a conventional furnace temperature, and FIG. This is a case where the temperature is set to 20 ° C. higher than the furnace temperature.
FIG. 3 is a side view showing a temperature distribution in the coil generated by finish annealing with the upper part of the coil covered with a plate. FIG. 3 (a) shows a ceramic material having a low thermal conductivity as the material of the plate. When the temperature is set to 40 ° C., (b) is the case where the plate material has the same thermal conductivity as that of the coil material and is set to a temperature 20 ° C. higher than the conventional set furnace temperature.
FIG. 4 is a diagram showing temporal changes in furnace temperature and coil temperature at the initial stage of finish annealing shown in FIGS. 2 (a), 2 (b) and 3 (b).
FIG. 5 is a diagram in which the results of implementation by the present invention and the conventional finish annealing method are evaluated by the temperature difference in each coil.
FIG. 6 is a perspective view inside the inner case for explaining a method of finish annealing of a general grain-oriented electrical steel sheet.
[Explanation of symbols]
1 coil 2 hearth 3 coil cradle 4 inner case 5 plate

Claims (1)

コイル状に巻き取った方向性電磁鋼板を、バッチ式焼鈍炉ヘコイルの巻取軸方向を鉛直にして装入、加熱する方向性電磁鋼板の仕上焼鈍方法において、
前記コイルの上部端を、厚さが10mm以上あり、コイル状鋼板の熱伝導度に対して0.5〜3.0倍の熱伝導度を有する材料からなるプレートで覆うことを特徴とする方向性電磁鋼板の仕上焼鈍方法。
In the finish annealing method of a directional electrical steel sheet, in which the directional electrical steel sheet wound up in a coil shape is charged and heated with the coiling axis direction of the coil being set vertically to the batch-type annealing furnace,
The upper end of the coil is covered with a plate made of a material having a thickness of 10 mm or more and a thermal conductivity of 0.5 to 3.0 times the thermal conductivity of the coiled steel plate. Finish annealing method for grain-oriented electrical steel sheets.
JP2003080591A 2003-03-24 2003-03-24 Finish annealing method for grain-oriented electrical steel sheets Expired - Lifetime JP4259155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080591A JP4259155B2 (en) 2003-03-24 2003-03-24 Finish annealing method for grain-oriented electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080591A JP4259155B2 (en) 2003-03-24 2003-03-24 Finish annealing method for grain-oriented electrical steel sheets

Publications (2)

Publication Number Publication Date
JP2004285442A JP2004285442A (en) 2004-10-14
JP4259155B2 true JP4259155B2 (en) 2009-04-30

Family

ID=33294406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080591A Expired - Lifetime JP4259155B2 (en) 2003-03-24 2003-03-24 Finish annealing method for grain-oriented electrical steel sheets

Country Status (1)

Country Link
JP (1) JP4259155B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724255B2 (en) * 2010-09-10 2015-05-27 Jfeスチール株式会社 Coil annealing apparatus and coil annealing method
CN107475504B (en) * 2017-08-04 2018-11-02 北京首钢股份有限公司 A kind of device and method for oriented silicon coil of strip high annealing
WO2023074476A1 (en) * 2021-10-29 2023-05-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2004285442A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP6406522B2 (en) Method for producing non-oriented electrical steel sheet
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
KR101667188B1 (en) Method for producing oriented magnetic steel sheet
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
WO2007136137A1 (en) Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
JP2020084303A (en) Production process of grain-oriented electromagnetic steel sheet
JP6813143B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4259155B2 (en) Finish annealing method for grain-oriented electrical steel sheets
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
JP5962565B2 (en) Planarization annealing method and manufacturing method of grain-oriented electrical steel sheet
KR20140007586A (en) Oriented electrical steel sheets and method for manufacturing the same
JP4604370B2 (en) Method for producing grain-oriented electrical steel sheet
JP4569007B2 (en) Method for producing grain-oriented electrical steel sheet
JP4604369B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003166018A (en) Method for finish annealing grain-oriented electromagnetic steel sheet
KR101568835B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JPS6256205B2 (en)
JPH0328320A (en) Finish annealing method for grain-oriented magnetic steel sheet
JPH0688137A (en) Method for box-annealing metallic coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term