JP4104506B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4104506B2
JP4104506B2 JP2003279964A JP2003279964A JP4104506B2 JP 4104506 B2 JP4104506 B2 JP 4104506B2 JP 2003279964 A JP2003279964 A JP 2003279964A JP 2003279964 A JP2003279964 A JP 2003279964A JP 4104506 B2 JP4104506 B2 JP 4104506B2
Authority
JP
Japan
Prior art keywords
layer
substrate
metal layer
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003279964A
Other languages
Japanese (ja)
Other versions
JP2005045169A (en
Inventor
高山  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003279964A priority Critical patent/JP4104506B2/en
Publication of JP2005045169A publication Critical patent/JP2005045169A/en
Application granted granted Critical
Publication of JP4104506B2 publication Critical patent/JP4104506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein the concentration of Sb contained in a backside metal is reduced by the reaction between a conductive pattern and the backside metal, contact resistance in a silicon substrate is increased, and hence characteristics vary in a chip-size package for mounting a semiconductor chip onto an insulating substrate on which a gold-plated conductive pattern is provided conventionally. <P>SOLUTION: A deposition process is made three times. In the deposition process, a first Au layer, an Au-Sb layer, and a second Au layer are deposited onto the backside of the substrate each. In the Au-Sb layer, the amount of Sb contained in the Au-Sb layer is set to be approximately 1% and deposition is made to a film thickness of 5,000&angst;, thus ensuring at least 0.1% Sb concentration after assembly and hence ensuring satisfactory characteristics without reducing the contact resistance in the silicon substrate. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は半導体装置およびその製造方法に関し、特にチップサイズパッケージで基板がセラミックやガラスなどの絶縁材料で材料表面にタングステンおよびAuメッキが施されているものの特性を安定化させる半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device for stabilizing characteristics of a chip-sized package in which a substrate is made of an insulating material such as ceramic or glass and the surface of the material is plated with tungsten and Au. About.

電子部品を小型、薄膜、軽量化し、また組立工程の合理化を図るためにチップサイズパッケージの半導体製品が幅広く用いられている。   In order to reduce the size, thin film, and weight of electronic components, and to streamline the assembly process, semiconductor products in a chip size package are widely used.

図4および図5を用いて、従来のチップサイズパッケージの製造方法を説明する。図4は従来の製造方法を説明する工程フロー図であり、図5は半導体装置の断面図である。   A conventional method for manufacturing a chip size package will be described with reference to FIGS. FIG. 4 is a process flow diagram for explaining a conventional manufacturing method, and FIG. 5 is a sectional view of a semiconductor device.

まず、N+型シリコン半導体基板21上に、例えばMOSFETやバイポーラトランジスタ等を構成する所定の素子拡散領域22を既知の方法により形成する(図4:S11および図5(A))。   First, a predetermined element diffusion region 22 constituting, for example, a MOSFET or a bipolar transistor is formed on the N + type silicon semiconductor substrate 21 by a known method (FIG. 4: S11 and FIG. 5A).

このウェハを真空蒸着装置に搬入して高濃度基板裏面に合金層24を形成する第1の蒸着を行う。蒸着源はAuおよびAu−Sb(またはAu−As)の2つを用い、これらを同時に蒸着する。なお、Au−Sb中のSb濃度は0.4%程度である。   The wafer is carried into a vacuum vapor deposition apparatus, and first vapor deposition is performed to form an alloy layer 24 on the back surface of the high concentration substrate. Two evaporation sources are used, Au and Au-Sb (or Au-As), and these are vapor-deposited simultaneously. Note that the Sb concentration in Au—Sb is about 0.4%.

Auと、Au−Sbとを同時に蒸着する理由を説明する。シリコン基板にAu−Sbを直接蒸着すると、シリコン基板と蒸着金属の界面において不純物(Sb)濃度が高くなり、シリコンとAuの共晶反応が不十分となる。このため、AuとAu−Sbとを同時に蒸着してAuの量を増やし、全Au中のSbの割合を低減している。このとき、Au層を50nm、Au−Sb層を50nm程度同時蒸着し、合金層24のトータルの膜厚が100nm程度となるように形成する(図4:S12および図5(B))。   The reason for depositing Au and Au—Sb simultaneously will be described. When Au—Sb is directly deposited on the silicon substrate, the impurity (Sb) concentration is increased at the interface between the silicon substrate and the deposited metal, and the eutectic reaction between silicon and Au becomes insufficient. For this reason, Au and Au—Sb are vapor-deposited at the same time to increase the amount of Au and reduce the proportion of Sb in the total Au. At this time, the Au layer is 50 nm and the Au—Sb layer is simultaneously deposited by about 50 nm, so that the total thickness of the alloy layer 24 is about 100 nm (FIG. 4: S 12 and FIG. 5B).

その後、Auの蒸着源を用いて第2の蒸着を行い500nm程度の膜厚のAu層25を形成し、トータルの膜厚が600nm程度の裏面金属層33を形成する(図4:S13および図5(C))。   Thereafter, second deposition is performed using an Au deposition source to form an Au layer 25 having a thickness of about 500 nm, and a back metal layer 33 having a total thickness of about 600 nm is formed (FIG. 4: S13 and FIG. 5 (C)).

さらに、図5(C)の破線の部分でダイシングし、個々に分離して半導体チップ26を形成する。次に、半導体チップ26は組み立て工程において、絶縁基板27に溶着される。セラミック等の絶縁基板27にはタングステン34を設けその上にAuメッキ層により導電パターン28A、28Bが形成されており、半導体チップ26の裏面金属層33と導電パターン28Aとを溶着し、基板21表面の素子拡散領域22も金属細線31等により導電パターン28Bと電気的に接続する。絶縁基板27および半導体チップ26を樹脂層32により被覆して一体化する。絶縁基板27には、内部にタングステン34を充填したスルーホール29が設けられており、外部電極30が接続されている(図4:S14および図5(D))。   Further, the semiconductor chip 26 is formed by dicing at a portion indicated by a broken line in FIG. Next, the semiconductor chip 26 is welded to the insulating substrate 27 in the assembly process. An insulating substrate 27 such as ceramic is provided with tungsten 34, and conductive patterns 28A and 28B are formed thereon by an Au plating layer. The back surface metal layer 33 of the semiconductor chip 26 and the conductive pattern 28A are welded, and the surface of the substrate 21 is adhered. The element diffusion region 22 is also electrically connected to the conductive pattern 28B by a thin metal wire 31 or the like. The insulating substrate 27 and the semiconductor chip 26 are covered with a resin layer 32 and integrated. A through hole 29 filled with tungsten 34 is provided in the insulating substrate 27, and an external electrode 30 is connected (FIG. 4: S14 and FIG. 5D).

また、樹脂層32にかえて、絶縁基板27上に柱状部を設け、柱状部および柱状部に支持され絶縁基板と対向して配置されたガラス基板などにより半導体チップを密封した中空パッケージなども採用されている(例えば特許文献1参照。)。
特開2002−118191号公報(第2ページ、第1、第2図)
Also, a hollow package in which a semiconductor chip is sealed by a columnar part on the insulating substrate 27 in place of the resin layer 32, a glass substrate supported by the columnar part and the columnar part and arranged to face the insulating substrate, etc. is also employed. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 2002-118191 (second page, FIGS. 1 and 2)

上記のごとき絶縁基板27にタングステン34を設けその上に導電パターン28Aを施したチップサイズパッケージにおいては、導電パターン28AはAuメッキ層である。また、上記の如きチップサイズパッケージにN+型シリコン基板21の半導体チップ26を溶着する場合、400℃程度の加熱処理を行っている。この加熱処理では裏面金属層33のAu中に基板のSiが拡散することにより溶解したAu−Si共晶となり、その共晶中に界面からSiが入ることにより共晶温度がさらに低下する。これにより裏面に蒸着したAu層25および導電パターン28AであるAuメッキとSiとが次第に溶解して共晶化される。その後基板温度を下げることによりチップ26が固着される。   In the chip size package in which the tungsten 34 is provided on the insulating substrate 27 and the conductive pattern 28A is provided thereon as described above, the conductive pattern 28A is an Au plating layer. In addition, when the semiconductor chip 26 of the N + type silicon substrate 21 is welded to the chip size package as described above, a heat treatment at about 400 ° C. is performed. In this heat treatment, the Si of the substrate diffuses into Au of the back surface metal layer 33 to form a dissolved Au—Si eutectic, and Si enters the eutectic from the interface, thereby further lowering the eutectic temperature. As a result, the Au layer 25 deposited on the back surface and the Au plating as the conductive pattern 28A and Si are gradually dissolved to be eutectic. Thereafter, the chip 26 is fixed by lowering the substrate temperature.

しかし、このとき溶解したSiとともに、裏面金属層33を構成するAu−Sb層のSb粒子も導電パターン28AのAu中に流れ出してしまう。Sbは基板の界面準位を押さえるために使用しているが、この準位を下げるためには全Au中の濃度が0.1%以上が望ましい。   However, the Sb particles of the Au—Sb layer constituting the back surface metal layer 33 also flow into the Au of the conductive pattern 28A together with the dissolved Si. Sb is used to suppress the interface level of the substrate. In order to lower this level, the concentration in the total Au is preferably 0.1% or more.

例えば、Cuの打ち抜きフレームに半導体チップを固着するような場合、一般的にはCuフレーム上にはAgメッキが施されており、Agメッキ中にはSbが流れ出すことはない。つまり、最終的に0.1%のSb濃度を確保するには、前述の如くAu−Sb中のSb量は0.4%程度で十分であった。   For example, when a semiconductor chip is fixed to a Cu punching frame, Ag plating is generally performed on the Cu frame, and Sb does not flow out during Ag plating. That is, in order to finally secure the Sb concentration of 0.1%, as described above, the amount of Sb in Au—Sb is about 0.4%.

しかし、本実施形態のチップサイズパッケージでは、絶縁基板の導電パターンもAuメッキで形成されるため、最終的なAu量が増加する。例えば、導電パターンのAuメッキ厚が1μmで、エリア寸法が0.6mm角の絶縁基板に、0.35mm以上の半導体チップを溶着する場合、上記の例でAu−Sb中のSb濃度が0.4%であると、全Au中のSb濃度は0.03%まで低下してしまう。つまり、チップ溶着後の全Au層中のSb濃度が0.1%以下になってしまい、基板の界面準位が大きくなり、特性がばらつく問題が発生する。   However, in the chip size package of this embodiment, since the conductive pattern of the insulating substrate is also formed by Au plating, the final Au amount increases. For example, when a semiconductor chip of 0.35 mm or more is welded to an insulating substrate having an Au plating thickness of 1 μm and an area size of 0.6 mm square, the Sb concentration in Au—Sb is 0. If it is 4%, the Sb concentration in the total Au decreases to 0.03%. That is, the Sb concentration in the entire Au layer after chip welding becomes 0.1% or less, the interface state of the substrate becomes large, and the characteristics vary.

この対応としては、全Au中のSb濃度を高くして、組み立て後のSb濃度を0.1%以上確保すればよいが、例えば、裏面に蒸着していた合金層(Au層、Au−Sb層)24を厚くして組み立て後のSb濃度0.1%以上を確保するためには、裏面金属層が従来厚みの1.7倍も必要となり、コストアップとなってしまう。   As a countermeasure for this, the Sb concentration in the total Au may be increased to ensure the Sb concentration after assembly to be 0.1% or more. For example, the alloy layer (Au layer, Au—Sb) deposited on the back surface may be used. In order to secure the Sb concentration of 0.1% or more after assembling by thickening the layer 24), the back surface metal layer is required to be 1.7 times the conventional thickness, resulting in an increase in cost.

また、製造上、材料となるAu/Sbに含有できるSb量にも限度がある。また多くしても共晶反応が悪化することなどからSb含有量のみを増加させるのは困難である。   In addition, there is a limit to the amount of Sb that can be contained in Au / Sb as a material in production. Moreover, even if it increases, it is difficult to increase only the Sb content because the eutectic reaction deteriorates.

さらに、Au量の低減を目的として、第1の蒸着層からAuを除いてAu−Sb層のみを蒸着し、第2の蒸着でAu層を蒸着する方法では、前述のごとくSi界面に不純物(Sb)が多くなることになり、Au−Si共晶化が阻害され、組み立て時のダイボンド溶着不良となってしまう問題があった。   Further, in order to reduce the amount of Au, the Au-Sb layer is vapor-deposited by removing Au from the first vapor-deposited layer, and the Au layer is vapor-deposited by the second vapor-deposition, as described above, impurities ( Sb) increases, Au-Si eutectic formation is hindered, and there is a problem that die bond welding failure occurs during assembly.

本発明は、かかる課題に鑑みてなされ、n型シリコン半導体基板表面に素子拡散領域を形成する工程と、前記半導体基板の裏面に、第1のAu層を形成する第1の蒸着を行う工程と、前記第1のAu層上に不純物含有の金属層を形成する第2の蒸着を行う工程と、前記不純物含有の金属層上に第2のAu層を形成する第3の蒸着を行い、裏面金属層を形成する工程と、前記半導体基板を分割して半導体チップを形成し該半導体チップを絶縁基板上に設けた第3のAu層からなる導電パターン上に溶着する工程とを具備することにより解決するものである。   The present invention has been made in view of such problems, and includes a step of forming an element diffusion region on the surface of an n-type silicon semiconductor substrate, and a step of performing a first vapor deposition of forming a first Au layer on the back surface of the semiconductor substrate. A second vapor deposition step of forming an impurity-containing metal layer on the first Au layer; a third vapor deposition step of forming a second Au layer on the impurity-containing metal layer; A step of forming a metal layer, and a step of dividing the semiconductor substrate to form a semiconductor chip and welding the semiconductor chip onto a conductive pattern made of a third Au layer provided on an insulating substrate. It is a solution.

また、前記第1から第3の蒸着は同一真空装置内で行うことを特徴とするものである。   Further, the first to third vapor depositions are performed in the same vacuum apparatus.

また、前記絶縁基板上の前記導電パターンは該絶縁基板に設けたスルーホールを介して該絶縁基板裏面の外部電極と接続されることを特徴とするものである。   Further, the conductive pattern on the insulating substrate is connected to an external electrode on the back surface of the insulating substrate through a through hole provided in the insulating substrate.

また、前記半導体チップの溶着後、すべてのAu層中に含まれる前記不純物の濃度が0.1%以上となることを特徴とするものである。   In addition, after the semiconductor chip is welded, the concentration of the impurity contained in all the Au layers is 0.1% or more.

また、前記不純物含有の金属層は500nm程度の厚みに蒸着することを特徴とするものである。   The impurity-containing metal layer is deposited to a thickness of about 500 nm.

また、前記不純物含有の金属層中の該不純物濃度は、0.1%から1.2%程度であることを特徴とするものである。   The impurity concentration in the metal layer containing impurities is about 0.1% to 1.2%.

また、前記不純物含有の金属層は、Au−SbまたはAu−Asであることを特徴とするものである。   The metal layer containing impurities is Au-Sb or Au-As.

また、前記第1のAu層は50nm程度の膜厚に形成することを特徴とするものである。   The first Au layer is formed to a thickness of about 50 nm.

また、前記基板の裏面金属層は600nm程度の厚みに形成することを特徴とするものである。   The back metal layer of the substrate is formed to a thickness of about 600 nm.

本発明に依れば、N型シリコン基板の半導体チップを例えばチップサイズパッケージの導電パターン等のAuメッキ上に溶着する場合でも、シリコン界面の不純物濃度の低下を抑制できる。チップ裏面の界面準位を小さくできるので、良好な特性が確保できる。   According to the present invention, even when a semiconductor chip of an N-type silicon substrate is welded onto Au plating such as a conductive pattern of a chip size package, a decrease in impurity concentration at the silicon interface can be suppressed. Since the interface state on the back surface of the chip can be reduced, good characteristics can be secured.

また、裏面金属層の膜厚は従来と同等にできるので、コストを増大せずにAu中のSb濃度を所定の濃度に確保できる。   Moreover, since the film thickness of the back surface metal layer can be made equal to the conventional one, the Sb concentration in Au can be secured at a predetermined concentration without increasing the cost.

さらに、第1の蒸着により薄いAu層を形成するのでAu−Si共晶を促進し、その後に蒸着するAu−Sb層のSb濃度が従来より高くても、共晶の妨げになることはなく、チップと導電パターンとを溶着できる。   Furthermore, since a thin Au layer is formed by the first vapor deposition, the Au—Si eutectic is promoted, and even if the Sb concentration of the Au—Sb layer deposited thereafter is higher than the conventional one, the eutectic is not hindered. The chip and the conductive pattern can be welded.

図1から図3を用いて、本発明の実施の形態を詳述する。図1は、本発明の製造方法の工程図を示す。   The embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 shows a process chart of the production method of the present invention.

本発明の半導体装置の製造方法は、図1のごとく、n型シリコン半導体基板表面に素子拡散領域を形成する工程(S1)と、前記半導体基板の裏面に、第1のAu層を形成する第1の蒸着を行う工程(S2)と、前記第1のAu層上に不純物含有の金属層を形成する第2の蒸着を行う工程(S3)と、前記合金層上に第2のAu層を形成する第3の蒸着を行い、裏面金属層を形成する工程(S4)と、前記半導体基板を分割して半導体チップを形成し該半導体チップを絶縁基板上に設けた第3のAu層からなる導電パターン上に溶着する工程(S5)とから構成される。   As shown in FIG. 1, the semiconductor device manufacturing method of the present invention includes a step (S1) of forming an element diffusion region on the surface of an n-type silicon semiconductor substrate and a first Au layer on the back surface of the semiconductor substrate. A step (S2) of performing a first vapor deposition, a step (S3) of performing a second vapor deposition for forming an impurity-containing metal layer on the first Au layer, and a second Au layer on the alloy layer. A step (S4) of forming a third metal layer to form a back surface metal layer; and a third Au layer in which the semiconductor substrate is divided to form a semiconductor chip and the semiconductor chip is provided on the insulating substrate. And a step (S5) of welding on the conductive pattern.

また、図2は本実施形態の製造方法を示す断面図である。以下図1および図2を参照してその製造方法を説明する。   Moreover, FIG. 2 is sectional drawing which shows the manufacturing method of this embodiment. The manufacturing method will be described below with reference to FIGS.

第1工程(図2(A)、図1:S1参照):n型シリコン半導体基板表面に素子拡散領域を形成する工程。   First step (see FIG. 2A, FIG. 1: S1): a step of forming an element diffusion region on the surface of the n-type silicon semiconductor substrate.

まず、N+型シリコン半導体基板1上に、例えばMOSFETやバイポーラトランジスタ等を構成する所定の素子拡散領域2を既知の方法により形成する。なお、本実施形態は高濃度基板上に1つ以上の素子を構成する拡散領域を設けた、いわゆる縦型構造を有した半導体ディスクリートデバイスである。   First, a predetermined element diffusion region 2 constituting, for example, a MOSFET or a bipolar transistor is formed on an N + type silicon semiconductor substrate 1 by a known method. The present embodiment is a semiconductor discrete device having a so-called vertical structure in which a diffusion region constituting one or more elements is provided on a high concentration substrate.

第2工程(図2(B)、図1:S2参照):半導体基板の裏面に、第1のAu層を形成する第1の蒸着を行う工程。   Second step (see FIG. 2B, FIG. 1: S2): A step of performing first vapor deposition for forming a first Au layer on the back surface of the semiconductor substrate.

ウェハを真空蒸着装置に搬入してN+型シリコン半導体基板1裏面に第1のAu層3を形成する第1の蒸着を行う。蒸着源はAuのみであり、第1のAu層3の膜厚は、50nm程度に形成する。組み立て工程のダイボンド作業時の熱処理によりシリコン半導体基板1裏面が不純物を含まないAu層3と接するため、Au−Si共晶を促進できる。   The wafer is carried into a vacuum deposition apparatus, and first deposition for forming a first Au layer 3 on the back surface of the N + type silicon semiconductor substrate 1 is performed. The deposition source is only Au, and the film thickness of the first Au layer 3 is about 50 nm. Since the back surface of the silicon semiconductor substrate 1 is in contact with the Au layer 3 containing no impurities by the heat treatment during the die bonding operation in the assembly process, Au—Si eutectic can be promoted.

第3工程(図2(C)、図1:S3参照):第1のAu層上に不純物含有の金属層を形成する第2の蒸着を行う工程。   Third step (see FIG. 2C, FIG. 1: S3): a step of performing second vapor deposition for forming an impurity-containing metal layer on the first Au layer.

同一蒸着装置内で、蒸着源を不純物含有の金属、例えばAu−Sbに替えて第2の蒸着を行い、500nm程度の膜厚にAu−Sb層4を形成する。   In the same deposition apparatus, the deposition source is changed to an impurity-containing metal, for example, Au—Sb, and second deposition is performed to form the Au—Sb layer 4 with a thickness of about 500 nm.

組立工程において、Auの導電パターンに半導体チップを固着する場合、チップの接着前に金箔をしき、その上にチップを加圧しAuとシリコンの反応作業を行う方法がある。しかし、金箔は、取り扱い上7μm厚より薄くできず、また幅についても0.5mmより小さくカットすると取り扱いが困難となる。従って、この金箔を0.35mm角の半導体チップの裏面金属として採用すると、そのサイズは、0.5mm×0.4mm×7μmとなり、裏面に金属蒸着をした場合と比較して金の量が10倍となるためコストが非常に高くなる。そこで、シリコン基板1の裏面金属層の厚みを厚く、例えば600nm程度の膜厚にすることで金箔を省き、組み立て工程でのコストを削減している。   In the assembly process, when a semiconductor chip is fixed to the conductive pattern of Au, there is a method in which a gold foil is applied before the chip is bonded, and the chip is pressed thereon to perform the reaction between Au and silicon. However, the gold foil cannot be made thinner than 7 μm in terms of handling, and the handling becomes difficult if the width is cut smaller than 0.5 mm. Therefore, when this gold foil is adopted as the back metal of a 0.35 mm square semiconductor chip, the size is 0.5 mm × 0.4 mm × 7 μm, and the amount of gold is 10 compared to the case where metal deposition is performed on the back surface. The cost is very high because it is doubled. Therefore, the thickness of the back surface metal layer of the silicon substrate 1 is made thick, for example, about 600 nm, thereby omitting the gold foil and reducing the cost in the assembly process.

ここで、本実施形態ではAu−Sb層4中のSb濃度は、例えば1%程度とする。このように、従来よりもSb濃度の高いAu−Sb層4を、従来よりも約10倍の膜厚になるように蒸着させることにより、Sb濃度(量)を増やし、最終的なAu中のSb濃度を0.1%以上確保するものである。   Here, in the present embodiment, the Sb concentration in the Au—Sb layer 4 is, for example, about 1%. Thus, by depositing the Au—Sb layer 4 having a higher Sb concentration than the conventional one so as to have a film thickness about 10 times that of the conventional one, the Sb concentration (amount) is increased, and the final Au in the Au is increased. This ensures an Sb concentration of 0.1% or more.

前述の如く材料の製造上、Au−SbのSb量の増加には限度があるが、本実施形態の如く1%程度までであればAu中にSbを含有させることは問題ない。しかし、従来と同程度の膜厚(50nm)では、最終的なAu量に対するSbの割合が低くなってしまう。そこで、本実施形態ではAu−Sb層4の膜厚も従来の10倍程度まで厚くすることでSbの割合が低減することを防いでいる。   As described above, there is a limit to the increase in the amount of Sb of Au—Sb in the production of the material. However, if it is up to about 1% as in the present embodiment, there is no problem in including Sb in Au. However, when the film thickness is about the same as the conventional film (50 nm), the ratio of Sb to the final Au amount is low. Therefore, in the present embodiment, the thickness of the Au—Sb layer 4 is also increased to about 10 times that of the conventional one to prevent the Sb ratio from being reduced.

また、Au−Sb層4中のSb量は従来(0.4%)よりも多いため、これをシリコン基板1に直接蒸着させると、シリコン基板1とAu−Sb層界面のSb濃度が高く、シリコンとの共晶反応が不十分となる問題がある。そこで、第1の工程においてあらかじめ薄い第1のAu層3を形成しておくことでAu−Si共晶によりシリコンと反応しやすくし、その状態で厚いAu−Sb層4を蒸着することとした。   Further, since the amount of Sb in the Au—Sb layer 4 is larger than the conventional (0.4%), when this is directly deposited on the silicon substrate 1, the Sb concentration at the interface between the silicon substrate 1 and the Au—Sb layer is high, There is a problem that the eutectic reaction with silicon becomes insufficient. Therefore, by forming the thin first Au layer 3 in advance in the first step, it is easy to react with silicon by the Au—Si eutectic, and the thick Au—Sb layer 4 is deposited in that state. .

つまり、後の工程で400℃程度の加熱処理で溶着する場合に、まずシリコン基板に直接蒸着されている第1のAu層3が基板のSiと共晶することにより液状のAu−Siとなり、その共晶中に界面からさらにSiが入ることにより溶解温度が低下する。その後、Au−Sb層4が溶解することになるので、Sb量が多くても低温で十分な溶解が可能となるものである。   That is, in the case where welding is performed by a heat treatment of about 400 ° C. in the subsequent process, first, the first Au layer 3 directly deposited on the silicon substrate becomes liquid Au—Si by eutectic with Si of the substrate, When Si further enters the eutectic from the interface, the melting temperature decreases. Thereafter, since the Au—Sb layer 4 is dissolved, even if the amount of Sb is large, sufficient dissolution at a low temperature is possible.

第4工程(図2(D))前記合金層上に第2のAu層を形成する第3の蒸着を行い、裏面金属層を形成する工程(図1:S4参照)。   Fourth step (FIG. 2D) A step of forming a back metal layer by performing third vapor deposition for forming a second Au layer on the alloy layer (see FIG. 1: S4).

さらに、同一蒸着装置内で、Au層のみを蒸着源とした第3の蒸着を行い、Au−Sb層4の上に第2のAu層5を50nm程度蒸着する。この第2のAu層5は組立工程においてダイボンディングするまでのSbの酸化防止が目的である。本工程により、シリコン基板1の裏面金属層13が600nm程度の膜厚に形成される。   Further, in the same vapor deposition apparatus, third vapor deposition using only the Au layer as a vapor deposition source is performed, and the second Au layer 5 is vapor-deposited on the Au—Sb layer 4 by about 50 nm. The purpose of the second Au layer 5 is to prevent oxidation of Sb until die bonding in the assembly process. By this step, the back metal layer 13 of the silicon substrate 1 is formed to a thickness of about 600 nm.

第5工程(図2(E)):前記半導体基板を絶縁基板上に設けた第3のAu層からなる導電パターン上に溶着し、樹脂モールドする工程(図1:S5参照)。   Fifth step (FIG. 2E): a step in which the semiconductor substrate is welded onto a conductive pattern made of a third Au layer provided on an insulating substrate and resin-molded (see FIG. 1: S5).

その後、図2(D)の破線のごとくダイシングを行い、個々の素子領域ごとに分離して半導体チップ6を形成する。半導体チップ6は組み立て工程において、絶縁基板7に溶着される。セラミック等の絶縁基板7にはタングステン14上に第3のAu層であるAuメッキ層により導電パターン8(8A、8B)が形成されている。   Thereafter, dicing is performed as indicated by broken lines in FIG. 2D, and the semiconductor chip 6 is formed by being separated into individual element regions. The semiconductor chip 6 is welded to the insulating substrate 7 in the assembly process. A conductive pattern 8 (8A, 8B) is formed on an insulating substrate 7 made of ceramic or the like on a tungsten layer 14 by using an Au plating layer as a third Au layer.

また、絶縁基板7にはタングステン14を充填したスルーホール9およびそれに接続する外部電極10が形成されている。この導電パターン8Aに、半導体チップ6を搭載し、400℃程度の加熱処理を行う。   Further, a through hole 9 filled with tungsten 14 and an external electrode 10 connected to the through hole 9 are formed in the insulating substrate 7. The semiconductor chip 6 is mounted on the conductive pattern 8A, and a heat treatment at about 400 ° C. is performed.

本実施形態では、第4工程までの第1の蒸着から第3の蒸着までの間に加熱処理は行わず、本工程のダイボンドのための加熱処理(400℃程度)で、Au−Siを共晶させ、チップと導電パターンとを溶着する。すなわち、裏面金属層13の第1のAu層3中に基板のSiが拡散することにより液状のAu−Siとなり、その中に界面からSiが入ることにより共晶反応温度がさらに低下する。これによりAu−Sb層4および第2のAu層5が順次反応し、最終的に導電パターン8AであるAuメッキとSiとが溶解して共晶され、これによりチップ6が固着される。   In this embodiment, no heat treatment is performed from the first vapor deposition up to the fourth vapor deposition until the third vapor deposition, and Au—Si is commonly used in the heat treatment for die bonding (approximately 400 ° C.) in this vapor phase. Crystallize and weld the chip and conductive pattern. That is, the Si of the substrate diffuses into the first Au layer 3 of the back surface metal layer 13 to form liquid Au—Si, and Si enters the interface to further reduce the eutectic reaction temperature. As a result, the Au—Sb layer 4 and the second Au layer 5 react in sequence, and finally the Au plating as the conductive pattern 8A and Si are dissolved and eutectic, whereby the chip 6 is fixed.

基板1表面の素子拡散領域2も金属細線11等により、導電パターン8Bと電気的に接続する。絶縁基板7および半導体チップ6を樹脂層12により被覆して一体化する。   The element diffusion region 2 on the surface of the substrate 1 is also electrically connected to the conductive pattern 8B through the metal thin wire 11 or the like. The insulating substrate 7 and the semiconductor chip 6 are covered with the resin layer 12 and integrated.

図3に、従来構造の裏面金属層33(a)と、本実施形態の裏面金属層13(b)のAu量およびSb量を概念的に示す。実際にはSbはその粒子が溶解したAu中に混在している状態であるが、ここでは概念的に同一チップサイズにおけるSb量を膜厚に換算して比較している。また、チップサイズは、いずれも0.35mm角とする。   FIG. 3 conceptually shows the amounts of Au and Sb of the back surface metal layer 33 (a) having the conventional structure and the back surface metal layer 13 (b) of the present embodiment. Actually, Sb is in a state where the particles are mixed in dissolved Au, but here, the Sb amount in the same chip size is conceptually converted into a film thickness and compared. The chip size is 0.35 mm square.

従来構造(a)では、第1の蒸着S12でAu層およびAu−Sb層を同時に100nmまで蒸着する。このときAu−Sb層中のSb量は0.4%程度であるので、膜厚に換算すると1.5nm程度となる。さらに厚いAu層25を蒸着しこれを金メッキが施された基板にダイボンドすることで、トータルのAu中のSbの割合は0.033%に低下してしまう。   In the conventional structure (a), the Au layer and the Au—Sb layer are simultaneously deposited to 100 nm in the first deposition S12. At this time, since the amount of Sb in the Au—Sb layer is about 0.4%, the film thickness is about 1.5 nm. By depositing a thicker Au layer 25 and die-bonding it to a gold-plated substrate, the proportion of Sb in the total Au is reduced to 0.033%.

一方、本実施形態の構造(b)では、第1のAu層3を50nm蒸着後、Au−Sb層4を500nm蒸着する。このAu−Sb層4中のSb量は1%程度であるが、500nm蒸着することで膜厚に換算すると12nmとなる。さらに第2のAu層6を50nm蒸着してトータル600nmの裏面金属層13を形成している。これにより、Au中のSbの割合は0.97%を確保することができる。このような裏面金属層13を形成することで、組み立て工程において絶縁基板7上の導電パターン8B(Auメッキ厚1μm、エリア寸法0.6mm角)と共晶した場合、0.1%のSb濃度を確保できる。   On the other hand, in the structure (b) of the present embodiment, the first Au layer 3 is deposited by 50 nm, and then the Au—Sb layer 4 is deposited by 500 nm. The amount of Sb in the Au—Sb layer 4 is about 1%, but when converted to a film thickness by vapor deposition of 500 nm, it becomes 12 nm. Further, the second Au layer 6 is deposited by 50 nm to form the back metal layer 13 having a total of 600 nm. Thereby, the ratio of Sb in Au can be secured at 0.97%. By forming such a back surface metal layer 13, when the eutectic is formed with the conductive pattern 8B (Au plating thickness 1 μm, area size 0.6 mm square) on the insulating substrate 7 in the assembly process, the Sb concentration is 0.1%. Can be secured.

なお、本実施形態では、不純物含有の金属層としてAu−Sbを例に説明したが、これに限らずAu−As層や、その他の5価の金属を不純物としてAu中に含む合金でも同様に実施できる。N型シリコンは5価であり、この界面に5価以外の金属で合金層を形成するとシリコンと合金層にバンドキャップが生じてしまいこれが特性を悪くする。このため5価の不純物を入れてバンドキャップが発生させないようにするものである。   In the present embodiment, Au—Sb has been described as an example of the impurity-containing metal layer. However, the present invention is not limited to this, and an Au—As layer or an alloy containing other pentavalent metals as impurities in Au is also the same. Can be implemented. N-type silicon is pentavalent, and if an alloy layer is formed of a metal other than pentavalent at this interface, a band cap is formed between the silicon and the alloy layer, which deteriorates the characteristics. For this reason, a pentavalent impurity is introduced so as not to generate a band cap.

また、本実施形態では樹脂層によるパッケージを例に説明したが、半導体チップ6の封止材はこれに限らない。絶縁基板7にAuメッキ層による導電パターン8を設けてチップ6を溶着するものであれば、例えば絶縁基板上に柱状部を設け絶縁基板と対向するガラス基板等で封止した中空パッケージなどでも同様に実施できる。   In the present embodiment, the package using the resin layer has been described as an example. However, the sealing material for the semiconductor chip 6 is not limited thereto. As long as the conductive pattern 8 by the Au plating layer is provided on the insulating substrate 7 and the chip 6 is welded, the same applies to, for example, a hollow package in which a columnar portion is provided on the insulating substrate and sealed with a glass substrate facing the insulating substrate. Can be implemented.

本発明の半導体装置の製造方法の工程図である。It is process drawing of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the semiconductor device of this invention. 本発明および従来の半導体装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of this invention and the conventional semiconductor device. 従来の半導体装置の製造方法の工程図である。It is process drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the conventional semiconductor device.

符号の説明Explanation of symbols

1 N型シリコン半導体基板
2 素子拡散領域
3 第1のAu層
4 Au/Sb層
5 第2のAu層
6 半導体チップ
7 絶縁基板
8 導電パターン(第3のAu層)
9 スルーホール(タングステン)
10 外部電極
11 ボンディングワイヤ
12 樹脂層
13 裏面金属層
14 タングステン
21 N型シリコン半導体基板
22 素子拡散領域
24 合金層
25 Au層
26 半導体チップ
27 絶縁基板
28 導電パターン(第3のAu層)
29 スルーホール
30 外部電極
31 ボンディングワイヤ
32 樹脂層
33 裏面金属層
34 タングステン
1 N-type silicon semiconductor substrate 2 Element diffusion region 3 First Au layer 4 Au / Sb layer 5 Second Au layer 6 Semiconductor chip 7 Insulating substrate
8 Conductive pattern (third Au layer)
9 Through hole (tungsten)
DESCRIPTION OF SYMBOLS 10 External electrode 11 Bonding wire 12 Resin layer 13 Back surface metal layer 14 Tungsten 21 N type silicon semiconductor substrate 22 Element diffusion area 24 Alloy layer 25 Au layer 26 Semiconductor chip 27 Insulating substrate
28 Conductive pattern (third Au layer)
29 Through-hole 30 External electrode 31 Bonding wire 32 Resin layer 33 Back metal layer 34 Tungsten

Claims (8)

n型シリコン半導体基板表面に素子拡散領域を形成する工程と、
前記半導体基板の裏面に、第1のAu層を形成する第1の蒸着を行う工程と、
前記第1の蒸着に引き続き前記第1のAu層上に不純物含有の金属層を形成する第2の蒸着を行う工程と、
前記不純物含有の金属層上に第2のAu層を形成する第3の蒸着を行い、裏面金属層を形成する工程と、
前記半導体基板を分割して半導体チップを形成し、加熱処理よって前記第1のAu層と前記半導体基板のSiを共晶させて該半導体チップの裏面金属層と絶縁基板上に設けた第3のAu層からなる導電パターンを溶着する工程とを具備し、
前記金属層は、前記半導体チップの溶着後、すべてのAu層中に含まれる前記不純物の濃度が0.1%以上となる量の前記不純物が含まれることを特徴とする半導体装置の製造方法。
forming an element diffusion region on the surface of the n-type silicon semiconductor substrate;
Performing a first vapor deposition to form a first Au layer on the back surface of the semiconductor substrate;
And performing a second deposition of a metal layer containing impurities in said first continue the first Au layer on the deposition,
Performing a third vapor deposition for forming a second Au layer on the impurity-containing metal layer to form a back metal layer;
A semiconductor chip is formed by dividing the semiconductor substrate, and the first Au layer and Si of the semiconductor substrate are eutectic by heat treatment, and a third metal layer provided on the back metal layer and the insulating substrate of the semiconductor chip. And a step of welding a conductive pattern made of an Au layer ,
The method of manufacturing a semiconductor device, wherein the metal layer includes the impurity in an amount that causes the concentration of the impurity contained in all the Au layers to be 0.1% or more after the semiconductor chip is welded .
前記第1から第3の蒸着は同一真空装置内で行うことを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first to third vapor depositions are performed in the same vacuum apparatus. 前記絶縁基板上の前記導電パターンは該絶縁基板に設けたスルーホールを介して該絶縁基板裏面の外部電極と接続されることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the conductive pattern on the insulating substrate is connected to an external electrode on the back surface of the insulating substrate through a through hole provided in the insulating substrate. 前記不純物含有の金属層は500nm程度の厚みに蒸着することを特徴とする請求項1に記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the impurity-containing metal layer is deposited to a thickness of about 500 nm. 前記不純物含有の金属層中の該不純物濃度は、0.1%から1.2%であることを特徴とする請求項1に記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the impurity concentration in the impurity-containing metal layer is 0.1% to 1.2%. 前記不純物含有の金属層は、Au−SbまたはAu−Asであることを特徴とする請求項1に記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1, wherein the impurity-containing metal layer is Au—Sb or Au—As. 前記第1のAu層は50nm程度の膜厚に形成することを特徴とする請求項1に記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the first Au layer is formed to a thickness of about 50 nm. 前記基板の裏面金属層は600nm程度の厚みに形成することを特徴とする請求項1に記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the back metal layer of the substrate is formed to a thickness of about 600 nm.
JP2003279964A 2003-07-25 2003-07-25 Manufacturing method of semiconductor device Expired - Fee Related JP4104506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279964A JP4104506B2 (en) 2003-07-25 2003-07-25 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279964A JP4104506B2 (en) 2003-07-25 2003-07-25 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2005045169A JP2005045169A (en) 2005-02-17
JP4104506B2 true JP4104506B2 (en) 2008-06-18

Family

ID=34265927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279964A Expired - Fee Related JP4104506B2 (en) 2003-07-25 2003-07-25 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4104506B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839107B2 (en) * 2006-03-16 2011-12-21 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2005045169A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US8084861B2 (en) Connection structure semiconductor chip and electronic component including the connection structure and methods for producing the connection structure
US11842975B2 (en) Electronic device with multi-layer contact and system
US6720206B2 (en) Method for manufacturing digital micro-mirror device (DMD) packages
US8324115B2 (en) Semiconductor chip, semiconductor device and methods for producing the same
JP5300470B2 (en) Semiconductor package and method for forming the same
US11545454B2 (en) Semiconductor device
JP3767585B2 (en) Semiconductor device
US7368380B2 (en) Method of manufacturing semiconductor device
CN113140537A (en) Power semiconductor device and method for producing a power semiconductor device
JP2013229474A (en) Electronic apparatus and method of manufacturing the same
JPH06252091A (en) Semiconductor device and its manufacture
JP2001060760A (en) Circuit electrode and formation process thereof
JP4104506B2 (en) Manufacturing method of semiconductor device
JP2012190939A (en) Semiconductor device and manufacturing method of the same
JP2022179627A (en) Semiconductor element and semiconductor device
JP2016219749A (en) Semiconductor device and method of manufacturing the same
JP6427838B2 (en) Semiconductor device
JP3854467B2 (en) Manufacturing method of semiconductor device
US11552014B2 (en) Semiconductor package structure and method of making the same
JP4668608B2 (en) Semiconductor chip, semiconductor device using the same, and semiconductor chip manufacturing method
KR100860445B1 (en) Semiconductor device and manufacturing method of conductive pad
JPH03262137A (en) Manufacture of semiconductor integrated circuit device
JP2005167109A (en) Semiconductor device, and manufacturing method thereof
JP2005086057A (en) Semiconductor device and its manufacturing method
JPS6014445A (en) Compound semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees