JPH08311560A - Method for finish-annealing grain oriented electrical steel sheet - Google Patents
Method for finish-annealing grain oriented electrical steel sheetInfo
- Publication number
- JPH08311560A JPH08311560A JP11734695A JP11734695A JPH08311560A JP H08311560 A JPH08311560 A JP H08311560A JP 11734695 A JP11734695 A JP 11734695A JP 11734695 A JP11734695 A JP 11734695A JP H08311560 A JPH08311560 A JP H08311560A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- temperature
- steel sheet
- electrical steel
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁性がコイル長手方向
に均一に得られる方向性電磁鋼板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet in which magnetism is uniformly obtained in the longitudinal direction of the coil.
【0002】[0002]
【従来の技術】方向性電磁鋼板は、主にトランス、発電
機等の電気機器の鉄芯材料として使用され、磁気特性に
優れることが要求される。通常、方向性電磁鋼板は、S
iを2〜4%含有する珪素鋼スラブを熱間圧延し、熱延
板焼鈍し、その後の冷間圧延により所望の板厚とし、次
いで脱炭焼鈍で脱炭と一次再結晶をなし、更に窒化によ
りインヒビターを造り込み、最後に仕上焼鈍にて二次再
結晶を発現させることで磁性の造り込みを行っている。2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for electrical equipment such as transformers and generators, and are required to have excellent magnetic properties. Usually, grain-oriented electrical steel sheet is S
A silicon steel slab containing 2 to 4% of i is hot-rolled, hot-rolled sheet annealed, and then cold-rolled to a desired sheet thickness, followed by decarburization annealing to perform decarburization and primary recrystallization. Inhibitors are created by nitriding, and finally, secondary annealing is performed by finish annealing to create magnetism.
【0003】二次再結晶は、目標とする磁化容易軸が圧
延面に平行に揃うよう、所謂ゴス方位のみを選択的に成
長させる操作であり、このゴス方位が優先成長する温度
域まで、結晶粒の成長をインヒビターにより抑制し、目
標温度域でインヒビターの熱分解により徐々に粒を成長
させることで達成される。従ってインヒビターの分解速
度や結晶粒の成長速度を規定する二次再結晶時のコイル
の昇温速度は、結晶方位の選択性に影響する結果、磁性
の優劣に影響する重要な因子であり、従来よりその昇温
速度自体を適正化して磁性のレベルアップを図ることが
試みられている。The secondary recrystallization is an operation for selectively growing only the so-called Goss orientation so that the target easy axis of magnetization is parallel to the rolling surface, and the crystal is grown up to a temperature range in which the Goss orientation preferentially grows. This is achieved by suppressing grain growth with an inhibitor and gradually growing the grain by thermal decomposition of the inhibitor in a target temperature range. Therefore, the rate of temperature rise of the coil during secondary recrystallization, which regulates the decomposition rate of the inhibitor and the growth rate of crystal grains, is an important factor that affects the magnetic superiority and inferiority as a result of affecting the selectivity of the crystal orientation. Attempts have been made to further optimize the rate of temperature rise itself to raise the level of magnetism.
【0004】例えば、特開昭54−40227号公報で
は、二次再結晶が進行する900〜1050℃の間を徐
加熱することで磁束密度の向上が図れることが開示され
ている。しかしながら、現状、仕上焼鈍はコイル状でな
されることから、その内部には温度偏差が生じる等、コ
イル内外で焼鈍条件が大きく異なるにも関わらず、二次
再結晶発現時のコイル内昇温速度の均一化には、十分な
配慮がなされることなく焼鈍サイクルが決定されてい
る。その結果、コイル長手方向に磁性格差が生じるた
め、コイルを磁性グレード別に切り分けて出荷せねばな
らない等、生産上の問題が生じることとなっている。For example, Japanese Laid-Open Patent Publication No. 54-40227 discloses that the magnetic flux density can be improved by gradually heating between 900 and 1050 ° C. at which secondary recrystallization proceeds. However, at present, since the finish annealing is performed in a coil shape, the temperature rise rate in the coil at the time of secondary recrystallization is manifested, even though the annealing conditions greatly differ inside and outside the coil such as temperature deviation inside the coil. The annealing cycle has been determined without sufficient consideration for the homogenization. As a result, there is a magnetic gap in the longitudinal direction of the coils, which causes a problem in production such that the coils must be separated according to the magnetic grade before shipping.
【0005】[0005]
【発明が解決しようとする課題】本発明は二次再結晶時
の方位選択性に影響するコイルの二次再結晶時の昇温速
度を、コイルの寸法等を加味しつつ、コイル内のいかな
る点でも同一とできるヒートサイクルの設定方法の確立
を目的とする。DISCLOSURE OF THE INVENTION The present invention relates to the rate of temperature rise during secondary recrystallization of a coil, which affects the orientation selectivity during secondary recrystallization, while taking into consideration the size of the coil and other factors in the coil. The aim is to establish a heat cycle setting method that can be the same in terms.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、方向性
電磁鋼板の製造方法において、仕上焼鈍を施すに当た
り、コイル内全点の昇温速度を均一化したい温度領域の
下限温度において一旦保定処理を施し、コイル内の最熱
点と最冷点の温度差ΔTが、目標とする昇温速度V、コ
イルの熱伝導率λ、熱容量C、密度ρ、コイル高さH、
コイル肉厚Wから求まる値、となった時点で目標速度で
炉の再昇温を開始することを特徴とする焼鈍方法であ
る。ΔTは、望ましくはΔT=a×(H/2×0.7+
W/2×0.3)2 、a=V×C×ρ/λである。Means for Solving the Problems The gist of the present invention is, in a method for manufacturing a grain-oriented electrical steel sheet, when performing finish annealing, temporarily hold at a lower limit temperature in a temperature region where the temperature rising rate at all points in the coil is desired to be uniform. After the treatment, the temperature difference ΔT between the hottest point and the coldest point in the coil is the target heating rate V, the thermal conductivity λ of the coil, the heat capacity C, the density ρ, the coil height H,
The annealing method is characterized in that when the value obtained from the coil wall thickness W is reached, reheating of the furnace is started at a target speed. ΔT is preferably ΔT = a × (H / 2 × 0.7 +
W / 2 × 0.3) 2 and a = V × C × ρ / λ.
【0007】以下本発明について詳細に説明する。先ず
コイル内の温度上昇を均一化する場合のコイル内温度の
分布状態について一次元的に考察した。コイル内の微小
部がこの昇温速度V=dT/dθ(T:温度、θ:時
間)で上昇している場合、次の熱収支が成り立つ。 V×C×ρ×dx=λ×(dT/dx|x=0 −dT/dx|x=dx) =λ×d2 T/dx2 ×dx ここに、C:コイルの比熱、ρ:コイルの密度、x:距
離、λ:コイルの熱伝導率である。従って、コイル内の
全点で昇温速度を一定とできた場合には、 d2 T/dx2 =a (a:定数) となり、コイル内の温度勾配の位置的変化率が一定とな
ることが分かる。The present invention will be described in detail below. First, the one-dimensional consideration was given to the distribution state of the temperature inside the coil when the temperature rise inside the coil was made uniform. When the minute portion in the coil is rising at the temperature rising rate V = dT / dθ (T: temperature, θ: time), the following heat balance is established. V × C × ρ × dx = λ × (dT / dx | x = 0− dT / dx | x = dx ) = λ × d 2 T / dx 2 × dx where C: specific heat of coil, ρ: coil Density, x: distance, λ: thermal conductivity of coil. Therefore, if the heating rate can be made constant at all points in the coil, then d 2 T / dx 2 = a (a: constant), and the rate of positional change of the temperature gradient in the coil becomes constant. I understand.
【0008】これより、昇温速度均一時のコイル内温度
分布は次の放物線分布となる。 T=a×X2 +b (b:定数) 従って、コイル代表寸法をLとすると、コイル最外周、
最熱点温度a×L2 +bに対し、コイル内の最冷点温度
は、bとなり、昇温速度を均一化できた場合にコイル内
最熱点と最冷点温度の差ΔTは ΔT=a×L2 となることが分かる。更にaは、先の熱収支の関係式よ
り次式のように規定される。 a=V×C×ρ/λAs a result, the temperature distribution in the coil when the heating rate is uniform becomes the following parabolic distribution. T = a × X 2 + b (b: constant) Therefore, letting the coil representative dimension be L, the outermost circumference of the coil,
The coldest spot temperature in the coil is b with respect to the hottest spot temperature a × L 2 + b, and the difference ΔT between the hottest spot and the coldest spot temperature in the coil is ΔT = It can be seen that it becomes a × L 2 . Furthermore, a is defined as the following equation from the above heat balance equation. a = V × C × ρ / λ
【0009】以上の考察より、二次再結晶温度域100
0〜1100℃でコイル内の昇温速度を均一化する方法
としては、この温度域に入る前に、コイル内の最熱点と
最冷点の温度差が、先に述べた計算式群から求まる値Δ
T=a×L2 となるよう、一旦保定処理を行った後、目
標昇温速度Vで再昇温を開始することが最も効率的であ
ると考えた。しかし実際のコイルは二次元的な伝熱が生
じており且つ、コイル板間には、熱伝導率の小さいMg
Oが塗布されており、コイル縦方向と横方向で伝熱特性
が異なる等の理論検討との差異があることから、実際の
コイル内伝熱をシミュレーションし得る二次元のコイル
内伝熱モデルを作成し、先の昇温速度均一化の考え方の
実コイルへの適用方法を検討した。From the above consideration, the secondary recrystallization temperature range 100
As a method of equalizing the rate of temperature rise in the coil at 0 to 1100 ° C., the temperature difference between the hottest point and the coldest point in the coil can be calculated from the above-mentioned formula group before entering this temperature range. Calculated value Δ
It was considered most efficient to perform the holding process once so that T = a × L 2 and then restart the reheating at the target heating rate V. However, in the actual coil, two-dimensional heat transfer occurs, and between the coil plates, Mg with a small thermal conductivity is used.
O is applied, and there is a difference from theoretical studies such as different heat transfer characteristics in the longitudinal and lateral directions of the coil. Therefore, a two-dimensional in-coil heat transfer model that can simulate actual in-coil heat transfer is used. It was created and the method of applying the above idea of equalizing the heating rate to the actual coil was examined.
【0010】その結果、コイルの代表寸法を次のように
決めることで、寸法の異なるコイルに対しても普遍的に
上述の考え方が適用できることを確認した。即ち、 L=H/2×0.7+W/2×0.3 ここに、H:コイル高さ、W:コイル肉厚である。As a result, it was confirmed that the above idea can be universally applied to coils having different sizes by determining the typical sizes of the coils as follows. That is, L = H / 2 × 0.7 + W / 2 × 0.3 where H: coil height and W: coil wall thickness.
【0011】この関係式は、コイル内部の温度上昇は、
MgOによる伝熱抵抗層のあるコイル肉厚方向の熱伝導
よりも、コイル高さ方向の鋼板内の熱伝導による熱供給
が支配的であることを示している。従って、実コイルの
場合の、再昇温開始の目安となる温度差ΔTは、 ΔT=a×(H/2×0.7+W/2×0.3)2 となる。This relational expression shows that the temperature rise inside the coil is
It is shown that the heat supply by the heat conduction in the steel plate in the coil height direction is more dominant than the heat conduction in the coil thickness direction with the heat transfer resistance layer by MgO. Therefore, in the case of the actual coil, the temperature difference ΔT, which is a standard for starting the reheating, is ΔT = a × (H / 2 × 0.7 + W / 2 × 0.3) 2 .
【0012】また、一旦保定する温度レベルについて
は、昇温速度均一化を図りたい温度レベル下限において
保定しても、再昇温を開始した際のコイル内全点の昇温
速度均一化効果は、十分であることも確認した。尚、保
定時間については、保定温度までのヒートサイクルが特
定されれば、コイル寸法との関係においてこれを定量化
できるが、現時点では、保定までの温度レベルとその後
の昇温速度等の与条件に応じて、先の伝熱モデルより最
冷点と最熱点温度の挙動をシミュレーションして保定時
間を決定することとなる。Regarding the temperature level to be temporarily retained, even if the temperature level is held at the lower limit of the temperature level for which the uniform heating rate is desired, the effect of equalizing the heating rate at all points in the coil when reheating is started is not achieved. , Also confirmed that it is sufficient. Regarding the retention time, if the heat cycle up to the retention temperature is specified, this can be quantified in relation to the coil size, but at the present time, given conditions such as the temperature level until retention and the rate of temperature rise after that. Depending on the above, the holding time is determined by simulating the behavior of the coldest point and the hottest point temperature from the above heat transfer model.
【0013】[0013]
【実施例】C:0.055%、Si:3.22%、M
n:0.016%、S:0.007%、Al:0.02
69%、N:0.008%、Sn:0.017%とその
他鉄分及び不可避的不純物からなるスラブを1220℃
で加熱して、2.3mmに熱間圧延し、これを熱延板焼鈍
後0.3mmに冷延し、脱炭処理と窒化を施してMgOを
塗布したコイル(高さ1000mm、肉厚400mm)を2
組用意した。これらの仕上焼鈍を行うに当たり、1組は
図1に示す従来の仕上焼鈍サイクルで処理した。EXAMPLES C: 0.055%, Si: 3.22%, M
n: 0.016%, S: 0.007%, Al: 0.02
A slab consisting of 69%, N: 0.008%, Sn: 0.017%, other iron and unavoidable impurities at 1220 ° C.
Coil heated to 2.3 mm, hot rolled to 2.3 mm, annealed to a hot rolled plate, cold rolled to 0.3 mm, decarburized and nitrided, and coated with MgO (height 1000 mm, wall thickness 400 mm ) 2
I prepared it. In performing these finish annealing, one set was processed by the conventional finish annealing cycle shown in FIG.
【0014】また、もう1組は1000〜1100℃域
でのコイル内昇温速度を均一化する目的でヒートサイク
ルを図2のように決定した。即ち先ず最熱点と最冷点の
温度差の目標ΔTを、コイルの昇温速度目標V=10℃
/Hr、熱伝導率λ=20kcal/m/Hr/℃、熱容量C=
0.15kcal/kg/℃、密度ρ=7650kg/m3 、コ
イル高さH=1m、コイル肉厚W=0.4mを用いて次
のように計算した。In the other set, the heat cycle was determined as shown in FIG. 2 for the purpose of equalizing the temperature rising rate in the coil in the range of 1000 to 1100 ° C. That is, first, the target ΔT of the temperature difference between the hottest point and the coldest point is set to the coil heating rate target V = 10 ° C.
/ Hr, thermal conductivity λ = 20 kcal / m / Hr / ° C, heat capacity C =
Calculation was performed as follows using 0.15 kcal / kg / ° C., density ρ = 7650 kg / m 3 , coil height H = 1 m, and coil wall thickness W = 0.4 m.
【0015】 a =V×C×ρ/λ=574℃/m2 ΔT=a×(H/2×0.7+W/2×0.3)2 =96.5℃A = V × C × ρ / λ = 574 ° C./m 2 ΔT = a × (H / 2 × 0.7 + W / 2 × 0.3) 2 = 96.5 ° C.
【0016】次に、1000℃までのヒートサイクルを
基に最熱点と最冷点の温度挙動を伝熱モデルによるシミ
ュレーションから、その温度差約100℃とするための
保定時間、約17Hrを求めた。従って1000℃で17
Hr保定後目標昇温速度10℃/Hrで昇温する焼鈍処理を
実施した。これら2つのヒートサイクルにより焼鈍した
際の各コイルの最熱点及び最冷点の1000〜1100
℃域の昇温速度実測値と焼鈍後の磁性のコイル長手方向
の変動を実測した結果を表1に示す。Next, based on the heat cycle up to 1000 ° C., the temperature behavior between the hottest point and the coldest point was simulated by a heat transfer model, and a holding time of about 17 hours for obtaining the temperature difference of about 100 ° C. was obtained. It was Therefore, at 1000 ℃ 17
After the Hr retention, an annealing treatment was performed to raise the temperature at a target temperature rising rate of 10 ° C./Hr. 1000 to 1100 of the hottest and coldest points of each coil when annealed by these two heat cycles
Table 1 shows the actually measured values of the temperature rising rate in the ° C region and the actually measured changes in the magnetic field in the longitudinal direction of the coil after annealing.
【0017】[0017]
【表1】 [Table 1]
【0018】現状サイクルでの焼鈍の場合、最熱点と最
冷点の昇温速度に差異が見られ、その結果としてコイル
長手方向の磁性に変動が生じたと考えられるのに対し、
本発明に基づくヒートサイクルを用いた場合は、コイル
内最熱点と最冷点の昇温速度がほぼ等しくできており、
磁性の均一化を図ることが可能となった。In the case of annealing in the current cycle, there is a difference in the temperature rising rate between the hottest point and the coldest point, and as a result, it is considered that the magnetism in the longitudinal direction of the coil fluctuates.
When the heat cycle according to the present invention is used, the heating rates of the hottest point and the coldest point in the coil are almost equal,
It became possible to make the magnetism uniform.
【0019】[0019]
【発明の効果】本発明によれば、コイル長手方向に磁性
の均一な方向性電磁鋼板を製造することが可能となる。According to the present invention, it becomes possible to manufacture a grain-oriented electrical steel sheet having uniform magnetism in the longitudinal direction of the coil.
【図1】本発明の実施例において現状の焼鈍のヒートサ
イクルを示すグラフ。FIG. 1 is a graph showing a current heat cycle of annealing in an example of the present invention.
【図2】本発明の実施例において本発明に基づいて求め
た焼鈍のヒートサイクルを示すグラフ。FIG. 2 is a graph showing a heat cycle of annealing determined according to the present invention in Examples of the present invention.
Claims (2)
り、コイル内全点の昇温速度を均一化したい温度領域の
下限温度で一旦、温度保定処理を施し、コイル内の最熱
点と最冷点の温度差が、目標昇温速度、コイルの熱伝導
率、熱容量、密度、コイル高さ、コイル肉厚を基に予め
求めた値となった時点で目標昇温速度で炉の再昇温を開
始することを特徴とする方向性電磁鋼板の仕上焼鈍方
法。1. When performing finish annealing of a grain-oriented electrical steel sheet, a temperature holding process is performed once at a lower limit temperature of a temperature region where the temperature rising rate of all points in the coil is desired to be uniform, and the hottest point and the highest point in the coil are set. When the temperature difference between the cold spots reaches a value that was previously obtained based on the target heating rate, coil thermal conductivity, heat capacity, density, coil height, and coil wall thickness, the furnace is reheated at the target heating rate. A finish annealing method for a grain-oriented electrical steel sheet, which comprises starting temperature.
り、コイル内全点の昇温速度を均一化したい温度領域の
下限温度で一旦温度保定処理を施し、コイル内の最熱点
と最冷点の温度差が、目標とする昇温速度V、コイルの
熱伝導率λ、熱容量C、密度ρ、コイル高さH、コイル
肉厚Wから求まる値。 ΔT=a×(H/2×0.7+W/2×0.3)2 但し、a=V×C×ρ/λ となった時点で目標昇温速度で炉の再昇温を開始するこ
とを特徴とする方向性電磁鋼板の仕上焼鈍方法。2. When performing finish annealing of a grain-oriented electrical steel sheet, a temperature holding treatment is performed once at a lower limit temperature of a temperature region where the temperature rising rate of all points in the coil is desired to be uniform, and the hottest point and the coldest point in the coil are cooled. The temperature difference between the points is a value obtained from the target heating rate V, the thermal conductivity λ of the coil, the heat capacity C, the density ρ, the coil height H, and the coil wall thickness W. ΔT = a × (H / 2 × 0.7 + W / 2 × 0.3) 2 However, when a = V × C × ρ / λ, the reheating of the furnace should be started at the target heating rate. A method for finish annealing a grain-oriented electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11734695A JPH08311560A (en) | 1995-05-16 | 1995-05-16 | Method for finish-annealing grain oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11734695A JPH08311560A (en) | 1995-05-16 | 1995-05-16 | Method for finish-annealing grain oriented electrical steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08311560A true JPH08311560A (en) | 1996-11-26 |
Family
ID=14709431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11734695A Withdrawn JPH08311560A (en) | 1995-05-16 | 1995-05-16 | Method for finish-annealing grain oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08311560A (en) |
-
1995
- 1995-05-16 JP JP11734695A patent/JPH08311560A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856179B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPS60145318A (en) | Heating method of grain-oriented silicon steel slab | |
JP6813143B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
US4888066A (en) | Method for producing grain-oriented electrical steel sheet with very high magnetic flux density | |
JPS5850295B2 (en) | Manufacturing method of unidirectional silicon steel sheet with high magnetic flux density | |
Littmann | Development of improved cube-on-edge texture from strand cast 3pct silicon-iron | |
US3144363A (en) | Process for producing oriented silicon steel and the product thereof | |
TWI635188B (en) | Non-oriented electromagnetic steel sheet and method of forming the same | |
JP2019116680A (en) | Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof | |
JP2005527372A (en) | Method for producing (110) [001] grain-oriented electrical steel using strip casting | |
JP4894146B2 (en) | Heating method for grain-oriented electrical steel slab | |
JPH08311560A (en) | Method for finish-annealing grain oriented electrical steel sheet | |
JP2004506093A (en) | Method of adjusting inhibitor dispersion in production of grain-oriented electrical steel strip | |
JP2005146295A (en) | Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic | |
JP4259155B2 (en) | Finish annealing method for grain-oriented electrical steel sheets | |
KR101568835B1 (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JP7533790B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPS6242968B2 (en) | ||
JPH0323607B2 (en) | ||
JP3914270B2 (en) | Oriented electrical steel sheet with low iron loss and method for producing the same | |
JP4105780B2 (en) | Decarburization annealing method and apparatus for grain-oriented electrical steel sheet | |
JPS6256205B2 (en) | ||
JPH08199239A (en) | Production of grain oriented magnetic steel sheet with high magnetic flux density | |
JPH0328320A (en) | Finish annealing method for grain-oriented magnetic steel sheet | |
JPS60221521A (en) | Method for finish-annealing grain-oriented silicon steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020806 |