JPS6014445A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS6014445A
JPS6014445A JP58121368A JP12136883A JPS6014445A JP S6014445 A JPS6014445 A JP S6014445A JP 58121368 A JP58121368 A JP 58121368A JP 12136883 A JP12136883 A JP 12136883A JP S6014445 A JPS6014445 A JP S6014445A
Authority
JP
Japan
Prior art keywords
layer
gold
film
thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58121368A
Other languages
Japanese (ja)
Inventor
Yoshio Iizuka
飯塚 佳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58121368A priority Critical patent/JPS6014445A/en
Publication of JPS6014445A publication Critical patent/JPS6014445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable die bonding, which has excellent ohmic contacting properties and reliability thereof is high, by forming an electrode, an intermediate section thereof consists of three-layer metallic thin-films with metallic thin-films of the high melting point, on the surface of a semiconductor element. CONSTITUTION:A first metallic thin-film 31 consisting of an alloy of beryllium or zinc and gold, a second metallic thin-film 32 composed of a high melting-point metal mainly comprising either of Ti, Ta, Mo, Ni or W and a third metallic thin-film 33 of the low melting point consisting of a eutectic alloy of germanium, silicon, tin or the like and gold are formed on the surface of a p type GaAlAs layer 22p. A chip can be die-bonded easily because the thin-film 33 is made of a low melting-point metal. An ohmic contact between the p type GaAlAs layer 22p and a metallic electrode 23 is not obstructed because the fine thin-film 32 composed of a layer 27 in Ti, etc. prevents a crossing over the thin-film 32 of germanium, etc. in the thin-film 33 and a diffusion into the layer 22p of germanium, etc. in heating at the time of die bonding of the thin-film 32.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、金共晶を用いてグイボンディングを行う化合
物半導体装置に係り、特にGaAs (ガリウム・ひ素
) 、GaALAs (ガリウム・アルミニウム・ひ素
)を結晶材料とする発光素子(LED )等の化合物半
導体装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a compound semiconductor device that performs bonding using gold eutectic. The present invention relates to compound semiconductor devices such as light emitting devices (LEDs) using crystalline materials.

〔発明の技術的背景〕[Technical background of the invention]

従来より広く用いられているGaAs赤外発光素子では
、pn接合部を有する素子のグイポンディング面となる
n g GaAs層表面にオーミック接触を得るだめの
金属膜として金に微量の例えばゲルマニウムを含む第1
の金属膜を被着し、この金属膜上に重量比で12%程度
のグルマニウムを含む低融点の金の共晶合金からなる第
2の金属膜を積層形成した素子が用いられる場合がある
。このような素子では、素子基台となるリードフレーム
上に素子を載置し、400℃程度に加熱することによシ
第2の金属膜が溶け、素子基台に素子が固定されるため
、導電性接着剤等を用いる必要なくグイボンディングを
簡単に行うことができる。
In GaAs infrared light-emitting devices that have been widely used in the past, gold contains a small amount of germanium, for example, as a metal film to establish ohmic contact with the surface of the n g GaAs layer, which serves as the bonding surface of the device having a pn junction. 1st
In some cases, an element is used in which a second metal film made of a low melting point gold eutectic alloy containing approximately 12% glumanium by weight is laminated on the metal film. In such an element, the element is placed on a lead frame that serves as the element base, and the second metal film is melted by heating it to about 400°C and the element is fixed to the element base. Gui bonding can be easily performed without using a conductive adhesive or the like.

ところで、近年高出力の赤外発光素子として、Stを添
加したGaAtAs結晶からなるLEDが使用されるよ
うになった。
Incidentally, in recent years, LEDs made of GaAtAs crystal doped with St have come to be used as high-output infrared light emitting elements.

とのGaAl−A sによる素子は、液相成長中にSt
添加層の導電型がn型からp型に変化することを利用し
た素子で、GaAs基板を、Ga 、 At、Asおよ
びSiの混合融液中に浸し、徐冷してG aA s基板
上にStの添加されたGaAtAs液相成長層を成長さ
せたものである。このような液相成長を行うと、第1図
のグラフに示すように液相成長層の成長とともにAtA
s混晶比Xが変化し、基板に近いAtAs混晶が多量に
存在する高温成長領域(図の破線上部領域)ではシリコ
ンがn型不純物となp、AtAs混晶の少ない低温成長
領域(図の破線下部領域)ではシリコンがp型不純物と
なってpn接合面を有するウェハが得られる′。その後
、GaAAAs:Siの液相成長層のみが残るように、
上記GaAs基板を例えば化学エツチングによシ除去し
て第2図に示すようなLEDチッ7010を形成する。
GaAl-As devices with St
This device utilizes the fact that the conductivity type of the additive layer changes from n-type to p-type. A GaAs substrate is immersed in a mixed melt of Ga, At, As, and Si, slowly cooled, and then placed on the GaAs substrate. A GaAtAs liquid phase growth layer doped with St is grown. When such liquid phase growth is performed, AtA is produced as the liquid phase growth layer grows as shown in the graph of Figure 1.
The s mixed crystal ratio In the region below the broken line), silicon becomes a p-type impurity and a wafer having a p-n junction is obtained. After that, so that only the liquid phase growth layer of GaAAAs:Si remains,
The GaAs substrate is removed, for example, by chemical etching to form an LED chip 7010 as shown in FIG.

〔背景技術の問題点〕[Problems with background technology]

ところで、上記のようなLEI)チッ7”10ではAt
A s混晶比の大きい領域では禁制帯幅が大きく、光が
吸収されにくいため、pn接合面で発生した光はn型G
aAtAs層11nから取り出され、p型GaAAAs
 411 pがグイボンディング面として使用される。
By the way, in the above LEI) chip 7"10, At
In the region with a large A s mixed crystal ratio, the forbidden band width is large and light is difficult to be absorbed, so the light generated at the pn junction is an n-type G
The p-type GaAAAs is taken out from the aAtAs layer 11n.
411p is used as the Gui bonding surface.

ここで、p型GaAtA s層11p」二にオーミック
接触を得るための金とベリリウムの合金薄膜を形成し、
この薄膜上に前述のG aA s系のLEDで使用した
ようなゲルマニウム等の共晶合金をグイボンディング剤
として使用すると、グイボンディング時の加熱によシダ
ルマニウム(或いはすす、シリコン等)が半導体表面に
拡散して金属電極のオーミック性を肌性することになる
。これはGaAtAs結晶に対しダルマニウムがn型不
純物となるからで、同様に、すす、シリコン等もn型不
純物となる/こめ、これらの元素を含む金共晶技術を用
いた1)(1便なグイボンディング法を用いることがで
きない。
Here, an alloy thin film of gold and beryllium is formed on the p-type GaAtAs layer 11p to obtain ohmic contact.
If a eutectic alloy such as germanium, such as that used in the GaAs-based LED described above, is used as a bonding agent on this thin film, sidermanium (or soot, silicon, etc.) will be deposited on the semiconductor surface due to the heating during bonding. It diffuses and changes the ohmic properties of the metal electrode to skin-like properties. This is because dalmanium becomes an n-type impurity for GaAtAs crystals, and similarly, soot, silicon, etc. also become n-type impurities. It is not possible to use a flexible bonding method.

このため、GaAs基板 LEDでは、銀ペースト、銀
・すず半田等用いてダイボンデイングラ行っていたが、
銀ペーストを用いた場合には、製品完成後、素子に通電
中に銀がpn接合部にg効してショートすることがあシ
、銀・すず半田の場合にはオーミック接触用に素子表面
に形成した金とすすが相互に拡散して素子が剥離しゃす
くなるという信頼性上の問題があった。
For this reason, die bonding was performed using silver paste, silver/tin solder, etc. for GaAs substrate LEDs.
When silver paste is used, after the product is completed, while the device is energized, the silver may cause a g-effect on the pn junction, causing a short circuit.In the case of silver/tin solder, it may be necessary to apply a paste to the surface of the device for ohmic contact. There was a reliability problem in that the formed gold and soot diffused into each other, making it easy for the device to peel off.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような点に鑑みなされたもので、例え
ばp型GaAAAs等に対しても良好なオーミック接触
性を有し、信頼性が高く簡便なグイボンディングが可能
な金属電極を備えた化合物半導体装置を提供しようとす
るものである。
This invention was made in view of the above points, and provides a compound having a metal electrode that has good ohmic contact properties even with p-type GaAAAs, etc., and allows for highly reliable and easy bonding. The purpose is to provide a semiconductor device.

〔発明の概要〕[Summary of the invention]

すなわち、この発明に係る化合物半導体装置では、例え
ばGaAtAs LED等、一つの表面にp型化合物半
導体層を有する半導体素子のp型化合物半導体層表面に
、例えばベリリウム或いは亜鉛と金との合金からなる、
上記p型化合物半導体層とオーミック接触が可能な第1
の金属薄膜を形成し、この第1の金属薄膜上に例えばT
i。
That is, in the compound semiconductor device according to the present invention, the surface of the p-type compound semiconductor layer of a semiconductor element having a p-type compound semiconductor layer on one surface, such as a GaAtAs LED, is made of, for example, beryllium or an alloy of zinc and gold.
A first layer capable of making ohmic contact with the p-type compound semiconductor layer.
A thin metal film of, for example, T is formed on this first metal thin film.
i.

Ta 、 Mo 、 、Ni 、 W等を主成分とした
高融点金属からなる第2の金属薄膜を形成し、さらにこ
の第2の金属薄膜上に例えばダルマニウム、シリコン、
或いはすす等と金との共晶合金からなる低融点の第3の
朶属薄膜を形成したものであシ、上記第10金桃薄膜に
よシ良好なオーミック接触を得るとともに、高融点の第
2の金属膜が、低融点の第3の金属薄膜中のダルマニウ
ム、シリコン或いはすす等がグイボンディングの加熱時
にp型化合物半導体層中に拡散する現象を防止するよう
にしたものである。
A second metal thin film made of a high-melting point metal mainly composed of Ta, Mo, Ni, W, etc. is formed, and on this second metal thin film, for example, dalmanium, silicon, etc. are formed.
Alternatively, a third metal thin film with a low melting point made of a eutectic alloy of soot and gold is formed. The metal film No. 2 is designed to prevent dalmanium, silicon, soot, etc. in the third metal thin film having a low melting point from diffusing into the p-type compound semiconductor layer during heating for bonding.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例をGaAAAa
 : S i赤外LEDを例にとシ説明する。
An embodiment of the present invention will be described below with reference to the drawings.
: This will be explained using Si infrared LED as an example.

壕ず第3図においてGaAs (100)基板21上に
\Ga中にAs 、 AI、およびStを含む融液を接
触させて徐冷し、このGaAs (100)基板21上
にGaAAAs層22を形成する。この際、Atの偏析
係数は極めて太きいため、融液中のAt含有量に比らべ
GaAtA s層22中に含まれるAtAs混晶比は極
めて小さくなシ、例えば900℃から徐冷成長を行って
GaAtAs層22の初期の混晶比Xを03程度として
も、700℃前後に温度が低下した時点で形成された成
長層におけるA7!、As混晶比は殆んど0と々る。こ
の間温度の低下によって、導電型決定不純物としてのS
iの作用が変化し、GaAAAs液相成長層は、成長方
向に沿ってn型からp型に変化し、結果として、n型G
aAAAs JfJ 22 n 。
In FIG. 3, a GaAs (100) substrate 21 is brought into contact with a melt containing As, AI, and St in Ga and slowly cooled to form a GaAAAs layer 22 on the GaAs (100) substrate 21. do. At this time, since the segregation coefficient of At is extremely large, the AtAs mixed crystal ratio contained in the GaAtAs layer 22 is extremely small compared to the At content in the melt. Even if the initial mixed crystal ratio X of the GaAtAs layer 22 is set to about 0.03, A7! , the As mixed crystal ratio is almost 0. During this time, due to the decrease in temperature, S as a conductivity type determining impurity
The action of i changes, and the GaAAAs liquid phase growth layer changes from n-type to p-type along the growth direction, resulting in n-type G
aAAAs JfJ 22 n.

p型GaA7As層22pが形成される。A p-type GaA7As layer 22p is formed.

次いで、前述したように、高い発光効率を得るために発
光なnπすGaktASJ音22nから取シ出す必要が
あるため、n型GaAtAs )1522 n側のGa
As基板21を除去する。
Next, as mentioned above, in order to obtain high luminous efficiency, it is necessary to extract light from the n
The As substrate 21 is removed.

この後、第4図に示すように上記p型GaAtA8)N
 22 p表面に1%のベリリウムを含む金ベリリウム
合金層23を約0.5μm被着し、さらに、この金ベリ
リウム合金1缶23上にこの金ベリリウム合金層23の
変成(酸化等)防止の目的で、層厚が0.5μmの純金
層24を形成する。
After this, as shown in FIG. 4, the p-type GaAtA8)N
22 A gold-beryllium alloy layer 23 containing 1% beryllium is deposited on the p surface to a thickness of approximately 0.5 μm, and a layer of gold-beryllium alloy 23 is deposited on the gold-beryllium alloy 1 can 23 for the purpose of preventing metamorphosis (oxidation, etc.) of the gold-beryllium alloy layer 23. Then, a pure gold layer 24 having a layer thickness of 0.5 μm is formed.

次いでn型GaAtAs J’iji 22 n lに
0.5%のゲルマニウムを含む金ゲルマニウム合金層2
5を約0.5μ?n″$着し、さらにこの金ダルマニウ
ム合金層25上にこの層の変成防止の目的で純金層26
を約0,5μmの層厚で積層被着する。
Next, a gold-germanium alloy layer 2 containing 0.5% germanium in n-type GaAtAs 22nl is formed.
5 about 0.5 μ? Furthermore, a pure gold layer 26 is deposited on this gold-dalmanium alloy layer 25 for the purpose of preventing metamorphosis of this layer.
are applied in a layered manner with a layer thickness of approx. 0.5 μm.

次に400℃程度の熱処理を行い、上記金ぺIJ IJ
ウム合金層23および金ゲルマニウム合金層25とそれ
ぞれの合金層に接する化合物半導体層とのオーミック接
触を得る。
Next, heat treatment at about 400°C is performed to
Ohmic contact is obtained between the gold-germanium alloy layer 23 and the gold-germanium alloy layer 25 and the compound semiconductor layer in contact with each alloy layer.

続いて、p型GaAAAs層22p側の電極となる金ベ
リリウム合金層23およびその上の純金層24上にTi
 (チタン)層j27を0.5μm(1)層厚で被着し
、さらにとのTiJi27上にこの層の変成防止の目的
で、純金を0.5μm被着し、さらにこの純金層28上
にダルマニウムを12条含む金合金からなるマウント用
金合金層29を1.0μの層厚で形成する。
Subsequently, Ti is deposited on the gold-beryllium alloy layer 23, which will become the electrode on the p-type GaAAAs layer 22p side, and on the pure gold layer 24 thereon.
A (titanium) layer j27 is deposited with a thickness of 0.5 μm (1), and pure gold is deposited with a thickness of 0.5 μm on top of the TiJi layer 27 for the purpose of preventing metamorphosis of this layer, and further on this pure gold layer 28. A mounting gold alloy layer 29 made of a gold alloy containing 12 dallmanium strips is formed with a layer thickness of 1.0 μm.

その後、光の取シ出し面となるn型GaAHAs@ 2
2 n側の金属電極層をフォトエツチングによって所定
の形状に・ぐターニングし、ウェハをグイシングしてL
EDチッン°を児成する。この後、リードフレーム上に
チップを載置した状態でリードフレームおよびチップを
加熱し、上記マウント用合金層29によシチップをダイ
ポンディングし、さらに外囲器への組み込みを行って製
品とする。
After that, n-type GaAHAs @ 2 which becomes the light extraction surface
2 Turn the metal electrode layer on the n side into a predetermined shape by photo-etching, and guising the wafer to form an L
Generates ED Chin°. Thereafter, with the chip placed on the lead frame, the lead frame and the chip are heated, the chip is die-bonded onto the mounting alloy layer 29, and is further assembled into an envelope to produce a product.

ここで上記金ベリリウム合金層23およびTi層27上
に形成した純金層24.28は、金べ171Jウム合金
層23およびTi層27の変成防止のために設けたもの
で、オーミック接触を得るだめの熱処理や、グイポンデ
ィング時の加熱処理等の熱処理中に接する金合金層と混
じり合い、結果としてチップのp型GaAAAs層22
p側には金べIJ リウム合金層23と純金層24とが
u1合した金とベリリウムの合金からなる第1の金属薄
膜31と、高Fa点金属のT1からなる第2の金属薄膜
32と、純金層28とマウント用金合金層29とが融合
した金とゲルマニウムの合金からなる第3の金属薄膜3
3とが形成される。
Here, the pure gold layers 24 and 28 formed on the gold beryllium alloy layer 23 and the Ti layer 27 are provided to prevent metamorphosis of the gold beryllium alloy layer 23 and the Ti layer 27, and are necessary to obtain ohmic contact. The p-type GaAAAs layer 22 of the chip mixes with the contacting gold alloy layer during the heat treatment such as the heat treatment of
On the p side, there is a first metal thin film 31 made of an alloy of gold and beryllium in which the beryllium alloy layer 23 and the pure gold layer 24 are combined, and a second metal thin film 32 made of T1, a high Fa point metal. , a third metal thin film 3 made of an alloy of gold and germanium in which a pure gold layer 28 and a mounting gold alloy layer 29 are fused.
3 is formed.

このような装置において、チップの裏面の第3の金属薄
膜33は低融点金JAであるため、素子基台となるリー
ドフレーム上にチップを載置した状態でリードフレーム
およびチップを加熱することにより、チップを容易にグ
イポンディングすることができる。
In such a device, since the third metal thin film 33 on the back surface of the chip is low-melting gold JA, heating the lead frame and the chip while the chip is placed on the lead frame, which serves as the element base, , chips can be easily distributed.

一方、Ti層27から々る微細な第2の金属薄膜32が
ダイポンディング時の加熱において、第3の金属薄膜3
3中のダルマニウムが第2の金属薄膜32を超えてp 
3jl GaAAAs J脅22 pに拡散することを
阻止するため、p型GaAtAs層22pと金属電極と
のオーミックコンタクトを阻害せずに金とダルマニウム
の共晶合金による簡易で且つ信頼性の高いグイボンディ
ングを行うことができる。
On the other hand, when the fine second metal thin film 32 falling from the Ti layer 27 is heated during die bonding, the third metal thin film 3
Dalmanium in 3 exceeds the second metal thin film 32 and p
In order to prevent GaAAAs from diffusing into the 3jl GaAAAs layer 22p, simple and highly reliable bonding using a eutectic alloy of gold and dahmanium is performed without inhibiting ohmic contact between the p-type GaAtAs layer 22p and the metal electrode. It can be performed.

尚、上記実施例の他に、pmのオーミック電極となる第
1の金属層としては金と亜鉛との合金も使用可能であシ
、また、第2の金属層としては、チタンの代シにタンタ
ル、モリブデン。
In addition to the above embodiments, an alloy of gold and zinc can be used as the first metal layer that becomes the pm ohmic electrode, and an alloy of gold and zinc can be used instead of titanium as the second metal layer. tantalum, molybdenum.

ニッケル、タングステン等緻折な構造の他の高融点金属
を用いてもよい。更に第3の金属層のマウント用共晶合
金としては、金とシリコン、金とすす等を主成分とする
共晶合金を用いても良い。
Other high melting point metals with a fine structure such as nickel and tungsten may also be used. Further, as the eutectic alloy for mounting the third metal layer, a eutectic alloy containing gold and silicon, gold and soot, etc. as main components may be used.

また、上記第1.第2.第3の金M層3ノ。In addition, the above 1. Second. Third gold M layer 3 no.

32.33の被着される素子としては、シリコンを添加
したGaAtAs、 LEDに限られるものではなく、
GaAs (第1図のx = Oとなる部位はAtの含
まれないGaAs結晶とみなせる) 、GaP或いはI
nP等との■■化合物等、他の化合物半導体を用いた素
子でもよい。
The elements to be deposited in 32.33 are not limited to silicon-doped GaAtAs, LEDs, etc.
GaAs (the part where x = O in Figure 1 can be regarded as a GaAs crystal that does not contain At), GaP or I
Elements using other compound semiconductors such as ■■ compounds with nP etc. may also be used.

[発明の効果〕 以上のようにこの発明によれば、良好々オーミック接触
性を有し、金共晶によるfflj便で信頼性の高いグイ
ポンディングが可能な金ノ14軍極を備えた化合物半導
体装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, a compound is provided with a gold-plated metal pole that has good ohmic contact properties and is capable of highly reliable guiponding using gold eutectic fflj. A semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaAAAs液相成長層におけるAtAs混晶
比を示すグラフ、第2図はGaAAAs LEDチッゾ
を説明する断面図、第3図および第4図はそれぞれこの
発明の一実施例に係る化合物半導体装「を製造過程順に
示す断面図である。 22−−・GaAAAs層、22 p−p型GaAAA
s層、22n・・・n均iq GaAAAs層、23・
・・金ベリリウム合金層、24・・・純金層、25・・
・金ダルマニウム合金層、26・・・純金層、27・・
・Ti層、28・・・純金層、29・・・マウント粗金
合金Jハ1、s 1・・・第1の金属薄膜、32・・・
第2の金属薄膜、33・・・第3の金属薄膜。 第1図 AIAS −zpaeerし 第2 図 第3図
FIG. 1 is a graph showing the AtAs mixed crystal ratio in a GaAAAs liquid phase growth layer, FIG. 2 is a cross-sectional view illustrating a GaAAAs LED chip, and FIGS. 3 and 4 are compound semiconductors according to an embodiment of the present invention. 22--GaAAAs layer, 22 p-p type GaAAA
s layer, 22n...n uniform iq GaAAAs layer, 23.
...Gold-beryllium alloy layer, 24...Pure gold layer, 25...
・Gold-dalmanium alloy layer, 26...Pure gold layer, 27...
・Ti layer, 28... Pure gold layer, 29... Mount coarse gold alloy Jc1, s 1... First metal thin film, 32...
second metal thin film, 33... third metal thin film; Figure 1 AIAS-zpaeer Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1) 少なくとも一つの光面にp型化合物半導体層を
有する半導体素子と、上記p型化合物半導体層表面に形
成されこのp型化合物半導体層とオーミック接触が可能
な第1の金属薄膜と、この第1の金属薄膜上に形成され
た高融点金属からなる第2の金属薄膜と、上記第2の金
属薄膜上に形成され金と共晶をなす金属と金との合金よ
シなる低融点の第3の金属薄膜とを具備していることを
特徴とする化合物半導体装置。
(1) a semiconductor element having a p-type compound semiconductor layer on at least one optical surface; a first metal thin film formed on the surface of the p-type compound semiconductor layer and capable of making ohmic contact with the p-type compound semiconductor layer; A second metal thin film made of a high melting point metal formed on the first metal thin film, and a low melting point metal thin film made of a metal and gold alloy formed on the second metal thin film and forming a eutectic with gold. A compound semiconductor device comprising: a third metal thin film.
(2)上記第1の金属薄膜がぺIJ IJウムおよび亜
鉛のいずれかと金との合金であることを特徴とする特許
請求の範囲第1項記載の化合物半導体装置。
(2) The compound semiconductor device according to claim 1, wherein the first metal thin film is an alloy of gold and any one of aluminum and zinc.
(3)上記第2の金属薄j漠が’El’) + Ta 
+ Mo rNi、Wのいずれかを主成分としているこ
とを特徴とする特許請求の範囲第1項まだは第2項記載
の化合物半導体装置。
(3) The second metal layer is 'El') + Ta
+ Mor The compound semiconductor device according to claim 1 or claim 2, characterized in that the main component is either Ni or W.
(4)上記第3の金属薄膜がゲルマニウムおよびシリコ
ンおよびすすのいずれか一つ以上と金との共晶合金であ
ることを特徴とする特許請求の範囲第1項乃至第3項い
ずれか記載の化合物半導体装置。
(4) The third metal thin film is a eutectic alloy of gold and one or more of germanium, silicon, and soot. Compound semiconductor device.
JP58121368A 1983-07-04 1983-07-04 Compound semiconductor device Pending JPS6014445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121368A JPS6014445A (en) 1983-07-04 1983-07-04 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121368A JPS6014445A (en) 1983-07-04 1983-07-04 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS6014445A true JPS6014445A (en) 1985-01-25

Family

ID=14809509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121368A Pending JPS6014445A (en) 1983-07-04 1983-07-04 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS6014445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234434A (en) * 1992-02-24 1993-09-10 Showa Electric Wire & Cable Co Ltd Manufacturing device for tape-shaped cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234434A (en) * 1992-02-24 1993-09-10 Showa Electric Wire & Cable Co Ltd Manufacturing device for tape-shaped cable

Similar Documents

Publication Publication Date Title
JP3271475B2 (en) Electrical element joining material and joining method
US3339274A (en) Top contact for surface protected semiconductor devices
US7666692B2 (en) Semiconductor device, its manufacture method and electronic component unit
US6140703A (en) Semiconductor metallization structure
US4042951A (en) Gold-germanium alloy contacts for a semiconductor device
US10046408B2 (en) Device comprising a connecting component and method for producing a connecting component
US3986251A (en) Germanium doped light emitting diode bonding process
US3636618A (en) Ohmic contact for semiconductor devices
JPS6014445A (en) Compound semiconductor device
US20040214363A1 (en) ZnSe based light emitting device with In layer
GB2300375A (en) Bonding method for electric element
US8853006B2 (en) Method of manufacturing semiconductor device and semiconductor device
US3436616A (en) Ohmic contact consisting of a bilayer of gold and molybdenum over an alloyed region of aluminum-silicon
US3093882A (en) Method for producing a silicon semiconductor device
JPS6148776B2 (en)
JPS5936425B2 (en) Lead frame structure with intermediate layer
US3638304A (en) Semiconductive chip attachment method
JPS5950106B2 (en) Electrode structure of semiconductor devices
US3729818A (en) Semiconductive chip attachment means
US3401316A (en) Semiconductor device utilizing an aual2 layer as a diffusion barrier that prevents "purple plague"
KR20010002079A (en) Flip Chip Process on III-Nitride Semiconductor Device Fabricated
JPH08139363A (en) Electrode structure of light emitting diode
JP4104506B2 (en) Manufacturing method of semiconductor device
JPS6081884A (en) Semiconductor light emitting device
Davis Gold in semiconductor technology: Some unconventional metallurgical concepts