JPS5950213B2 - N-type gallium arsenide ohmic electrode and its formation method - Google Patents

N-type gallium arsenide ohmic electrode and its formation method

Info

Publication number
JPS5950213B2
JPS5950213B2 JP54053906A JP5390679A JPS5950213B2 JP S5950213 B2 JPS5950213 B2 JP S5950213B2 JP 54053906 A JP54053906 A JP 54053906A JP 5390679 A JP5390679 A JP 5390679A JP S5950213 B2 JPS5950213 B2 JP S5950213B2
Authority
JP
Japan
Prior art keywords
ohmic electrode
layer
gallium arsenide
type
type gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053906A
Other languages
Japanese (ja)
Other versions
JPS55145366A (en
Inventor
興太郎 三井
進 吉田
「じよう」祐 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP54053906A priority Critical patent/JPS5950213B2/en
Publication of JPS55145366A publication Critical patent/JPS55145366A/en
Publication of JPS5950213B2 publication Critical patent/JPS5950213B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 この発明はN形砒化ガリウム(GaAs)のオーム性電
極およびその形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an N-type gallium arsenide (GaAs) ohmic electrode and a method for forming the same.

従来、N形GaAsのオーム性電極としては、金(Au
)−ゲルマニウム(Ge)合金、金(Au)−錫(Sn
)合金などのAu系電極材料が用いられている。
Conventionally, gold (Au) has been used as an ohmic electrode for N-type GaAs.
)-germanium (Ge) alloy, gold (Au)-tin (Sn
) Au-based electrode materials such as alloys are used.

このようなAu合金の電極材料はその材料費自体が高価
であるばかりでなく、Au線などのワイヤボンディング
作業を行なう際にボンディングされにくいという問題点
があつた。通常、このようなワイヤボンディングは熱圧
着法により行なわれている。
Such Au alloy electrode materials are not only expensive in material cost, but also have the problem of being difficult to bond with wires such as Au wires. Usually, such wire bonding is performed by thermocompression bonding.

純粋なAuとAuを用いて熱圧着すると非常に強固な接
合が得られるが、純粋なAuはN形GaAsに対しては
オーム性電極材料とならない。このため、前記のような
Au合金が使用されているわけであるが、Auは合金の
形になると硬度が増し熱圧着されにくくなるという性質
がある。また、前記Au合金は単にN形GaAsに接触
させただけではオーム性電極にはならず、これを熱処理
する必要があるが、この熱処理によりAu合金とN形G
aAsとの間に反応が生じて複雑な合金の電極となつて
しまい、これもボンディングされにくい原因となつてい
た。このようなAu合金に熱圧着法によりAu線のワイ
ヤボンディングを行ない、テンションメータを用いてこ
のボンディング強度を測定したところ、2g以下の弱い
ものが多数発生した。また、ボンディング当初は強度が
あつても、温度サイクルなどの熱ストレスフを加えるこ
とによりAu線がAu合金からはがれることもある。こ
のように、従来のN形GaAsのオーム性電極としてA
u合金材料を用いたものは、Au線のワイヤボンディン
グがされにく<、製造歩留りが悪く5なるとともに信頼
性も低下するという欠点があつた。
Although a very strong bond can be obtained by thermocompression bonding using pure Au and Au, pure Au is not an ohmic electrode material for N-type GaAs. For this reason, the above-mentioned Au alloy is used, but Au has the property that when it is in the form of an alloy, its hardness increases and it becomes difficult to be bonded by thermocompression. In addition, the Au alloy does not become an ohmic electrode simply by contacting it with N-type GaAs, and it must be heat-treated.
A reaction occurs with aAs, resulting in a complex alloy electrode, which also makes it difficult to bond. When Au wire was wire bonded to such an Au alloy by a thermocompression bonding method and the bonding strength was measured using a tension meter, many weak wires of 2 g or less were found. Further, even if the Au wire is strong at the beginning of bonding, it may peel off from the Au alloy by applying thermal stress such as temperature cycling. In this way, as a conventional N-type GaAs ohmic electrode, A
Those using U-alloy materials had drawbacks such as difficulty in wire bonding of Au wires, poor manufacturing yields, and reduced reliability.

この発明はこのような従来の欠点を解消するためになさ
れたもので゛、その目白勺とするところ(まワイヤボン
デイングが容易にかつ強固に行なえて歩留りおよび信頼
性が向上し、しかもコストも安くなるようなN形GaA
sのオーム性電極およびその形成方法を提供することに
ある。
This invention was made to eliminate these conventional drawbacks, and its main points are that wire bonding can be easily and firmly performed, yields and reliability are improved, and the cost is low. N-type GaA
An object of the present invention is to provide an ohmic electrode and a method for forming the same.

以下、この発明を実施例により詳細に説明する。Hereinafter, this invention will be explained in detail with reference to Examples.

第]図は、この発明に係るオーム性電極をシリコンドー
プ砒化ガリウム(GaAs:Si)を用いたN面発光形
の赤外線発光ダイオードに適した実施例のウエハの断面
図である。
FIG. 1 is a cross-sectional view of a wafer of an embodiment suitable for an N-face emission type infrared light emitting diode using silicon-doped gallium arsenide (GaAs:Si) as an ohmic electrode according to the present invention.

図において、通常ブリツジマン法によつて得られる不純
物としてSiが添加されたN形GaAs基板1の主面(
図では下面)には、液相エピタキシヤル成長によりN形
GaAs層2およびその上にP形GaAs層3が形成さ
れている。この場合、液相エピタキシヤル成長において
、不純物としてのSiが両性に作用し、成長過程でN形
GaAs層2が形成された後反転してP形GaAs層3
が形成される。そして、N形GaAs層2とP形GaA
s層3の境界にはP−N接合4が形成される。このよう
に形成されたウエハは、所定の厚みになるようにN形G
aAs基板1の主面(図で上面)を研磨されるとともに
その表面が鏡面に仕上げられる。
In the figure, the main surface (
On the lower surface (in the figure), an N-type GaAs layer 2 and a P-type GaAs layer 3 are formed thereon by liquid phase epitaxial growth. In this case, in the liquid phase epitaxial growth, Si as an impurity acts amphotericly, and after the N-type GaAs layer 2 is formed during the growth process, it is reversed and the P-type GaAs layer 3 is formed.
is formed. Then, the N-type GaAs layer 2 and the P-type GaA
A PN junction 4 is formed at the boundary of the s-layer 3. The wafer formed in this way is made into N-type G to have a predetermined thickness.
The main surface (upper surface in the figure) of the aAs substrate 1 is polished, and the surface is finished to a mirror surface.

次に、この表面には、チツプ単位に配分されるように、
適当なマスクを用いて所定個所に選択的にオーム性電極
5が形成される。次にこの発明を特徴づけるところのオ
ーム性電極5の形成工程を説明する。
Next, on this surface, so that it is distributed in chip units,
Ohmic electrodes 5 are selectively formed at predetermined locations using a suitable mask. Next, the process of forming the ohmic electrode 5, which characterizes the present invention, will be explained.

先づ、前記ウエハを真空蒸着装置内に装填した後、十分
に排気してか.らウエハを100℃〜450℃の温度に
加熱する。次に、加熱されたウエハのN形GaAs基板
1の表面上にマスク(図示せず)を通してGeを真空蒸
着してGe層を形成させる。次に、このGe層上に同じ
くNiを真空蒸着してNi層を形成させ、さらにjこの
Ni層の上に今度はAlを真空蒸着してA1層を形成さ
せる。なお、前記加熱温度は100℃〜450℃の範囲
にしたが、これは、100℃以下であると蒸着されたG
e.Ni.Alからなる層がはがれることがあり、また
450℃以内の温度で十分な強度の9Ge.Ni.A1
からなる層が得られるため、それ以上加熱するのは電力
の損失であり、さらに後述の工程で450℃以上の温度
で熱処理されるので蒸着時に450℃以上に加熱する必
要はないからである。このように、N形GaAs基板1
の表面上にGe.Ni.Alからなる層が形成されたウ
エハを、冷却後真空蒸着装置からとり出し、しかる後、
電極の酸化を防止するために、不活性もしくは還元性雰
囲気中、または真空中で450℃〜550℃の温度で熱
処理する。このようにして、ウエハのN形GaAs基板
1の表面上には選択的に多数のGe、Ni.Alからな
るオーム性電極5が形成される。なお、オーム性電極5
はN形GaAs基板1の表面上に全面的にGe.Ni.
Alからそれぞれなる蒸着層を形成した後、周知の写真
蝕刻技術を用いて形成することもできる。次に、ウエハ
のP形GaAs層3の表面には全面的に適当な材料を用
いてオーム性電極6が形成される。
First, after loading the wafer into the vacuum evaporation equipment, make sure to thoroughly evacuate the vacuum. The wafer is then heated to a temperature of 100°C to 450°C. Next, Ge is vacuum evaporated onto the surface of the heated N-type GaAs substrate 1 of the wafer through a mask (not shown) to form a Ge layer. Next, Ni is similarly vacuum-deposited on this Ge layer to form a Ni layer, and then Al is vacuum-deposited on this Ni layer to form an A1 layer. Note that the heating temperature was set in the range of 100°C to 450°C, but this does not mean that the deposited G
e. Ni. The Al layer may peel off, and the 9Ge. Ni. A1
Since a layer consisting of is obtained, further heating is a loss of power, and furthermore, since heat treatment is performed at a temperature of 450° C. or higher in the process described later, there is no need to heat the layer to a temperature of 450° C. or higher during vapor deposition. In this way, the N-type GaAs substrate 1
Ge. Ni. After cooling, the wafer on which a layer of Al has been formed is taken out from the vacuum evaporation apparatus, and then,
To prevent oxidation of the electrode, heat treatment is performed at a temperature of 450°C to 550°C in an inert or reducing atmosphere or in vacuum. In this way, a large number of Ge, Ni, etc. are selectively formed on the surface of the N-type GaAs substrate 1 of the wafer. An ohmic electrode 5 made of Al is formed. In addition, the ohmic electrode 5
is a Ge. Ni.
After forming each vapor deposited layer of Al, it can also be formed using a well-known photolithographic technique. Next, an ohmic electrode 6 is formed entirely on the surface of the P-type GaAs layer 3 of the wafer using a suitable material.

そして、このようなN形オーム性電極5とP形オーム性
電極6が形成されたウエハは400μm×400μm角
に分離されて、第2図に示すような赤外線発光ダイオー
ドのペレツト10が得られる。このペレツト10は適当
な金属ヘツダなどにP形オーム性電極6が接触するよう
にマウントし、しかる後にN形オーム性電極5には熱圧
着法によりAu線のワイヤボンデイングがなされる。こ
のようにして製造した赤外線発光ダイオードの順方向電
流50mAにおける順方向電圧を測定したところ1.2
5Vの値が得られた。これは、従来のAu−Ge合金(
Gel2Wt%)のオーム性電極を用いた発光ダイオー
ドと同じ特性であり、この発明によるGe.Ni.Al
からなる層のオーム性電極が十分に低い接触抵抗を有す
ることが確認された。また、このオーム性電極に対して
Au線のワイヤボンデイングをなす際に、通常の半導体
素子のSi上のAl電極に対するAu線のワイヤボンデ
イングと同様に、非常に容易にボンデイングができた。
さらに、100個の試料に対してテンシヨンメータを用
いてボンデイング強度を測定したところ、いずれも5g
以上の強度を有し、しかもテンシヨンメータでAu線を
強く引つ張つたとき、いずれもAu線が途中から切断さ
れオーム性電極とAu線の接合部がはずれるということ
は全くなかつた。また、製造した赤外線発光ダイオード
を次に示すような各試験項目に対してそれぞれ40個ず
つ信頼性試験を行なつた。(1)温度サイクル試験:一
50℃〜100℃50サイクル。
Then, the wafer on which the N-type ohmic electrode 5 and the P-type ohmic electrode 6 are formed is separated into 400 .mu.m.times.400 .mu.m squares to obtain infrared light emitting diode pellets 10 as shown in FIG. This pellet 10 is mounted on a suitable metal header or the like so that the P-type ohmic electrode 6 is in contact with it, and then an Au wire is wire-bonded to the N-type ohmic electrode 5 by thermocompression bonding. The forward voltage of the infrared light emitting diode thus manufactured at a forward current of 50 mA was measured to be 1.2.
A value of 5V was obtained. This is similar to the conventional Au-Ge alloy (
The characteristics are the same as those of a light emitting diode using an ohmic electrode of Ge. Ni. Al
It was confirmed that the ohmic electrode of the layer consisting of the above had a sufficiently low contact resistance. Further, when wire-bonding an Au wire to this ohmic electrode, bonding could be performed very easily in the same way as wire-bonding an Au wire to an Al electrode on Si of a normal semiconductor device.
Furthermore, when we measured the bonding strength of 100 samples using a tension meter, all of them were 5g.
With this strength, when the Au wire was strongly pulled with a tension meter, the Au wire was never cut midway and the joint between the ohmic electrode and the Au wire never came off. In addition, reliability tests were conducted on the manufactured infrared light emitting diodes for 40 pieces each for each of the following test items. (1) Temperature cycle test: -50°C to 100°C 50 cycles.

(2)熱シヨツク試験:0℃(氷水)峠100℃(沸と
う水)、5サイクル。
(2) Heat shock test: 0°C (ice water) to 100°C (boiling water), 5 cycles.

(3)連続通電試験:100mA、1000時間。(3) Continuous current test: 100mA, 1000 hours.

(4)断続通電試験:接合温度40℃〜100℃250
00サイクル。(5)耐湿試験:60℃、95%、10
00時間。
(4) Intermittent current test: Junction temperature 40°C to 100°C 250°C
00 cycles. (5) Humidity test: 60℃, 95%, 10
00 hours.

(6)落下試験:75cmの高さから木板上に3回落下
。このような試験に対して不良品は1個も発生せず、非
常に高い信頼性が得られた。
(6) Drop test: Dropped three times onto a wooden board from a height of 75 cm. In this test, there were no defective products, and very high reliability was obtained.

以上の実施例では、Siを添加した液相エピタキシヤル
GaAsを用いる赤外線発光ダイオードの例について説
明したが、他の不純物を添加したN形GaAs結晶に対
して適用でき、また赤外線発光ダイオード以外の各種装
置に応用できる。
In the above embodiment, an example of an infrared light emitting diode using liquid phase epitaxial GaAs doped with Si was explained, but it can also be applied to N-type GaAs crystal doped with other impurities, and various types other than infrared light emitting diodes can be used. Can be applied to equipment.

このようにこの発明に係るN形GaAsのオーム性電極
およびその形成方法によると、Au線などのワイヤボン
デイングを容易に行なうことができるとともに、そのボ
ンデイング強度を強くでき、製造歩留りおよび信頼性が
著しく向上する。
As described above, according to the N-type GaAs ohmic electrode and the method for forming the same according to the present invention, wire bonding of Au wire or the like can be easily performed, and the bonding strength can be increased, and the manufacturing yield and reliability can be significantly improved. improves.

また、オーム性電極材料としてAuを使用しないので材
料費的にも廉価になり、製造コストを低減できるなど数
多くの優れた効果を奏する。
Furthermore, since Au is not used as the ohmic electrode material, the material cost is low, and manufacturing costs can be reduced, among other excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係るオーム性電極を用いた一実施例
の赤外線発光ダイオードのウエハの断面図、第2図はそ
のペレツトの断面図である。 1 ・・・ ・・・ N形GaAs基板、2 ・・・・
・・ N形GaAs層、3 ・・・・・・P形GaAs
層、4・・・・・・P−N接合、5 ・・・・・・N形
オーム性電極、6・・・・・・P形オーム性電極。
FIG. 1 is a sectional view of a wafer of an infrared light emitting diode according to an embodiment of the invention using an ohmic electrode, and FIG. 2 is a sectional view of a pellet thereof. 1... N-type GaAs substrate, 2...
...N-type GaAs layer, 3...P-type GaAs
Layer, 4...P-N junction, 5...N type ohmic electrode, 6...P type ohmic electrode.

Claims (1)

【特許請求の範囲】 1 ゲルマニウム、ニッケルおよびアルミニウムの層か
らなることを特徴とするN形砒化ガリウムのオーム性電
極。 2 N形砒化ガリウムを真空中で100℃〜450℃に
加熱する工程と、加熱された前記砒化ガリウムのN形層
表面に真空蒸着によりゲルマニウム層を形成する工程と
、このゲルマニウム層上に真空蒸着によりニッケル層を
形成する工程と、このニッケル層上に真空蒸着によりア
ルミニウム層を形成する工程と、ゲルマニウム、ニッケ
ルおよびアルミニウム層が形成された前記砒化ガリウム
を不活性ないし還元性雰囲気中、または真空中で450
℃〜550℃にて熱処理する工程とからなることを特徴
とするN形砒化ガリウムのオーム性電極形成方法。
[Claims] 1. An N-type gallium arsenide ohmic electrode, characterized in that it consists of layers of germanium, nickel, and aluminum. 2. A step of heating N-type gallium arsenide to 100° C. to 450° C. in vacuum, a step of forming a germanium layer on the surface of the heated N-type layer of gallium arsenide by vacuum evaporation, and a step of vacuum evaporating on this germanium layer. a step of forming a nickel layer by vacuum evaporation on the nickel layer; and a step of forming an aluminum layer on the nickel layer by vacuum evaporation. So 450
A method for forming an ohmic electrode of N-type gallium arsenide, comprising a step of heat treatment at a temperature of 550°C to 550°C.
JP54053906A 1979-04-27 1979-04-27 N-type gallium arsenide ohmic electrode and its formation method Expired JPS5950213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54053906A JPS5950213B2 (en) 1979-04-27 1979-04-27 N-type gallium arsenide ohmic electrode and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54053906A JPS5950213B2 (en) 1979-04-27 1979-04-27 N-type gallium arsenide ohmic electrode and its formation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20551187A Division JPS63126272A (en) 1987-08-18 1987-08-18 Formation of ohmic electrode of n-type gallium arsenide

Publications (2)

Publication Number Publication Date
JPS55145366A JPS55145366A (en) 1980-11-12
JPS5950213B2 true JPS5950213B2 (en) 1984-12-07

Family

ID=12955751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54053906A Expired JPS5950213B2 (en) 1979-04-27 1979-04-27 N-type gallium arsenide ohmic electrode and its formation method

Country Status (1)

Country Link
JP (1) JPS5950213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130975Y2 (en) * 1984-05-30 1989-09-22

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114229A (en) * 1981-01-07 1982-07-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of ohmic electrode
JPS63126272A (en) * 1987-08-18 1988-05-30 Mitsubishi Electric Corp Formation of ohmic electrode of n-type gallium arsenide
WO1989004057A1 (en) * 1987-10-20 1989-05-05 Bell Communications Research, Inc. Epitaxial intermetallic contact for compound semiconductors
SG10201710035XA (en) 2013-11-19 2018-01-30 Hyun Chang Lee Mobile electric leakage detection device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063877A (en) * 1973-09-26 1975-05-30
JPS54134558A (en) * 1978-04-10 1979-10-19 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063877A (en) * 1973-09-26 1975-05-30
JPS54134558A (en) * 1978-04-10 1979-10-19 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130975Y2 (en) * 1984-05-30 1989-09-22

Also Published As

Publication number Publication date
JPS55145366A (en) 1980-11-12

Similar Documents

Publication Publication Date Title
JP3271475B2 (en) Electrical element joining material and joining method
US6787435B2 (en) GaN LED with solderable backside metal
JPS5932055B2 (en) Method for manufacturing a semiconductor device having contacts
US4553154A (en) Light emitting diode electrode
US2854612A (en) Silicon power rectifier
US3850688A (en) Ohmic contact for p-type group iii-v semiconductors
JP3971456B2 (en) Mounting SiC die and SiC die mounting method
US3986251A (en) Germanium doped light emitting diode bonding process
JPS5950213B2 (en) N-type gallium arsenide ohmic electrode and its formation method
JPS6141135B2 (en)
JPS6024074A (en) Gallium arsenide semiconductor device and method of producing same
JPS6148776B2 (en)
JPS63126272A (en) Formation of ohmic electrode of n-type gallium arsenide
US3271635A (en) Semiconductor devices with silver-gold lead wires attached to aluminum contacts
JPS6230710B2 (en)
GB2300375A (en) Bonding method for electric element
JPS5950215B2 (en) Method for forming ohmic electrodes on N-type gallium arsenide
US2830239A (en) Semiconductive alloys of gallium arsenide
JPH05343744A (en) Die bond type light emitting diode and manufacture thereof
US3769694A (en) Ohmic contact for group iii-v p-type semiconductors
JPH02260671A (en) Optical semiconductor device
JPS59189625A (en) Manufacture of semiconductor device
JPS6238850B2 (en)
JP3032789B2 (en) Superconducting device
JPH0693443B2 (en) Method for forming electrode of semiconductor device