JPS5950106B2 - Electrode structure of semiconductor devices - Google Patents

Electrode structure of semiconductor devices

Info

Publication number
JPS5950106B2
JPS5950106B2 JP51123580A JP12358076A JPS5950106B2 JP S5950106 B2 JPS5950106 B2 JP S5950106B2 JP 51123580 A JP51123580 A JP 51123580A JP 12358076 A JP12358076 A JP 12358076A JP S5950106 B2 JPS5950106 B2 JP S5950106B2
Authority
JP
Japan
Prior art keywords
layer
metal
electrode
metal layer
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51123580A
Other languages
Japanese (ja)
Other versions
JPS5348670A (en
Inventor
郁郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51123580A priority Critical patent/JPS5950106B2/en
Publication of JPS5348670A publication Critical patent/JPS5348670A/en
Publication of JPS5950106B2 publication Critical patent/JPS5950106B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05169Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Description

【発明の詳細な説明】 この発明はリードワイヤとの間のボンディング性を高め
た半導体素子の電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure for a semiconductor element that has improved bonding properties with lead wires.

半導体素子たとえばGaP発光素子は、第1図a、bに
示す様なチップ構造が一般的である。すなわち、N型の
GaP基板1上に液相成長などによりP型のGaP層2
を成長させてPN接合面3を形成する。4、5は、それ
ぞれP型側、N型側に形成した電極取出し用の金属電極
である。
A semiconductor device such as a GaP light emitting device generally has a chip structure as shown in FIGS. 1a and 1b. That is, a P-type GaP layer 2 is formed on an N-type GaP substrate 1 by liquid phase growth or the like.
is grown to form the PN junction surface 3. 4 and 5 are metal electrodes for electrode extraction formed on the P-type side and the N-type side, respectively.

これら金属電極4、5を形成する金属材料は、通常素子
表面でGaPとオーミックコンタクトを形成すること、
熱伝導度が高く蒸着等による電極形成が容易であること
、さらに熱圧着法等の電極接続(リードワイヤとの間の
ボンディング)に適していることが必要である。第2図
a−eは上記金属電極のうちP型側に形成する金属電極
4の平面形状を示している。
The metal materials forming these metal electrodes 4 and 5 usually form ohmic contact with GaP on the element surface;
It is necessary that the material has high thermal conductivity and that electrode formation by vapor deposition or the like is easy, and that it is suitable for electrode connection (bonding with lead wires) such as thermocompression bonding. FIGS. 2a to 2e show the planar shape of the metal electrode 4 formed on the P-type side of the metal electrodes.

ここに示される形状は、第1にリードワイヤとして用い
るAuあるいはAl等の金属細線(25〜50μφ)と
のボンディングが容易であること、第2にGaP発光素
子ではPN接合面3付近で発光した光を外部にとりだし
やすくするうえで電極面積はできるだけ小さくすること
、第3にPN接合面3を流れる電流の局部的集中を排す
るうえで素子全面に電流が拡散しやすい形状とすること
等の必要条件を満している。GaP発光素子では、従来
からこの種の必要を満すために金属材料としては一般に
不純物を添加した金(Au)を使用している。
The shape shown here is, firstly, easy to bond with a thin metal wire (25 to 50μφ) such as Au or Al used as a lead wire, and secondly, in the GaP light emitting element, light is emitted near the PN junction surface 3. In order to make it easier to extract light to the outside, the electrode area should be made as small as possible, and thirdly, in order to eliminate local concentration of the current flowing through the PN junction surface 3, the shape should be made so that the current can easily spread over the entire surface of the element. Meets the requirements. GaP light emitting devices have conventionally used impurity-doped gold (Au) as the metal material to meet this type of need.

すなわち、P型側の金属電極4はアクセプタとなる不純
物たとえばZn、Be等を添加した金を、N型側の金属
電極5はドナーとなる不純物たとえばSi等を添加した
金を用い、それぞれの面に蒸着するようにしていた。第
3図は、P型側の金属電極4の従来の構造を示す側断面
図である。P型のGaP層2の上には、約0.5〜2.
0%のBeを含有するAu合金4、が〜0.5μ程度の
厚さで蒸着され、さらに不純物を含まない純金(Au)
4、が0.3〜2.0μ蒸着されている。これらは、順
次にGaP層2上に全面被着されたうえ、写真食刻法に
よつて所定の形状(第2図a乃至eに示される如きもの
)に形成される。その後、500〜550℃の熱処理で
オーミックコンタクトを得、ダイヤモンド、ブレード、
スラリー等によつて個別素子としてチップに分割される
。このような従来の金属電極の構造は、次の欠点が上記
Au−Be合金層4、上にAu層40を積層した場合に
は曲型的にみられる。
That is, the metal electrode 4 on the P-type side is made of gold doped with an impurity such as Zn or Be to serve as an acceptor, and the metal electrode 5 on the N-type side is made of gold doped with an impurity such as Si to serve as a donor. It was designed to be vapor-deposited. FIG. 3 is a side sectional view showing the conventional structure of the metal electrode 4 on the P-type side. On the P-type GaP layer 2, about 0.5 to 2.
Au alloy 4 containing 0% Be is deposited to a thickness of ~0.5μ, and pure gold (Au) containing no impurities is deposited.
4, is deposited to a thickness of 0.3 to 2.0μ. These are sequentially deposited on the entire surface of the GaP layer 2 and formed into predetermined shapes (as shown in FIGS. 2a to 2e) by photolithography. After that, ohmic contact is obtained by heat treatment at 500-550℃, diamond, blade,
It is divided into chips as individual elements using slurry or the like. The structure of such a conventional metal electrode has the following drawbacks when the Au layer 40 is laminated on the Au--Be alloy layer 4 and the metal electrode has a curved shape.

すなわち、Au一Be合金+Auを一体化した金属層よ
りも金(Au)層だけのものがリードワイヤとのボンデ
イング性に優れていて、従来の電極は金属細線とのボン
デイングが比較的困難であつた。しかも、ボンデイング
性を高めるべくAu層を厚く蒸着すれば、Au−Be合
金+Au層は1〜2μ程度の厚さをもつ金属電極となる
から、写真食刻法でのエツチングで微細パターンを形成
するとサイドエツチングによつて第4図に示す様な断面
構造となり、平面形状の幅が20μ以下のときに電極パ
ターンが切断されるおそれがあつた。また、金属電極の
エツチングには、シアン系のエツチング液を70〜80
℃に加熱して用いるため、エツチング時間が長くなると
レジストが剥離したり、あるいは、Au−Be層4,に
蒸着されたAu層42が剥離しやすくなる。さらに、こ
れら金属層4,,4。の蒸着条件が正確に制御されない
と、リードワイヤのボンデイングによつて加わる熱、圧
力等で上層のAu層42が剥離することもあつた。この
発明は上記の点に鑑みなされたもので、オーミツクコン
タクトを形成す第1の金属層中に含まれる不純物原子が
、第2の金属層に拡散してボンデイング性を劣下させる
のを防止し、リードワイヤのボンデイング工程の能率を
改善するようにした半導体素子の電極構造を提供するこ
と力泪的である。
In other words, a gold (Au) layer alone has better bonding properties with a lead wire than a metal layer that integrates Au-Be alloy + Au, whereas conventional electrodes are relatively difficult to bond with thin metal wires. Ta. Moreover, if the Au layer is deposited thickly to improve bonding properties, the Au-Be alloy + Au layer becomes a metal electrode with a thickness of about 1 to 2 μm, so it is possible to form a fine pattern by etching using photolithography. The side etching resulted in a cross-sectional structure as shown in FIG. 4, and when the width of the planar shape was less than 20 μm, there was a risk that the electrode pattern would be cut. For etching metal electrodes, use cyan-based etching solution at 70 to 80%.
Since it is heated to a temperature of .degree. C., the resist may peel off if the etching time is prolonged, or the Au layer 42 deposited on the Au--Be layer 4 may easily peel off. Furthermore, these metal layers 4,,4. If the deposition conditions were not accurately controlled, the upper Au layer 42 could peel off due to the heat, pressure, etc. applied during lead wire bonding. This invention was made in view of the above points, and prevents impurity atoms contained in the first metal layer forming an ohmic contact from diffusing into the second metal layer and deteriorating bonding properties. However, it is desirable to provide an electrode structure for a semiconductor device that improves the efficiency of the lead wire bonding process.

以下ではこの発明をGaP発光素子のP型側電極として
説明するが、これに限定してなされた発明ではなく、と
りわけ狭い面積に確実にワイヤボンデイングを行なう必
要がある半導体素子に好適するものである。
This invention will be described below as a P-type side electrode of a GaP light emitting device, but the invention is not limited to this, and is particularly suitable for semiconductor devices that require reliable wire bonding in a narrow area. .

すなわち、第5図ではN型のGaP基板11とP型のG
aP層12とによつてPN接合が形成され、これを発光
させるためにGaP層12上にBeを0.5〜2.0%
含有したAu合金層13を〜0.5μ、このAu合金層
13上にBeの拡散を防止する金属層たとえばPtの層
14を〜1.0μ、この層14上に不純物をほとんど含
まない純金層15を0.3〜2.0μ順次に蒸着して積
層している。第1の金属層たるAu合金層は不純物原子
を含むために半導体基板つまりGaP層12と良好にオ
ーミツクコンタクトを形成し、第2の金属層たる純金層
15は、第3の金属層たるTi,Pt等の層14により
Beの拡散が阻子されているのでその蒸着時およびワイ
ヤボンデイング時にも常に良好なボンデイング性を保持
する。第3図に示した様に、従来の電極構造は、オーミ
ツクコンタクトを形成する合金層4,と金属42とが直
接接触しているので、これらの接続面から金層4。
That is, in FIG. 5, an N-type GaP substrate 11 and a P-type G
A PN junction is formed by the aP layer 12, and 0.5 to 2.0% Be is added on the GaP layer 12 to make it emit light.
On this Au alloy layer 13, a metal layer 14 for preventing Be diffusion, such as a Pt layer 14, is placed on ~1.0μ, and on this layer 14 is a pure gold layer containing almost no impurities. 15 is sequentially deposited and laminated to a thickness of 0.3 to 2.0 μm. The Au alloy layer, which is the first metal layer, contains impurity atoms and forms good ohmic contact with the semiconductor substrate, that is, the GaP layer 12, and the pure gold layer 15, which is the second metal layer, forms good ohmic contact with the semiconductor substrate, that is, the GaP layer 12. Since the diffusion of Be is inhibited by the layer 14 made of , Pt, etc., good bonding properties are always maintained during vapor deposition and wire bonding. As shown in FIG. 3, in the conventional electrode structure, the alloy layer 4 and the metal 42 forming an ohmic contact are in direct contact with each other, so that the gold layer 4 is separated from the connecting surface of these.

に不純物原子が拡散される。このために、ボンデイング
性を良好に保持するためには金層4。を必要以上に厚く
形成しなくてはならなかつた。ところが、上記実施例に
示される様にこの発明によれば、Be原子の拡散を防止
すべくPtの層14を介在させることによつて、電極全
体の厚さは必要最小限に押えられる。そして、蒸着工程
が1回増加するとはいえ、リードワイヤに対するボンデ
イング性が著しく向上し、ボンデイング工程が容易かつ
簡略化され、製品の信頼性が高まる。
Impurity atoms are diffused into the For this reason, a gold layer 4 is required to maintain good bonding properties. had to be made thicker than necessary. However, as shown in the above embodiments, according to the present invention, the thickness of the entire electrode can be kept to the necessary minimum by interposing the Pt layer 14 to prevent the diffusion of Be atoms. Although the number of vapor deposition steps increases by one, the bonding properties to lead wires are significantly improved, the bonding process is easy and simplified, and the reliability of the product is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,bはGaP発光素子の形状、構成を示す図、
第2図a−eはそれぞれGaP発光素子の電極形状を示
す平面図、第3図は従来の電極構造を示す側断面図、第
4図はサイドエツチングされた電極を示す側断面図、第
5図はこの発明の一実施例を示す電極構造の側断面図で
ある。 11・・・N型のGaP基板、12・・・P型のGaP
層、13・・・第1の金属層、14・・・第3の金属層
、15・・・第2の金属層。
FIGS. 1A and 1B are diagrams showing the shape and configuration of a GaP light emitting device,
2A to 2E are plan views showing electrode shapes of a GaP light emitting device, FIG. 3 is a side cross-sectional view showing a conventional electrode structure, FIG. 4 is a side cross-sectional view showing a side-etched electrode, and FIG. The figure is a side sectional view of an electrode structure showing an embodiment of the present invention. 11...N-type GaP substrate, 12...P-type GaP
layer, 13... first metal layer, 14... third metal layer, 15... second metal layer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体素子の一平面でオーミックコンタクトを形成
するAu−Be合金からなる第1の金属層と、この金属
層に積層された純度の高いAuからなる第2の金属層と
、これら第1、第2の金属層間に介在されたPtからな
り第1の金属層に含まれるBe原子が第2の金属層に拡
散されることを防止する第3の金属層とからなることを
特徴する半導体素子の電極構造。
1 A first metal layer made of an Au-Be alloy that forms an ohmic contact on one plane of a semiconductor element, a second metal layer made of high-purity Au laminated on this metal layer, and these first and second metal layers. and a third metal layer made of Pt interposed between two metal layers and preventing Be atoms contained in the first metal layer from being diffused into the second metal layer. Electrode structure.
JP51123580A 1976-10-15 1976-10-15 Electrode structure of semiconductor devices Expired JPS5950106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51123580A JPS5950106B2 (en) 1976-10-15 1976-10-15 Electrode structure of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51123580A JPS5950106B2 (en) 1976-10-15 1976-10-15 Electrode structure of semiconductor devices

Publications (2)

Publication Number Publication Date
JPS5348670A JPS5348670A (en) 1978-05-02
JPS5950106B2 true JPS5950106B2 (en) 1984-12-06

Family

ID=14864095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51123580A Expired JPS5950106B2 (en) 1976-10-15 1976-10-15 Electrode structure of semiconductor devices

Country Status (1)

Country Link
JP (1) JPS5950106B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366186A (en) * 1979-09-27 1982-12-28 Bell Telephone Laboratories, Incorporated Ohmic contact to p-type InP
JPS57115864A (en) * 1981-01-12 1982-07-19 Toshiba Corp Compound semiconductor device
JPS5812380A (en) * 1981-07-15 1983-01-24 Toshiba Corp Light emitting diode device
JPS5821821A (en) * 1981-08-03 1983-02-08 Toshiba Corp Manufacture of compound semiconductor device
DE69021438T2 (en) * 1989-05-16 1996-01-25 Marconi Gec Ltd Method for producing a flip-chip solder structure for arrangements with gold metallization.

Also Published As

Publication number Publication date
JPS5348670A (en) 1978-05-02

Similar Documents

Publication Publication Date Title
JP2803742B2 (en) Gallium nitride-based compound semiconductor light emitting device and method for forming electrode thereof
US4966862A (en) Method of production of light emitting diodes
US3339274A (en) Top contact for surface protected semiconductor devices
JP3881472B2 (en) Manufacturing method of semiconductor light emitting device
KR102234785B1 (en) Method for producing a plurality of optoelectronic semiconductor chips, and optoelectronic semiconductor chip
JPH058591B2 (en)
JPS5950106B2 (en) Electrode structure of semiconductor devices
US3981073A (en) Lateral semiconductive device and method of making same
GB1057817A (en) Semiconductor diodes and methods of making them
JPS6222556B2 (en)
US3436616A (en) Ohmic contact consisting of a bilayer of gold and molybdenum over an alloyed region of aluminum-silicon
JPS6148776B2 (en)
JPS5850428B2 (en) Mesa semiconductor device
JPS58123724A (en) Semiconductor device
US3324361A (en) Semiconductor contact alloy
US3670218A (en) Monolithic heteroepitaxial microwave tunnel die
US3949120A (en) Method of making high speed silicon switching diodes
JPS59189625A (en) Manufacture of semiconductor device
JPS5950213B2 (en) N-type gallium arsenide ohmic electrode and its formation method
JPH0363830B2 (en)
JPS6014445A (en) Compound semiconductor device
JP2003197965A (en) Semiconductor light emitting element and its manufacturing method
US3709729A (en) Method of making nickel chrome ohmic contact to p-type silicon carbide
JPS58223382A (en) Semiconductor light emitting device
JPH0320898B2 (en)