JPH02260671A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH02260671A
JPH02260671A JP1082805A JP8280589A JPH02260671A JP H02260671 A JPH02260671 A JP H02260671A JP 1082805 A JP1082805 A JP 1082805A JP 8280589 A JP8280589 A JP 8280589A JP H02260671 A JPH02260671 A JP H02260671A
Authority
JP
Japan
Prior art keywords
layer
lead frame
type gaas
auge
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082805A
Other languages
Japanese (ja)
Inventor
Atsuo Hori
保里 淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1082805A priority Critical patent/JPH02260671A/en
Publication of JPH02260671A publication Critical patent/JPH02260671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve a lead frame in bonding strength without the risk of a short circuit between elements by a method wherein the outermost layer of an ohmic electrode formed on the rear of a compound semiconductor substrate is formed of an AuGe layer or an AuSn layer. CONSTITUTION:An N-type GaAs epitaxial layer 12 and a P-type GaAs epitaxial layer 13 are successively formed on an N-type GaAs substrate 11 which contains Si impurity. Then, AuZn alloy is evaporated into a pattern for the formation of a P-side electrode 14. An ohmic electrode 19 composed of an AuGe layer 15, an Ni layer 16, an Au layer 17, and an AuGe layer 18 is formed on the rear side of the substrate 11. The amount island of a lead frame 23, whose main component is Fe, coated with an Ag plating layer 22 is heated at a temperature of 400 deg.C by a heater, an infrared lead chip 10 is placed thereon and die- bonded as being weighted. At this time, the layer 18 is fused, and Au and Ag diffuse into the layer 18 from the layers 17 and 22 respectively to form a ternary alloy 21 of Au-Ge-Ag.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光半導体装置に関し、特に化合物半導体を用い
た光半導体装置のオーミック電極の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical semiconductor device, and more particularly to the structure of an ohmic electrode of an optical semiconductor device using a compound semiconductor.

〔従来の技術〕[Conventional technology]

従来、N型GaAs基板を有する赤外LEDは、ボンデ
ィング方法として導電性ペーストを用いてAgメツキさ
れたリード・フレーム上にダイ・ボンディングする方式
が主流である。
Conventionally, the mainstream bonding method for infrared LEDs having an N-type GaAs substrate has been die bonding onto an Ag-plated lead frame using a conductive paste.

第3図に示すように、赤外り、EDチップ10底面のオ
ーミック電極は、N型GaAs基板11とのオーミック
性を高める第1AuGe層15と、電極形成時の熱アロ
イに於けるAuGeとGaASとの液相反応を抑制する
ためのNi層16、そして最表面金属は酸・アルカリに
対する腐食に強いAu層17を順次有する構造となって
いる。
As shown in FIG. 3, the ohmic electrode on the bottom surface of the infrared ED chip 10 is made of a first AuGe layer 15 that enhances ohmic properties with the N-type GaAs substrate 11, and a layer of AuGe and GaAS in the thermal alloy during electrode formation. The structure has a Ni layer 16 for suppressing a liquid phase reaction with the metal, and an Au layer 17 whose outermost surface metal is resistant to corrosion by acids and alkalis.

そして赤外LEDチップ10のリード・フレームへのダ
イ・ボンディング工程については、第4図に示すように
、A、gメツキJ’1J22を有するリード・フレーム
23の表面に導電性ペースト24を塗布した後、赤外L
 E Dチップ10を加圧接触させることにより得られ
る。その後、導電性ペースト24の溶剤を揮発させるた
めに、リード・フレーム23を約200℃の不活性ガス
中で約1時間乾燥する。
As for the die bonding process of the infrared LED chip 10 to the lead frame, as shown in FIG. Back, infrared L
It is obtained by bringing the ED chip 10 into pressure contact. Thereafter, in order to volatilize the solvent of the conductive paste 24, the lead frame 23 is dried in an inert gas at about 200° C. for about 1 hour.

ダイ・ボンディング強度については、赤外LEDチップ
10の側面にはい上った導電性ペースト24により、必
要な強度が保たれていると考えられている。
Regarding the die bonding strength, it is believed that the conductive paste 24 that has climbed up the side surface of the infrared LED chip 10 maintains the necessary strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の光半導体装置1例えば赤外LEDのダイ
・ボンディング方法には、以下に述べる欠点がある。
The die bonding method for the conventional optical semiconductor device 1, such as an infrared LED, described above has the following drawbacks.

(1)赤外LEDの電極の最表面金属となるAuと導電
性ペーストは、そのダイ・ボンディング工程に於いて、
前述の乾燥工程を通過するが、Auと導電性ペーストは
共晶を形成するものではなく、前述したように赤外LE
Dチップのリード・フレームへの固定は主に導電性ペー
ストの赤外LEDチップ側面へのはい上りにより得られ
る。ところが赤外LEDチップ側面にはPN接合が露出
している構造が一般的であるため、ダイ・ボンディング
強度の向上を目的として導電性ペーストの塗布量を増加
させることは、LEDショートによる著しい製品選別歩
留の低下と信顆度レベルの低下をもたらす。
(1) During the die bonding process, Au, which is the outermost metal of the infrared LED electrode, and conductive paste are
Although it passes through the drying process described above, the Au and conductive paste do not form a eutectic, and as described above, the infrared LE
Fixing of the D chip to the lead frame is achieved mainly by creeping conductive paste onto the side surface of the infrared LED chip. However, since infrared LED chips generally have a structure in which the PN junction is exposed on the side surface, increasing the amount of conductive paste applied for the purpose of improving die bonding strength results in severe product selection due to LED shorting. This results in lower yield and lower reliability levels.

(2)例えば赤外LEDチップを用いた製品であるホト
・カプラは、市場より大量供給・低価格が要求される。
(2) For example, photocouplers, which are products using infrared LED chips, are required to be supplied in large quantities and at low prices compared to the market.

その実行案としてリード・フレームのフープ化による大
量生産を目ざした組立ライン設計が考えられるが、組立
ラインのインデックスが極めて短いこと、速乾性の導電
性ペーストの選定が困難であること等を考慮すると、赤
外LEDチップを導電性ペーストを用いてダイ・ボンデ
ィングする方法では、前案による組立ライン設計のメリ
ットをいかすことができない。
One possible implementation plan is to design an assembly line with the aim of mass production by hooping the lead frame, but considering the extremely short index of the assembly line and the difficulty of selecting a quick-drying conductive paste, etc. , the method of die-bonding infrared LED chips using conductive paste cannot take advantage of the assembly line design of the previous proposal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光半導体装置は、化合物半導体基板と該化合物
半導体基板の底面に形成されたオーミック電極とを有す
る光半導体装置において、前記オーミック電極の最表面
層をA u G e層またはAuSn層で構成したもの
である。
The optical semiconductor device of the present invention includes a compound semiconductor substrate and an ohmic electrode formed on the bottom surface of the compound semiconductor substrate, in which the outermost surface layer of the ohmic electrode is composed of an AuG e layer or an AuSn layer. This is what I did.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図であり、光半導体装
置として赤外LEDを用いた場合を示している。
FIG. 1 is a sectional view of one embodiment of the present invention, showing a case where an infrared LED is used as an optical semiconductor device.

Siを不純物とするN型GaAs基板11上に、Siを
両性不純物元素として得られるN型GaAsエピタキシ
ャル層12.P型GaAsエピタキシャル層13を順次
エピタキシャル成長する。その後A u Z n系の合
金の蒸着及びパターン加工によりP側電極14を形成し
、次にN型GaAs基板11の底面に、第1AuGe層
15、Ni層16.Au層17及び第2 A u G 
e層18からなるオーミック電極19を形成する。
An N-type GaAs epitaxial layer 12 obtained using Si as an amphoteric impurity element is formed on an N-type GaAs substrate 11 containing Si as an impurity. A P-type GaAs epitaxial layer 13 is epitaxially grown in sequence. Thereafter, a P-side electrode 14 is formed by vapor deposition and patterning of an A u Z n-based alloy, and then a first AuGe layer 15 , a Ni layer 16 . Au layer 17 and second Au G
An ohmic electrode 19 made of the e-layer 18 is formed.

第1 A u G e R15はGeの含有率を約1%
(重量比)のAuを蒸着ソースとして真空蒸着方法によ
り形成する。さらに連続してNi層16及びAu層17
を形成した後約400℃の不活性ガス中にて熱アロイを
行なう。その後再び真空蒸着方法により融点温度が35
6℃であるGeの含有率12%(重量比)のAuを蒸着
ソースとして第2AuGe層18を形成する。
The first A u G e R15 has a Ge content of about 1%.
It is formed by a vacuum evaporation method using (weight ratio) of Au as a evaporation source. Furthermore, a Ni layer 16 and an Au layer 17 are continuously formed.
After forming, thermal alloying is performed in an inert gas at about 400°C. After that, the melting point temperature was reduced to 35% by vacuum evaporation method again.
The second AuGe layer 18 is formed using Au having a Ge content of 12% (weight ratio) at 6° C. as a deposition source.

次にこのように構成された赤外LEDチップのリードフ
レームへのダイ・ボンディングについて第2図を用いて
説明する。
Next, die bonding of the infrared LED chip configured as described above to the lead frame will be explained using FIG. 2.

Agメツキ層22の形成されたFeを主成分とするリー
ド・フレーム23のマウント・アイランド部分をヒータ
ーにより約400°Cの温度に加熱し、赤外LEDチッ
プ10をのせ、約50g程度の加重を加えてダイ・ボン
ディングする。このとき第2 A u G e層18は
、融点温度356℃を上回るエネルギーを受は溶融する
が、Au層17よりAuを、そしてAgメツキ層22よ
りAgの拡散を受けAu−Ge−Agの三元系の合金部
21を形成する。ダイ・ボンディングされた赤外LED
チップ10はマウント・アイランド部分がヒーターから
離されることにより常温まで冷却され、合金部21は固
化する。内部歪を自己解消し易い金属であるAu系金属
であるAu層17及び第2 A u G e N 18
を、各々1μm程度の厚さとすることにより、N型G 
a A s基板11とリード・フレーム23との間の熱
膨張係数差は解消され、歪による通電劣化レベルの影響
は生じない。
The mounting island portion of the lead frame 23, which is mainly made of Fe and has the Ag plating layer 22 formed thereon, is heated to a temperature of about 400°C using a heater, the infrared LED chip 10 is placed on it, and a load of about 50 g is applied. In addition, die bonding is performed. At this time, the second AuGe layer 18 receives energy exceeding the melting point temperature of 356°C and melts, but the Au-Ge-Ag layer 18 is diffused by Au from the Au layer 17 and Ag from the Ag plating layer 22. A ternary alloy portion 21 is formed. Die bonded infrared LED
The chip 10 is cooled to room temperature by separating the mounting island portion from the heater, and the alloy portion 21 is solidified. The Au layer 17 is made of an Au-based metal, which is a metal that easily eliminates internal strain, and the second Au G e N 18
By making the thickness of each about 1 μm, N-type G
The difference in thermal expansion coefficient between the aAs substrate 11 and the lead frame 23 is eliminated, and the current deterioration level due to strain is not affected.

第2AuGe層18の代りにAuGe層を用いることか
できる。このとき用いるSnの含有率を約20%(重量
比)とすることにより溶融点温度は280 ’Cに下が
る。従ってAuSn層を用いる場合は、ダイ・ボンディ
ング時のリード・フレームの加熱温度を約300℃に下
げることが可能になるため、N型GaAs基板11とリ
ード・フレーム23との間の熱膨張係数差をより低減で
きる利点がある。
An AuGe layer can be used instead of the second AuGe layer 18. By setting the content of Sn used at this time to about 20% (weight ratio), the melting point temperature is lowered to 280'C. Therefore, when using an AuSn layer, it is possible to lower the heating temperature of the lead frame during die bonding to approximately 300°C, which reduces the difference in thermal expansion coefficient between the N-type GaAs substrate 11 and the lead frame 23. This has the advantage of further reducing

なお上記実施例においては光半導体装置として赤外LE
Dを用いた場合について説明したが、化合物半導体基板
とオーミック電極を有するホトトランジスタ等地の光半
導体装置であってもよい。
Note that in the above embodiment, an infrared LE is used as the optical semiconductor device.
Although the case where D is used has been described, an optical semiconductor device such as a phototransistor having a compound semiconductor substrate and an ohmic electrode may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、化合物半導体基板の底面
に形成されたオーミック電極の最表面層をAuGeJl
またはAuSn層とすることにより、素子間のショート
の危険をともなわずに、リードフレームとのダイ・ボン
ディング強度を向上させることができる。又導電性ペー
ストを用いたダイ・ボンディングのような乾燥工程を必
要としないため、リード・フレームのフープ化といった
大量生産・低価格化への対応が可能になるという効果を
有する。
As explained above, in the present invention, the outermost layer of the ohmic electrode formed on the bottom surface of the compound semiconductor substrate is formed using AuGeJl.
Alternatively, by using an AuSn layer, die bonding strength with the lead frame can be improved without the risk of short circuit between elements. Furthermore, since a drying process such as die bonding using conductive paste is not required, it is possible to respond to mass production and cost reduction, such as by forming a lead frame into a hoop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は本発明の
一実施例をリードフレームにダイ・ホンディングした場
合の断面図、第3図は従来例の断面図、第4図は従来例
をリードフレームにダイ・ホンディングした場合の断面
図である。 10−=赤外LEDチップ、11 ・N型GaAs基板
、12・・・N型GaAsエピタキシャルj―、13・
・・P型GaAsエピタキシャル層、14・・・P側電
極、15・・・第1 A u Q e層、16−Ni層
、17−・−Au層、18−・・第2AuGe層、21
 =−合金部、22・・・Agメツキ層、23・・・リ
ード・フレーム、24・・・導電性ペースト。
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a sectional view of an embodiment of the present invention die-bonded to a lead frame, Fig. 3 is a sectional view of a conventional example, and Fig. 4 is a sectional view of an embodiment of the present invention. The figure is a sectional view of a conventional example when die-bonded to a lead frame. 10-=infrared LED chip, 11・N-type GaAs substrate, 12...N-type GaAs epitaxial j-, 13・
...P-type GaAs epitaxial layer, 14--P side electrode, 15--first Au Qe layer, 16-Ni layer, 17--Au layer, 18--second AuGe layer, 21
=-alloy part, 22...Ag plating layer, 23...lead frame, 24...conductive paste.

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体基板と該化合物半導体基板の底面に形成さ
れたオーミック電極とを有する光半導体装置において、
前記オーミック電極の最表面層をAuGe層またはAu
Sn層で構成したことを特徴とする光半導体装置。
In an optical semiconductor device having a compound semiconductor substrate and an ohmic electrode formed on the bottom surface of the compound semiconductor substrate,
The outermost layer of the ohmic electrode is an AuGe layer or an Au layer.
An optical semiconductor device comprising an Sn layer.
JP1082805A 1989-03-31 1989-03-31 Optical semiconductor device Pending JPH02260671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082805A JPH02260671A (en) 1989-03-31 1989-03-31 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082805A JPH02260671A (en) 1989-03-31 1989-03-31 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH02260671A true JPH02260671A (en) 1990-10-23

Family

ID=13784626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082805A Pending JPH02260671A (en) 1989-03-31 1989-03-31 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH02260671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124524A (en) * 2000-10-16 2002-04-26 Kyocera Corp Wiring board
US7829910B2 (en) 2005-01-31 2010-11-09 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating light emitting device
JP2013157423A (en) * 2012-01-30 2013-08-15 Toyoda Gosei Co Ltd Semiconductor device manufacturing method and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124524A (en) * 2000-10-16 2002-04-26 Kyocera Corp Wiring board
JP4605883B2 (en) * 2000-10-16 2011-01-05 京セラ株式会社 Wiring board
US7829910B2 (en) 2005-01-31 2010-11-09 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating light emitting device
JP2013157423A (en) * 2012-01-30 2013-08-15 Toyoda Gosei Co Ltd Semiconductor device manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
JP3271475B2 (en) Electrical element joining material and joining method
US8247259B2 (en) Method for the production of an optoelectronic component using thin-film technology
US7190005B2 (en) GaN LED with solderable backside metal
KR100563853B1 (en) Method for producing a light-emitting component
EP0019003A1 (en) Method of manufacturing semiconductor laser devices
US4553154A (en) Light emitting diode electrode
JPS6159886A (en) Manufacture of photosemiconductor device
JPH02260671A (en) Optical semiconductor device
GB2221570A (en) Bonding a semiconductor to a heat sink
JPS6148776B2 (en)
JPS5950213B2 (en) N-type gallium arsenide ohmic electrode and its formation method
JPH05343744A (en) Die bond type light emitting diode and manufacture thereof
JP2708798B2 (en) Method of forming electrode of silicon carbide
US3769694A (en) Ohmic contact for group iii-v p-type semiconductors
JPH03184377A (en) Electrode for compound semiconductor
JPS6244836B2 (en)
JPS63126272A (en) Formation of ohmic electrode of n-type gallium arsenide
JPS6244837B2 (en)
JPH1051033A (en) Semiconductor light-emitting and-receiving element
JPH08139363A (en) Electrode structure of light emitting diode
JPS6230710B2 (en)
JPS635519A (en) Formation of semiconductor electrode
JP3220638B2 (en) Method for manufacturing semiconductor device
JPS6033301B2 (en) Method for manufacturing compound semiconductor device
JPS6217379B2 (en)