JP4097908B2 - Manufacturing method of radio wave transmission wavelength selective membrane - Google Patents

Manufacturing method of radio wave transmission wavelength selective membrane Download PDF

Info

Publication number
JP4097908B2
JP4097908B2 JP2001132236A JP2001132236A JP4097908B2 JP 4097908 B2 JP4097908 B2 JP 4097908B2 JP 2001132236 A JP2001132236 A JP 2001132236A JP 2001132236 A JP2001132236 A JP 2001132236A JP 4097908 B2 JP4097908 B2 JP 4097908B2
Authority
JP
Japan
Prior art keywords
radio wave
film
layer
wavelength selective
metal nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001132236A
Other languages
Japanese (ja)
Other versions
JP2002328220A (en
Inventor
弘 中嶋
素雄 朝倉
正明 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2001132236A priority Critical patent/JP4097908B2/en
Priority to US10/128,516 priority patent/US6673462B2/en
Priority to DE60208258T priority patent/DE60208258T2/en
Priority to EP02009575A priority patent/EP1254871B1/en
Publication of JP2002328220A publication Critical patent/JP2002328220A/en
Application granted granted Critical
Publication of JP4097908B2 publication Critical patent/JP4097908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明基板、特に建造物、自動車などの窓ガラスに到来する電波、および可視光線を効率よく透過させることができるとともに、太陽の熱線を反射して充分な断熱性を発揮できる電波透過波長選択膜に関する。
【従来の技術】
近年、日射を遮蔽することを目的として、導電性薄膜を被覆したり、または導電性薄膜を含むフィルムを貼り付けた窓ガラスが普及し始めた。このような窓ガラスを高層ビルに施工するとTV周波数帯域の電波を反射して、TV画面にゴーストを発生させる原因となるとともに室内アンテナで衛星放送を受信し難くなる。また、住宅用窓ガラス或いは自動車用窓ガラスとして用いた場合には、携帯電話が通じ難くなる可能性があったり、ガラスアンテナの利得が悪化したりする原因となり得る。
【0003】
このような事情から現状では、ガラス基板に電気抵抗の比較的高い透明な熱線反射膜を被覆して、可視光線の透過を一部させるとともに、電波の反射を低減させて電波障害を防止することが行なわれている。また、導電性膜付きガラスの場合には、ガラス基板に被覆させた導電性膜を、入射電波の電界方向に平行な導電性膜の長さを電波の波長の1/20倍以下になるように分割し、電波障害を防止することが特許第2620456号公報に示されている。
【0004】
しかしながら、前記の電気抵抗の比較的高い透明な熱線反射膜を被覆する方法は、電波の反射を低減して電波障害を防止することは出来るが、熱線遮蔽性能が十分ではなく、生活の快適性において問題があった。また、特許第2620456号公報に示された導電性膜を分割する方法は、分割する長さが太陽光の大部分を占める可視光、近赤外光の波長より非常に大きいので、これらの光は全て反射してしまい、電波障害を防止し充分な日射遮蔽性能を有する電波透過性波長選択スクリーンガラスは得られるが、可視光の透過性が確保できないという問題がある。さらに、開口部のサイズが2m×3mのように大きな窓では、例えば、衛星放送波を透過させるためには、衛星放送の波長約25mmの1/20、少なくとも導電膜を1.25mm平方に、好ましくは0.5mm平方に切断しなければならない。大面積の導電性膜をこのような小さいセグメントに、例えば、イットリウム−アルミニウム−ガーネットレーザで切断するには、長時間を要し現実的でない等の問題があった。
【0005】
【発明が解決しようとする課題】
そこで本発明者等は、特開2000−281388号公報に記載するように、ガラス基板表面、またはガラス基板上にAlN(窒化アルミ層)を被覆した表面に、スパッタリング法により連続層よりなるAg層を成膜させたのち、熱処理することにより粒状のAgに変化生成させたAg層を積層させた電波透過性波長選択ガラスについて出願した。さらに、特開2000−344547公報に記載するように、加熱したガラス基板表面、またはガラス基板上にAlN(窒化アルミ層)を被覆した表面に、Agを成膜することにより粒状のAgに変化生成させた電波透過性波長選択ガラスについて開発した。
【0006】
ところが、更に研究を進めた結果、前記のガラス基板上にAlNを被覆した表面に、Agを成膜することにより粒状のAgに変化生成させる方法は、成膜の工程数が多いという不具合があった。
【0007】
【課題を解決するための手段】
本発明者等は、このような事情に鑑みて鋭意研究した結果、窒化物とAgを混合した混合層を成膜したのち熱処理し、粒状のAg層に変化生成させても良好な電波透過性波長選択膜が得られることが判明し、本発明をなすに至った。
【0008】
すなわち、本発明の電波透過性波長選択膜は、透明基板上に形成された金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を少なくとも有することを特徴とする。
また、本発明の電波透過性波長選択膜は、混合分散層中のAgの濃度は、該混合分散層の表層側が大きいことを特徴とする。
【0009】
さらに、本発明の電波透過性波長選択膜は、粒状のAgは、平均粒径が100nm〜0.5mm、混合分散層の表面における占有面積率が0.2〜0.8の範囲であることを特徴とする。
【0010】
さらにまた、本発明の電波透過性波長選択膜は、前記電波透過性波長選択膜の光線反射率は、波長が600nm〜1500nmの範囲において最大値を有することを特徴とする。
【0011】
またさらに、本発明の電波透過性波長選択膜は、前記複合層の下層および/または上層に誘電体層を設けたことを特徴とする。
【0012】
さらに、本発明の電波透過性波長選択膜は、式(1)で定義する近赤外域の遮蔽率(Es)が0.3以上であることを特徴とする。
【0013】
式2

Figure 0004097908
【0014】
ここで、λ : 透明基板(膜面側)に入射する電磁波の波長
Rdp: 波長λにおける透明基板(膜面側)の反射率
Isr: 波長λにおけるエアーマス1.0における太陽の放射強度
さらに、本発明の電波透過性波長選択膜は、混合分散層の空孔率が0.01〜0.5であることを特徴とする。
【0015】
本発明の透明基板上に形成された金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を少なくとも有する電波透過性波長選択膜の製法は、透明基板上に金属窒化物とAgとが混合されてなる混合層を成膜したのち、該膜を熱処理をすることにより、金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を形成してなることを特徴とする。
【0016】
さらに、本発明の電波透過性波長選択膜の製法は、式(2)で定義する前記混合層におけるAgの体積含有量(Vag)は、0.5以下であることを特徴とする。
【0017】
式3
Figure 0004097908
【0018】
ここで、Wag: 透明基板1m2 当たりに積層されたAgの重量
Wn : 透明基板1m2 当たりに積層された金属窒化物の重量
ρag: Agバルクの密度 (単位:kg/m3
ρn : 金属窒化物バルクの密度(単位:kg/m3
さらにまた、本発明の電波透過性波長選択膜の製法は、前記混合層を成膜した後の熱処理における加熱方法は、抵抗加熱、ガス燃焼加熱、レーザまたは電子線などのビームの照射、または誘導加熱の内の少なくとも1種を用いることを特徴とする。
【0020】
【発明の実施の形態】
本発明の電波透過性波長選択膜は、透明基板上に形成された金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を少なくとも有することを特徴とする。
【0021】
本発明の金属窒化物層は、Al、Si、Ti、Taの金属の内の少なくとも1種よりなる窒化物が好ましく、これらの窒化物とAgを混合した混合層を成膜したのち、熱処理することにより、金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を形成させることができる。
【0022】
本発明の電波透過性波長選択膜は、前記複合層の下層及び/または上層に誘電体層を設けることが好ましい。この誘電体層としては、Al、Si、Ti、Ta、Ge、In、W、V、Mn、Cr、Ni、ステンレスのいずれかの窒化物、Al、Si、Zn、Sn、Ti、Ta、Ge、In、W、V、Mn、Cr、Ni、ステンレスのいずれかの酸化物、およびこれらを多層に積層したもの等を用いることができる。特に、Al、Siの窒化物、Al、Si、Zn、Sn、Ti、Ta、Inの酸化物は無色透明であるので、可視光透過率の高い電波透過性波長選択膜を必要とする建築用、車輌用窓ガラスに適している。なお、粒状のAgを表面に生成させた複合層上に、さらに誘電体層を被覆すると、透明基板上に成膜した誘電体層との相互作用によって可視光透過率を高められるとともに複合層の保護膜として作用するので好ましい。この場合には、誘電体層としてAl、Siの窒化物、Al、Si、Zn、Sn、Ti、Ta、Inの酸化物または、これらを多層に積層したものが望ましい。
【0023】
また、本発明の電波透過性波長選択膜は、式(1)で定義した近赤外域の遮蔽率(Es)が0.3以上であることが好ましく、この特性を有する電波透過性波長選択膜を得るには、選択膜の反射率が600nm〜1500nmの波長範囲で最大となるように混合分散層の表面に生成する粒状のAgの粒径を制御する必要がある。この目的に適合する粒状のAgの平均粒径は100nm以上、占有面積率は0.2以上であることが好ましい。なお、粒状のAgの占有面積率とは、Ag微粒子の外部形態を法線方向から電界放射型走査電子顕微鏡(FE−SEM)で観察した像をAg微粒子とそうでない背景部とに2値化して、Ag微粒子の総面積を求め、SEM画像全体の面積で除した値を示す。ここでいう2値化は、Ag微粒子を白色、マトリックスを黒色に塗り分けて画像処理を行なう。
【0024】
粒状のAgの占有面積率が0.2以下になると、粒状Ag間の平均距離が粒径の2倍以上になり、粒子間の相互干渉が小さくなり、単独で粒子が存在している状態に近づく。そのため、光線反射率は占有面積率程度となり、反射率がたとえ600nm〜1500nmの波長範囲で最大となっても、目標の近赤外線遮蔽率が得られない。粒状のAgの平均粒径が100nm以下であると、いかなる占有面積率に対しても反射率が最大となる波長は600nm以下となる。
【0025】
一方、銀粒子の粒径は0.5mm以下が望ましい。その理由は、本発明者等が出願した特開2000−281388号公報に記したように、粒径が0.5mm以上になると現在使用されている放送波の内、最も波長の短い衛星放送波の波長の1/20以上になり、電波障害が問題となる(特許登録番号2620456参照)。
【0026】
さらに、式(2)で定義した窒化物とAgを混合したAgの体積含有量(Vag)は、0.5以下であることが好ましい。この値が大きいほど平均粒径は大きくなるが、0.5を越えると粒状のAgが生成し難くなる。粒子の生成過程を知るために、Ag体積含有量0.25の試料について日本電子製JAMP−30型オージェ電子分光法で膜表面から内部方向のAg元素の分布を測定した。その結果、熱処理前の試料ではAgの濃度は深さ方向にほぼ一定で、均質であったが、熱処理後の試料ではAgの濃度は、混合分散層の表層側が大きく表面で極大となった。また、熱処理前の試料の比抵抗はAgの100倍以上であった。これらのことから、混合層中におけるAgは、金属窒化物の三次元骨格で遮られて連続膜ではなく、クラスター状に存在している。このAgが金属窒化物の三次元骨格の隙間を拡散して、表層でAg微粒子を生成したものと推定できる。
【0027】
したがって、特開2000−281388号公報に記載したAg単層膜(連続膜)を熱処理して粒状Agを生成させる方法に比べて本発明の窒化物とAgを混合した連続層を熱処理して粒状Agを生成させる方法は少ないエネルギーで同様の構造の電波透過性波長選択膜を作製することができる。混合層におけるAgの一部が連続膜を形成するようなAg体積含有量0.5以上では、熱処理後に粒状のAgが生成し難くなることが上記の実験結果から明らかである。
なお、1m2 当たりに最低必要なAg量は、30mg/m2〜500mg/m2の範囲とすることが好ましい。
【0028】
金属窒化物とAgの混合分散層とその表面に生成された粒状のAgからなる窒化物と銀の複合層は、透明基板表面に直接被覆しても構わないし、透明基板の表面に誘電体層を被覆させた表面に該複合層を積層することもできる。なお、透明基板としては、ガラス基板、透明セラミック基板、耐熱性透明プラスチック等を用いることができ、目的に応じて適宜選択し得る。
【0029】
得られた波長選択膜は、TV放送、衛星放送、携帯電話それぞれの周波数帯域の電波に対して反射率を低減させて、電波障害を防止するとともに、充分な日射遮蔽性能と可視光線透過性を有する電波透過性波長選択膜であり、前記基板表面に被覆することで、建築用窓ガラス、自動車用窓ガラス用等に用いることができる。
【0030】
金属窒化物とAgの混合層、誘電体層を成膜する方法については、特に限定するものではなく、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング等の成膜法を用いて、金属窒化物の膜を常法で形成する際にAgをターゲット材として付加するなどの手段により成膜することが可能であるが、特に、DCマグネトロンスパッタリング法は生成する層の均一性、生産性の点より好ましい。
【0031】
また、成膜したのち熱処理を行うことにより、混合層中のAgは、窒化物層の表層に粒子状のAgを生成する。この粒径は、前記した0.5mmより小さく、また、Ag膜の厚み、熱処理条件などを制御することにより、近赤外線を選択的に反射する膜が得られる。なお、熱処理を行う加熱方法としては、抵抗加熱、ガス燃焼加熱、レーザまたは電子線などのビームの照射、または誘導加熱等を適宜用いることが可能である。そのうち、前記混合層には吸収されるが、基板とは相互作用のないレーザビームを短時間照射して熱処理を行うと、基板はほとんど加熱されないので、耐熱性透明プラスチックを基板とする系に対しては特に適している。また、導電性物質のみを選択的に加熱できる誘導加熱も同様である。
【0032】
なお、熱処理条件については、熱処理温度は150℃以上で、抵抗加熱、ガス燃焼加熱の場合、透明基板が劣化しない温度以下とすることが好ましい。また、レーザまたは電子線などのビームの照射、または誘導加熱の場合の熱処理温度の上限は、Agの沸点2212℃である。また、熱処理時間は、抵抗加熱、ガス燃焼加熱の場合、数秒から数時間、レーザまたは電子線などのビームの照射、または誘導加熱の場合、マイクロ秒から数秒とすることが好ましい。
【0033】
また、Agは紫外線領域にプラズマ振動数が存在し、さらに、この周波数の低周波数側に「銀の窓」と呼ばれるAgの消衰係数が無限小になる領域があるので、Ag粒子の厚みと誘電体層膜の膜厚を制御すれば、可視光の透過性が確保できる。
【0034】
【実施例】
以下、本発明の実施例を述べる。但し、本発明は、これに限定するものではない。
【0035】
実施例1
本発明の電波透過性波長選択膜付きガラスは次に示す手順で製造した。
(1)洗浄した厚さ3mmのフロートガラス板をDCマグネトロンスパッタリング装置内に入れ、槽内の真空度が2〜4×10-4Paに達するまで排気した。なお、ターゲット−ガラス基板間の距離は90mmに固定した。
(2)純Alターゲット(直径129mm、厚み10mm)のエロージョン域にAgチップ(10mm×10mm×1mmの直方体)4個を等間隔に載置した。このターゲットにDC200Wを印加して放電させ、反応性スパッタで膜厚200nmのAlN−Ag混合層を作製した。なお、異常放電を防止するために、周波数10kHzの矩形パルス波をカソードに印加した。スパッタリング中、N2/Ar混合ガスのガス流量比を20/7に、圧力を1Paに制御した。
(3)混合層を被覆した試料を雰囲気温度500℃の恒温炉で5分間加熱し、金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を有する電波透過性波長選択膜付きガラスを作製した。
【0036】
このようにして得られた電波透過性波長選択膜付きガラスの反射率を日立製作所製U−4000型自記分光光度計を用いて波長300〜2500nmの範囲で測定したところ、900nmで最大となった。測定値を式(1)に代入して算出した近赤外域の遮蔽率は0.57となり、高い波長選択性を有するものが得られた。
【0037】
生成したAg微粒子の外部形態をFE−SEM(日立製作所製S−4500)で法線方向から観察し、画像処理によって求めたAg占有面積率、平均粒径は、それぞれ0.51、243nmであった。また、(2)の工程で得られた膜に含まれる金属Ag、Alの重量を原子吸光法で求め、測定値を式(2)に代入してAg体積含有量を求めたところ、0.35であった。
【0038】
実施例2
実施例1と同様にしてAlN−Ag混合層を作製した。なお、純Alターゲットのエロージョン域に載置したAgチップの形状は8.7mm×8.7mm×1mmの直方体で、載置数は実施例1と同様4個である。実施例1と同一の条件で混合層を熱処理して金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を有する電波透過性波長選択膜付きガラスを作製した。
【0039】
このようにして得られた電波透過性波長選択膜付きガラスの反射率を波長300〜2500nmの範囲で測定したところ、690nmで最大となった。近赤外域の遮蔽率は0.40、Ag占有面積率は0.51、平均粒径は206nmであった。また、(2)の工程で得られた層のAg体積含有量率は0.25であった。
【0040】
実施例3
実施例1と同一条件で成膜したAlN−Ag混合層にYAGレーザを照射して熱処理を行ったところ、窒化物層の表層に、ほぼ真円で、粒径の揃った粒状のAgが生成した複合層を有する電波透過性波長選択膜付きガラスが得られた。この膜の反射率は730nmで最大となり、分光曲線は上に凸のシャープな形となった。遮蔽率は0.51、Ag占有面積率は0.52、面積平均粒径は274nmであった。なお、レーザ照射方法と条件を以下に示す。(1)混合膜を積層した基板をX−Yテーブルに固定し、レーザ照射中、テーブルを200mm/秒の速度でX軸方向で往復させ、Y軸方向のピッチを10mmに設定した。(2)東芝製YAGレーザ(LAY−616C)で発振した波長1.06μmのレーザビームをコリメータなどの光学系で10mm程度に広げて、垂直(法線)方向から試料に照射した。
【0041】
比較例1
Alターゲットのエロージョン域に載置するAgチップの数を調整してAg体積含有量が0.6の混合膜を作製し、恒温炉で加熱したところ、遮蔽率0.03であった。
【0042】
遮蔽率が低くなる原因は、熱処理過程でAlNが三次元マトリックスを形成できなかったため、Agが表層に拡散して微粒子を生成するのを阻害したと考えられる。
【0043】
【発明の効果】
本発明により得られた電波透過性波長選択膜は、TV放送、衛星放送、携帯電話それぞれの周波数帯域の電波に対して反射率を低減させるとともに、充分な日射遮蔽性能と可視光線透過性を有するので、TV画面にゴーストを発生させたり、携帯電話が通じなくなったり、或いはガラスアンテナの利得が悪くなったり等の電波障害がなく、且つ日射を充分に遮蔽される等快適な生活環境を提供することが可能である等の著効を有するので、特に自動車用窓ガラス、建築用窓ガラスとして好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention is capable of efficiently transmitting radio waves coming to transparent substrates, particularly window glass of buildings, automobiles, and the like, and visible light, and also capable of exhibiting sufficient heat insulation by reflecting solar heat rays. The present invention relates to a wavelength selective film.
[Prior art]
In recent years, for the purpose of shielding solar radiation, window glass coated with a conductive thin film or attached with a film containing the conductive thin film has begun to spread. If such a window glass is installed in a high-rise building, it will cause radio waves in the TV frequency band to be reflected and cause ghost on the TV screen, and it will be difficult to receive satellite broadcasts with the indoor antenna. In addition, when used as a window glass for a house or a window glass for an automobile, there is a possibility that the mobile phone may become difficult to communicate, or the gain of the glass antenna may be deteriorated.
[0003]
Under such circumstances, at present, the glass substrate is covered with a transparent heat ray reflective film having a relatively high electrical resistance to partially transmit visible light and to reduce radio wave reflection to prevent radio interference. Has been done. In the case of glass with a conductive film, the length of the conductive film parallel to the direction of the electric field of the incident radio wave is 1/20 times or less the wavelength of the radio wave. Japanese Patent No. 2620456 discloses that it is divided into two parts to prevent radio interference.
[0004]
However, the method of coating a transparent heat ray reflective film having a relatively high electrical resistance can reduce radio wave reflection and prevent radio wave interference, but the heat ray shielding performance is not sufficient, and the comfort of life. There was a problem. In addition, the method of dividing the conductive film disclosed in Japanese Patent No. 2620456 is much longer than the wavelength of visible light and near infrared light that occupy most of sunlight, so that these light beams are divided. However, there is a problem in that visible light transmittance cannot be secured, although a radio wave transmissive wavelength selection screen glass having sufficient solar radiation shielding performance and preventing radio wave interference can be obtained. Furthermore, in a large window such as the size of the opening of 2 m × 3 m, for example, in order to transmit satellite broadcast waves, 1/20 of the wavelength of satellite broadcast is about 1/20, at least the conductive film is 1.25 mm square, Preferably it must be cut to 0.5 mm square. In order to cut a large-area conductive film into such small segments with, for example, an yttrium-aluminum-garnet laser, there is a problem that it takes a long time and is not practical.
[0005]
[Problems to be solved by the invention]
Therefore, as described in Japanese Patent Application Laid-Open No. 2000-281388, the present inventors have made an Ag layer made of a continuous layer by a sputtering method on a glass substrate surface or a surface coated with AlN (aluminum nitride layer) on a glass substrate. After the film was formed, an application was made for a radio wave-transmitting wavelength-selective glass in which an Ag layer changed into granular Ag by heat treatment was laminated. Furthermore, as described in JP-A-2000-344547, the Ag is formed on the surface of the heated glass substrate or the surface coated with AlN (aluminum nitride layer) on the glass substrate, thereby changing to granular Ag. We developed a radio wave transmitting wavelength selective glass.
[0006]
However, as a result of further research, the method of changing and generating granular Ag by forming Ag on the surface of the glass substrate coated with AlN has a problem that the number of film forming steps is large. It was.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of such circumstances, the present inventors have formed a mixed layer of nitride and Ag, and then heat-treated to form a granular Ag layer. It has been found that a wavelength selective film can be obtained, and the present invention has been made.
[0008]
That is, the radio wave transmission wavelength selective film of the present invention has at least a mixed dispersion layer of metal nitride and Ag formed on a transparent substrate, and a composite layer made of granular Ag formed on the surface thereof. And
The radio wave transmission wavelength selective film of the present invention is characterized in that the concentration of Ag in the mixed dispersion layer is large on the surface layer side of the mixed dispersion layer.
[0009]
Further, in the radio wave transmitting wavelength selective film of the present invention, the granular Ag has an average particle diameter of 100 nm to 0.5 mm and an occupation area ratio on the surface of the mixed dispersion layer of 0.2 to 0.8. It is characterized by.
[0010]
Furthermore, the radio wave transmission wavelength selection film according to the present invention is characterized in that the light wave reflectance of the radio wave transmission wavelength selection film has a maximum value in a wavelength range of 600 nm to 1500 nm.
[0011]
Furthermore, the radio wave transmission wavelength selection film of the present invention is characterized in that a dielectric layer is provided in a lower layer and / or an upper layer of the composite layer.
[0012]
Furthermore, the radio wave transmitting wavelength selective film of the present invention is characterized in that the near-infrared shielding rate (Es) defined by the formula (1) is 0.3 or more.
[0013]
[ Formula 2 ]
Figure 0004097908
[0014]
Where λ: wavelength of the electromagnetic wave incident on the transparent substrate (film surface side) Rdp: reflectance of the transparent substrate (film surface side) at wavelength λ Isr: solar radiation intensity at air mass 1.0 at wavelength λ The radio wave transmission wavelength selective membrane of the invention is characterized in that the mixed dispersion layer has a porosity of 0.01 to 0.5.
[0015]
A method for producing a radio wave transmission wavelength selective film having at least a composite layer composed of a mixed layer of metal nitride and Ag formed on a transparent substrate of the present invention and granular Ag formed on the surface thereof is provided on the transparent substrate. After forming a mixed layer in which the metal nitride and Ag are mixed together, the film is subjected to a heat treatment, so that the mixed dispersion layer of the metal nitride and Ag and the granular Ag generated on the surface thereof are formed. It is characterized by forming a composite layer.
[0016]
Furthermore, the method for producing a radio wave transmitting wavelength selective film of the present invention is characterized in that the volume content (Vag) of Ag in the mixed layer defined by the formula (2) is 0.5 or less.
[0017]
[ Formula 3 ]
Figure 0004097908
[0018]
Here, Wag: transparent substrate 1m 2 hit the layered the Ag Weight Wn: the weight of the transparent substrate 1m metal nitride stacked per 2 ρag: Ag bulk density (unit: kg / m 3)
ρn: density of metal nitride bulk (unit: kg / m 3 )
Furthermore, in the method for producing a radio wave transmissive wavelength selective film of the present invention, the heating method in the heat treatment after forming the mixed layer is resistance heating, gas combustion heating, irradiation of a beam such as a laser or an electron beam, or induction. It is characterized by using at least one of heating.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The radio wave transmissive wavelength selective film of the present invention has at least a mixed dispersion layer of metal nitride and Ag formed on a transparent substrate, and a composite layer made of granular Ag formed on the surface thereof. .
[0021]
The metal nitride layer of the present invention is preferably a nitride composed of at least one of Al, Si, Ti, and Ta metals, and a heat treatment is performed after forming a mixed layer in which these nitrides and Ag are mixed. Thus, a composite dispersion layer composed of a mixed dispersion layer of metal nitride and Ag and granular Ag generated on the surface thereof can be formed.
[0022]
In the radio wave transmitting wavelength selective film of the present invention, it is preferable to provide a dielectric layer in the lower layer and / or the upper layer of the composite layer. As this dielectric layer, Al, Si, Ti, Ta, Ge, In, W, V, Mn, Cr, Ni, any nitride of stainless steel, Al, Si, Zn, Sn, Ti, Ta, Ge , In, W, V, Mn, Cr, Ni, stainless steel, and those obtained by stacking these in multiple layers can be used. In particular, since nitrides of Al and Si and oxides of Al, Si, Zn, Sn, Ti, Ta, and In are colorless and transparent, they require a radio wave-transmitting wavelength selective film having high visible light transmittance. Suitable for vehicle window glass. In addition, when a dielectric layer is further coated on the composite layer in which granular Ag is formed on the surface, the visible light transmittance can be increased by interaction with the dielectric layer formed on the transparent substrate, and the composite layer Since it acts as a protective film, it is preferable. In this case, the dielectric layer is preferably Al, Si nitride, Al, Si, Zn, Sn, Ti, Ta, In oxide, or a laminate of these.
[0023]
In addition, the radio wave transmission wavelength selection film of the present invention preferably has a near-infrared shielding rate (Es) defined by the formula (1) of 0.3 or more, and the radio wave transmission wavelength selection film having this characteristic. In order to obtain the above, it is necessary to control the particle size of the granular Ag generated on the surface of the mixed dispersion layer so that the reflectance of the selective film becomes maximum in the wavelength range of 600 nm to 1500 nm. The average particle diameter of granular Ag suitable for this purpose is preferably 100 nm or more and the occupied area ratio is preferably 0.2 or more. Note that the occupied area ratio of the granular Ag is binarized from an image obtained by observing the external form of the Ag fine particles with a field emission scanning electron microscope (FE-SEM) from the normal direction to the Ag fine particles and the background portion that is not. Then, the total area of the Ag fine particles is obtained, and a value obtained by dividing by the area of the entire SEM image is shown. In this binarization, image processing is performed by separately coating Ag fine particles in white and matrix in black.
[0024]
When the occupied area ratio of granular Ag becomes 0.2 or less, the average distance between granular Ag becomes twice or more of the particle diameter, the mutual interference between the particles becomes small, and the particles exist alone. Get closer. Therefore, the light reflectance is about the occupied area ratio, and even if the reflectance is maximum in the wavelength range of 600 nm to 1500 nm, the target near-infrared shielding ratio cannot be obtained. When the average particle diameter of the granular Ag is 100 nm or less, the wavelength at which the reflectance is maximum for any occupied area ratio is 600 nm or less.
[0025]
On the other hand, the particle size of the silver particles is desirably 0.5 mm or less. The reason for this is that, as described in Japanese Patent Application Laid-Open No. 2000-281388, filed by the present inventors, a satellite broadcast wave having the shortest wavelength among the currently used broadcast waves when the particle size becomes 0.5 mm or more. The wavelength becomes 1/20 or more, and radio wave interference becomes a problem (see Patent Registration No. 2620456).
[0026]
Furthermore, the volume content (Vag) of Ag obtained by mixing the nitride defined by the formula (2) and Ag is preferably 0.5 or less. The larger the value, the larger the average particle diameter, but when it exceeds 0.5, it becomes difficult to form granular Ag. In order to know the formation process of the particles, the distribution of Ag element in the internal direction from the film surface was measured with a JAMP-30 type Auger electron spectroscopy made by JEOL on a sample with an Ag volume content of 0.25. As a result, in the sample before the heat treatment, the Ag concentration was almost constant in the depth direction and uniform, but in the sample after the heat treatment, the Ag concentration was large on the surface layer side of the mixed dispersion layer and maximized on the surface. The specific resistance of the sample before the heat treatment was 100 times or more of Ag. From these facts, Ag in the mixed layer is interrupted by the three-dimensional skeleton of the metal nitride and is present in a cluster rather than a continuous film. It can be presumed that this Ag diffused through the gaps in the three-dimensional skeleton of the metal nitride and produced Ag fine particles on the surface layer.
[0027]
Therefore, the continuous layer obtained by mixing the nitride of the present invention and Ag is heat-treated compared to the method in which the Ag single-layer film (continuous film) described in JP 2000-281388 A is heat-treated to produce granular Ag. The method of generating Ag can produce a radio wave transmissive wavelength selective film having the same structure with less energy. From the above experimental results, it is clear that when the Ag volume content is 0.5 or more so that a part of Ag in the mixed layer forms a continuous film, it is difficult to form granular Ag after heat treatment.
Note that minimum required amount of Ag per 1 m 2 is preferably in the range of 30mg / m 2 ~500mg / m 2 .
[0028]
The mixed dispersion layer of metal nitride and Ag and the composite layer of nitride and silver made of granular Ag formed on the surface thereof may be directly coated on the surface of the transparent substrate, or the dielectric layer on the surface of the transparent substrate. The composite layer can also be laminated on the surface coated with. In addition, as a transparent substrate, a glass substrate, a transparent ceramic substrate, a heat resistant transparent plastic, etc. can be used, and it can select suitably according to the objective.
[0029]
The obtained wavelength selective film reduces the reflectivity for radio waves in each frequency band of TV broadcast, satellite broadcast, and mobile phone to prevent radio wave interference and provide sufficient solar radiation shielding performance and visible light transmittance. It has a radio wave transmission wavelength selection film, and can be used for architectural window glass, automobile window glass and the like by covering the substrate surface.
[0030]
The method for forming a mixed layer of metal nitride and Ag and a dielectric layer is not particularly limited, and a metal film formed by sputtering, vacuum deposition, CVD, ion plating, or the like can be used. It is possible to form a nitride film by means such as adding Ag as a target material when forming a nitride film by a conventional method. In particular, the DC magnetron sputtering method has the uniformity and productivity of a layer to be produced. It is more preferable than the point.
[0031]
Further, by performing heat treatment after film formation, Ag in the mixed layer generates particulate Ag in the surface layer of the nitride layer. The particle diameter is smaller than 0.5 mm, and a film that selectively reflects near infrared rays can be obtained by controlling the thickness of the Ag film, heat treatment conditions, and the like. Note that as a heating method for performing the heat treatment, resistance heating, gas combustion heating, irradiation with a beam such as a laser or an electron beam, induction heating, or the like can be used as appropriate. Among them, when the heat treatment is carried out by irradiating the mixed layer with a laser beam that does not interact with the substrate for a short time, the substrate is hardly heated. Is particularly suitable. The same applies to induction heating in which only a conductive substance can be selectively heated.
[0032]
Regarding the heat treatment conditions, the heat treatment temperature is preferably 150 ° C. or more, and in the case of resistance heating or gas combustion heating, it is preferable to set the temperature to a temperature at which the transparent substrate does not deteriorate. In addition, the upper limit of the heat treatment temperature in the case of irradiation with a beam such as a laser or an electron beam or induction heating is a boiling point of 2212 ° C. of Ag. In addition, the heat treatment time is preferably several seconds to several hours in the case of resistance heating and gas combustion heating, and is preferably from microseconds to several seconds in the case of irradiation with a beam such as a laser or an electron beam or induction heating.
[0033]
Further, Ag has a plasma frequency in the ultraviolet region, and there is a region called “silver window” where the extinction coefficient of Ag is infinitesimal on the low frequency side of this frequency. By controlling the film thickness of the dielectric layer film, it is possible to ensure visible light transmission.
[0034]
【Example】
Examples of the present invention will be described below. However, the present invention is not limited to this.
[0035]
Example 1
The glass with a radio wave transmitting wavelength selective film of the present invention was produced by the following procedure.
(1) The washed 3 mm thick float glass plate was put in a DC magnetron sputtering apparatus and evacuated until the degree of vacuum in the tank reached 2-4 × 10 −4 Pa. The distance between the target and the glass substrate was fixed at 90 mm.
(2) Four Ag chips (10 mm × 10 mm × 1 mm rectangular parallelepiped) were placed at equal intervals in the erosion region of a pure Al target (diameter 129 mm, thickness 10 mm). The target was discharged by applying DC 200 W, and an AlN-Ag mixed layer having a thickness of 200 nm was formed by reactive sputtering. In order to prevent abnormal discharge, a rectangular pulse wave with a frequency of 10 kHz was applied to the cathode. During sputtering, the gas flow rate ratio of N 2 / Ar mixed gas was controlled to 20/7, and the pressure was controlled to 1 Pa.
(3) A sample coated with a mixed layer is heated for 5 minutes in a constant temperature furnace having an atmospheric temperature of 500 ° C., and a radio wave having a mixed dispersion layer of metal nitride and Ag and a composite layer made of granular Ag formed on the surface thereof. A glass with a transparent wavelength selective film was prepared.
[0036]
The reflectance of the glass with a radio wave transmitting wavelength selective film thus obtained was measured in the wavelength range of 300 to 2500 nm using a Hitachi U-4000 type self-recording spectrophotometer. . The near-infrared shielding rate calculated by substituting the measured value into Equation (1) was 0.57, and a high wavelength selectivity was obtained.
[0037]
The external form of the generated Ag fine particles was observed with a FE-SEM (S-4500 manufactured by Hitachi, Ltd.) from the normal direction, and the Ag occupation area ratio and the average particle diameter obtained by image processing were 0.51 and 243 nm, respectively. It was. Further, the weight of the metal Ag and Al contained in the film obtained in the step (2) was determined by atomic absorption method, and the measured value was substituted into the equation (2) to determine the Ag volume content. 35.
[0038]
Example 2
In the same manner as in Example 1, an AlN-Ag mixed layer was produced. The shape of the Ag chip placed in the erosion area of the pure Al target is a cuboid of 8.7 mm × 8.7 mm × 1 mm, and the number of placement is four as in the first embodiment. The mixed layer is heat-treated under the same conditions as in Example 1 to produce a glass with a radio wave-transmitting wavelength selective film having a mixed dispersion layer of metal nitride and Ag and a composite layer made of granular Ag formed on the surface of the mixed layer. did.
[0039]
When the reflectance of the glass with a radio wave transmitting wavelength selective film thus obtained was measured in the wavelength range of 300 to 2500 nm, it was maximum at 690 nm. The shielding ratio in the near infrared region was 0.40, the Ag occupation area ratio was 0.51, and the average particle size was 206 nm. Moreover, Ag volume content rate of the layer obtained at the process of (2) was 0.25.
[0040]
Example 3
When an AlN-Ag mixed layer formed under the same conditions as in Example 1 was subjected to heat treatment by irradiating a YAG laser, granular Ag with a uniform particle size was formed on the surface of the nitride layer. Thus, a glass with a radio wave-transmitting wavelength selective film having a composite layer was obtained. The reflectance of this film was maximum at 730 nm, and the spectral curve had a sharp shape that was convex upward. The shielding ratio was 0.51, the Ag occupation area ratio was 0.52, and the area average particle diameter was 274 nm. The laser irradiation method and conditions are shown below. (1) The substrate on which the mixed film was laminated was fixed to an XY table, and during laser irradiation, the table was reciprocated in the X-axis direction at a speed of 200 mm / second, and the pitch in the Y-axis direction was set to 10 mm. (2) A laser beam with a wavelength of 1.06 μm oscillated by a YAG laser (LAY-616C) manufactured by Toshiba was expanded to about 10 mm by an optical system such as a collimator, and the sample was irradiated from the vertical (normal) direction.
[0041]
Comparative Example 1
When the number of Ag chips placed in the erosion region of the Al target was adjusted to produce a mixed film with an Ag volume content of 0.6 and heated in a constant temperature furnace, the shielding rate was 0.03.
[0042]
The reason for the low shielding rate is considered that AlN was unable to form a three-dimensional matrix during the heat treatment process, and therefore, Ag was prevented from diffusing into the surface layer to form fine particles.
[0043]
【The invention's effect】
The radio wave transmissive wavelength selective film obtained by the present invention reduces the reflectance with respect to radio waves in the frequency bands of TV broadcast, satellite broadcast, and mobile phone, and has sufficient solar radiation shielding performance and visible light transmittance. Therefore, there is no radio wave interference such as ghosting on the TV screen, cellular phone becoming inaccessible, or the gain of the glass antenna being deteriorated, and providing a comfortable living environment that is sufficiently shielded from sunlight. Therefore, it is particularly suitable as an automotive window glass and an architectural window glass.

Claims (3)

透明基板上に形成された金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を少なくとも有する電波透過性波長選択膜の製法において、透明基板上に金属窒化物とAgとが混合されてなる混合層を成膜したのち、該膜を熱処理をすることにより、金属窒化物とAgの混合分散層と、その表面に生成された粒状のAgからなる複合層を形成してなることを特徴とする電波透過性波長選択膜の製法。 In a method of manufacturing a radio wave transmissive wavelength selective film having at least a composite layer composed of a metal nitride and Ag formed on a transparent substrate and a granular Ag formed on the surface thereof, the metal nitride is formed on the transparent substrate. A mixed layer composed of a mixture of metal and Ag is formed, and then the film is subjected to heat treatment, whereby a mixed dispersion layer of metal nitride and Ag, and a composite layer composed of granular Ag formed on the surface thereof A method for producing a radio wave transmitting wavelength selective film characterized by comprising: 式(2)で定義する前記混合層における熱処理前のAgの体積含有量(Vag)は、0.5以下であることを特徴とする請求項記載の電波透過性波長選択膜の製法。
【式1】
Figure 0004097908
ここで、Wag: 透明基板1m2 当たりに積層されたAgの重量
Wn : 透明基板1m2 当たりに積層された金属窒化物の重量
ρag: Agバルクの密度 (単位:kg/m3
ρn : 金属窒化物バルクの密度(単位:kg/m3
The volume content of Ag before the heat treatment in the mixed layer (Vag) is preparation of a radio wave transmitting wavelength selective film of claim 1, wherein a is 0.5 or less defined in formula (2).
[Formula 1]
Figure 0004097908
Here, Wag: transparent substrate 1m 2 hit the layered the Ag Weight Wn: the weight of the transparent substrate 1m metal nitride stacked per 2 ρag: Ag bulk density (unit: kg / m 3)
ρn: density of metal nitride bulk (unit: kg / m 3 )
前記混合層を成膜した後の熱処理における加熱方法は、抵抗加熱、ガス燃焼加熱、レーザまたは電子線などのビームの照射、または誘導加熱の内の少なくとも1種を用いることを特徴とする請求項または記載の電波透過性波長選択膜の製法。The heating method in the heat treatment after forming the mixed layer is characterized by using at least one of resistance heating, gas combustion heating, irradiation of a beam such as a laser or an electron beam, or induction heating. A method for producing a radio wave transmitting wavelength selective film according to 1 or 2 .
JP2001132236A 2001-04-27 2001-04-27 Manufacturing method of radio wave transmission wavelength selective membrane Expired - Fee Related JP4097908B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001132236A JP4097908B2 (en) 2001-04-27 2001-04-27 Manufacturing method of radio wave transmission wavelength selective membrane
US10/128,516 US6673462B2 (en) 2001-04-27 2002-04-24 Frequency selective plate and method for producing same
DE60208258T DE60208258T2 (en) 2001-04-27 2002-04-26 Frequency-selective plate and method for its production
EP02009575A EP1254871B1 (en) 2001-04-27 2002-04-26 Frequency selective plate and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001132236A JP4097908B2 (en) 2001-04-27 2001-04-27 Manufacturing method of radio wave transmission wavelength selective membrane

Publications (2)

Publication Number Publication Date
JP2002328220A JP2002328220A (en) 2002-11-15
JP4097908B2 true JP4097908B2 (en) 2008-06-11

Family

ID=18980274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132236A Expired - Fee Related JP4097908B2 (en) 2001-04-27 2001-04-27 Manufacturing method of radio wave transmission wavelength selective membrane

Country Status (1)

Country Link
JP (1) JP4097908B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058681C (en) * 1996-03-21 2000-11-22 中国石油化工总公司石油化工科学研究院 Process of producing fine-grain model. A zeolite
RU2448197C1 (en) * 2011-04-05 2012-04-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Application method of transparent electrically conducting coating

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4371690B2 (en) * 2003-04-11 2009-11-25 セントラル硝子株式会社 Radio wave transmissive wavelength selective plate and method for producing the same
FR2950878B1 (en) * 2009-10-01 2011-10-21 Saint Gobain THIN LAYER DEPOSITION METHOD
FR2969391B1 (en) * 2010-12-17 2013-07-05 Saint Gobain METHOD FOR MANUFACTURING OLED DEVICE
CN115233159B (en) * 2022-08-05 2023-11-17 中国科学院光电技术研究所 Silver film with low roughness and controllable dielectric constant and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058681C (en) * 1996-03-21 2000-11-22 中国石油化工总公司石油化工科学研究院 Process of producing fine-grain model. A zeolite
RU2448197C1 (en) * 2011-04-05 2012-04-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Application method of transparent electrically conducting coating

Also Published As

Publication number Publication date
JP2002328220A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
EP1923362B1 (en) Infrared reflective glass plate and laminated glass for vehicle window
JP5518580B2 (en) Heat ray shielding material
US6689256B2 (en) Frequency selective plate and method for producing same
EP2368857A2 (en) Heat ray-shielding material comprising a metal particle layer
JP2008201633A (en) Glass sheet with antireflection film and laminated glass for window
CN1356563A (en) Refractory reflecting ayer, laminated sheet made of said reflecting layer, and LCD containing one of them
EP4059707A1 (en) Glass body
JP2012533514A (en) Low emission glass and manufacturing method thereof
JP4097908B2 (en) Manufacturing method of radio wave transmission wavelength selective membrane
DE102013112532A1 (en) Radiation absorber for absorbing electromagnetic radiation, solar absorber arrangement, and method for producing a radiation absorber
JP3454422B2 (en) Radio wave transmitting wavelength selective substrate and its manufacturing method
JP4371690B2 (en) Radio wave transmissive wavelength selective plate and method for producing the same
EP1254871B1 (en) Frequency selective plate and method for producing same
JPH0859300A (en) Heat radiation-insulating glass
JP4037135B2 (en) Manufacturing method of radio wave transmission wavelength selective membrane
JP2006110808A (en) Radio-wave transmissible wavelength selection plate
RU2420607C1 (en) Procedure for application of heat shielding coating on polymer material
JP3734376B2 (en) Radio wave transmissive wavelength selective glass and manufacturing method thereof
JP2006110807A (en) Radio-wave transmissible wavelength selection plate
JPH0550548A (en) Thermal ray-reflecting glass with radio wave-low reflecting property
JPH0859301A (en) Ultraviolet heat shielding glass
JP2007161584A (en) Method of manufacturing wavelength selective film transmittable of radiowave
JP2000344547A (en) Production of base plate having transmissibility to radio waves and wavelength selectivity
WO2014050367A1 (en) Process for producing heat-insulating laminated structure, heat-insulating laminated structure, and transparent laminated film
JPH07333423A (en) Permselective membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees