JPH0550548A - Thermal ray-reflecting glass with radio wave-low reflecting property - Google Patents

Thermal ray-reflecting glass with radio wave-low reflecting property

Info

Publication number
JPH0550548A
JPH0550548A JP3215609A JP21560991A JPH0550548A JP H0550548 A JPH0550548 A JP H0550548A JP 3215609 A JP3215609 A JP 3215609A JP 21560991 A JP21560991 A JP 21560991A JP H0550548 A JPH0550548 A JP H0550548A
Authority
JP
Japan
Prior art keywords
radio wave
film
glass
groove
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3215609A
Other languages
Japanese (ja)
Other versions
JPH0828592B2 (en
Inventor
Hiroshi Nakajima
弘 中嶋
Yoshihiro Yano
善博 矢野
Hironobu Iida
裕伸 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3215609A priority Critical patent/JPH0828592B2/en
Priority to US07/925,682 priority patent/US5364685A/en
Priority to EP92113758A priority patent/EP0531734B1/en
Priority to DE69215173T priority patent/DE69215173T2/en
Publication of JPH0550548A publication Critical patent/JPH0550548A/en
Publication of JPH0828592B2 publication Critical patent/JPH0828592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain thermal ray-reflecting glass excellent in heat-insulating property while radio wave-obstruction is remarkably reduced by a method in which the membrane part which has relatively high radio wave-reflectance and lower surface resistivity than a specified value, is divided, and the length of the side parallel to the direction of the electric field of approaching radio wave is kept at most specified times of the wave length of radio wave, and then the penetration ratio of sun light- radiation is limited. CONSTITUTION:The surface resistivity of a membrane, a film or a platelike object 2 is at most 5000OMEGA/?. While the length L of the side parallel to the direction of the electric field of the approaching radio wave of the membrane, the film or the platelike object 2, is divided so that the length L is kept at most 1/20 times the wave length of radio wave, and a dividing groove 3 is formed, the penetration ratio of sun light- radiation is kept at most 50%. In the dividing groove 3, the width of the groove parallel to the direction of the electric field of the approaching radio wave is 0-5mm, and the width of the groove perpendicular thereto is 0.5-5mm, and further said divided shape is made into stripe shape or lattice work. Consequently, the thermal ray- reflecting glass which has sufficient heat insulation and radio wave-low reflecting property may be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建造物などによる電波
の障害を防ぎ、電波を効率よく透過させる熱線反射ガラ
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat ray reflective glass which prevents radio waves from being obstructed by a building or the like and transmits radio waves efficiently.

【0002】[0002]

【従来技術】近年、テレビ電波の受信にあたり、ビルの
反射によるゴースト障害が問題になり、ビルのコンクリ
ート壁などにフェライト電波吸収体を設けることが実用
化されつつある。
2. Description of the Related Art In recent years, when receiving television radio waves, ghost damage due to building reflection has become a problem, and it is becoming practical to install a ferrite radio wave absorber on a concrete wall of a building.

【0003】一方、窓ガラスは次第に厚いものが使用さ
れ、しかも金属、金属酸化物などの膜をコーティングし
たり、このような膜を有するフイルムを貼付けた断熱性
能などの機能を付与したものが増加の傾向にある。厚さ
の影響はさほどではないが、ガラスより電波に対して反
射率が高い膜をコーティングしたり、フイルムを貼付け
ると反射率が例えばかなりの高い値となり、電波障害は
避けられない面があった。したがって、このような場合
には電波の到来方向の窓は何もコーティングしていない
ガラスを配設せざるをえず、同一ビルで色調が異なると
いう不調和がさけられなかったし、場合によってはビル
全体の窓における断熱効果を低減させざるを得ないこと
もあるものであった。
On the other hand, as window glass is gradually thicker, more and more glass is coated with a film of metal, metal oxide or the like, or a film having such a film is attached to the glass, which has functions such as heat insulation. Tend to. The effect of the thickness is not so great, but if a film that has a higher reflectivity for radio waves than glass is coated or a film is attached, the reflectivity will be quite high, for example, and there is a possibility that radio interference will be unavoidable. It was Therefore, in such a case, the window in the direction of arrival of radio waves had to be provided with uncoated glass, and it was impossible to avoid the incongruity that the color tone was different in the same building. It was sometimes necessary to reduce the heat insulation effect on the windows of the entire building.

【0004】[0004]

【発明が解決しようとする問題点】本発明はこのような
点に鑑みてなされたものであり、TV放送波などの電波
に対して反射率を低減せしめて電波障害が発現しないと
言える、膜を被覆しない素板ガラスに出来るだけ近い電
波反射率の値となり、かつ充分な断熱性能を有する電波
低反射特性を有する熱線反射ガラスを提供することを目
的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has been made in view of the above circumstances, and it can be said that the reflectance is reduced for radio waves such as TV broadcast waves so that no radio interference occurs. It is an object of the present invention to provide a heat ray reflective glass having a radio wave low reflection characteristic, which has a radio wave reflectance value as close as possible to a bare sheet glass not covered with and has sufficient heat insulation performance.

【0005】[0005]

【問題点を解決するための手段】すなわち、本発明は、
基板に、熱線反射率が高い膜、フイルムもしくは板状体
が積層された熱線反射ガラスにおいて、該膜、フイルム
もしくは板状体の表面抵抗率が500Ω/口以下であっ
て、かつ該膜、フイルムもしくは板状体の到来電波の電
界方向に平行な辺の長さを、前記電波の波長λの1/2
0倍以下になるように分割して分割溝を形成するととも
に、日射透過率を50%以下としたことを特徴とする電
波低反射特性を有する熱線反射ガラス。ならびに前記分
割溝については、到来電波の電界方向に、平行な溝の幅
が0〜5mm、直交する溝の幅が0.05〜5mmであ
ることを特徴とする上述した電波低反射特性を有する熱
線反射ガラス。またさらに前記分割形状がストライプ状
あるいは格子状であることを特徴とする上述した電波低
反射特性を有する熱線反射ガラスを提供するものであ
る。
[Means for Solving the Problems] That is, the present invention is
A heat ray reflective glass comprising a substrate, and a film, a film or a plate having a high heat ray reflectance laminated on the substrate, wherein the film, the film or the plate has a surface resistivity of 500 Ω / port or less, and the film or the film. Alternatively, the length of the side parallel to the electric field direction of the incoming radio wave of the plate-shaped body is 1/2 of the wavelength λ of the radio wave.
A heat ray reflective glass having low radio wave reflection characteristics, characterized in that it is divided into 0 times or less to form division grooves and has a solar radiation transmittance of 50% or less. In addition, the split grooves have the above-described low radio wave reflection characteristics, characterized in that the width of the parallel groove is 0 to 5 mm and the width of the orthogonal groove is 0.05 to 5 mm in the electric field direction of the incoming radio wave. Heat ray reflective glass. Further, the present invention provides the heat ray reflective glass having the above-described radio wave low reflection characteristic, wherein the divided shape is a stripe shape or a lattice shape.

【0006】ここで、前記熱線反射率が高い膜、フイル
ムもしくは板状体の表面抵抗率が500Ω/口以下であ
るものとしたのは、例えば表面抵抗率が1kΩ/口以上
であれば電波の反射率が低いものとなるものの、断熱性
能が低下してくることとなり、したがって表面抵抗率が
1kΩ/口以下であれば電波の反射率が次第に大きくな
って、断熱性能が増大してくるものであるのに対し、電
波反射率と日射透過率の両者が良好な値として500Ω
/口以下とした。好ましくは400Ω/口以下、より好
ましくは350Ω/口以下であって、例えば太陽光の遮
断だけでなく、赤外線の反射による断熱を含めた高断熱
ガラスでは、赤外線の反射はプラズマ振動によるもので
あるから、反射率は膜の表面抵抗に支配されるため、ス
パッタ膜の表面抵抗率として、500Ω/口以下が必要
である。
Here, the reason why the surface resistivity of the film, film or plate having the high heat ray reflectance is 500 Ω / port or less is that the surface resistivity is 1 kΩ / port or more. Although the reflectance is low, the heat insulation performance is deteriorated. Therefore, if the surface resistivity is 1 kΩ / mouth or less, the reflectance of radio waves is gradually increased and the heat insulation performance is increased. On the other hand, both the radio wave reflectance and the solar radiation transmittance have good values of 500Ω.
/ It was below the mouth. It is preferably 400 Ω / mouth or less, more preferably 350 Ω / mouth or less. For example, in the case of highly insulating glass including not only the blocking of sunlight but also the heat insulation by reflection of infrared rays, the reflection of infrared rays is due to plasma vibration. Therefore, since the reflectance is controlled by the surface resistance of the film, the surface resistance of the sputtered film needs to be 500 Ω / hole or less.

【0007】とくに、表面抵抗率が数Ω/口のLOWー
Eガラスにおいては、反射障害が大きな問題となり、主
に寒冷地で使用するLOWーEガラスでは、昼間の太陽
光を積極的に取り入れるため、日射透過率は通常の断熱
ガラス(例えば、商品名:スカイクール)より小さくな
っているが、赤外線の反射率は非常に高いものであるか
らである。また、該熱線反射率が高い膜、フイルムもし
くは板状体は、単層でも多層でもよいものであり、厚み
としては、約1000Å程度以下、好ましくは約800
Å程度以下、より好ましくは約500Å程度以下であ
る。
Particularly, in LOW-E glass having a surface resistivity of several Ω / neck, a reflection problem becomes a serious problem, and in LOW-E glass mainly used in cold regions, daytime sunlight is positively incorporated. Therefore, the solar radiation transmittance is smaller than that of ordinary heat insulating glass (for example, product name: Skycool), but the infrared reflectance is extremely high. The film, film or plate having a high heat ray reflectance may be a single layer or a multilayer, and the thickness thereof is about 1000 Å or less, preferably about 800.
It is about Å or less, more preferably about 500 Å or less.

【0008】さらに、前記日射透過率が50%以下とし
たのは、50%を超えると断熱効果が必ずしも充分とは
言えないものとなるためであり、好ましくは約40%程
度以下、より好ましくは約5〜30%程度で、通常の断
熱ガラス(例えば、商品名:スカイクール)とほぼ同程
度のものである。
Further, the reason why the solar radiation transmittance is set to 50% or less is that the heat insulating effect is not always sufficient when it exceeds 50%, preferably about 40% or less, and more preferably about 40% or less. It is about 5 to 30%, which is almost the same as that of ordinary insulating glass (for example, product name: Sky Cool).

【0009】つぎに、膜、フイルムもしくは板状体の到
来電波の電界方向に平行な辺の長さを、前記電波の波長
λの1/20倍以下になるように分割して分割溝を形成
するようにしたのは、例えば既に同出願人が提案したよ
うに、前記電波の波長λの1/3倍以下、好ましくは1
/4倍以下の前記辺の長さでよいのであるが、より過酷
な環境あるいは条件下でも前述した所期の目的を達成す
るために必要であり、好ましくは1/30倍以下であ
る。なお、例えばスパッタリング膜の厚みが約300Å
程度の薄膜では、電波の吸収は無視でき、シールド効果
の減少は電波反射率が低下した結果、生じた現象であ
る。
Next, the division groove is formed by dividing the length of the side parallel to the electric field direction of the incoming radio wave of the film, film or plate so as to be 1/20 times or less the wavelength λ of the radio wave. This is done by, for example, as already proposed by the applicant, 1/3 times or less of the wavelength λ of the radio wave, preferably 1
The length of the side is not more than / 4 times, but it is necessary to achieve the intended purpose described above even under more severe environment or conditions, and preferably not more than 1/30 times. For example, the thickness of the sputtered film is about 300Å
With a thin film of a certain degree, the absorption of radio waves can be ignored, and the decrease in the shielding effect is a phenomenon that occurs as a result of a decrease in radio wave reflectance.

【0010】さらについで、前記分割溝(スリット)
を、到来電波の電界方向に、平行な溝の幅が0〜5m
m、直交する溝の幅が0.05〜5mmであるとしたこ
とについては、該分割溝の幅が大きいほど、電波障害が
少なくなるが、例えば通常の高断熱品の中でも比較的低
い抵抗をもつものでは、表面抵抗率が約50Ω/口程度
で日射透過率が約6〜7%程度であって、電波反射率が
約56%(周波数200MHzにおける)程度であるの
に対し、該断熱膜の分割による断熱性能の低下を、例え
ば約7%から19%と約3倍程度以内、出来れば約14
%と約2倍以内程度に止めることが望ましく、加えて前
記溝の幅が5mm以上になると次第に意匠性等も欠け易
くなるものであって、5mm以下、好ましくは約3mm
以下程度であり、より好ましくは到来電波の波長λの1
/1500mm倍以下(200MHzでは約1mm程度
以下に相当する)である。
Further, the division groove (slit)
The width of the groove parallel to the electric field direction of the incoming radio wave is 0-5 m
m, the width of the orthogonal groove is 0.05 to 5 mm, the larger the width of the dividing groove is, the less the radio interference is. In the case of using the heat insulating film, the surface resistivity is about 50Ω / mouth, the solar radiation transmittance is about 6 to 7%, and the radio wave reflectance is about 56% (at a frequency of 200 MHz). The deterioration of heat insulation performance due to the division of, for example, from about 7% to 19% within about 3 times, if possible about 14
%, It is desirable to stop within about 2 times, and in addition, if the width of the groove becomes 5 mm or more, the designability and the like tend to be easily lost. 5 mm or less, preferably about 3 mm
It is about the following or less, and more preferably 1 of the wavelength λ of the incoming radio wave.
/ 1500 mm times or less (corresponding to about 1 mm or less at 200 MHz).

【0011】すなわち好ましくは、到来電波の電界方向
に、平行な溝の幅が0〜3mm、直交する溝の幅が0.
1〜3mmであり、より好ましくは平行な溝の幅が0〜
3mm、直交する溝の幅が0.3〜3mmである。な
お、水平偏波の場合は水平方向の溝の幅は零でもよく、
垂直偏波の場合は垂直方向の溝の幅は零でもよいものと
なり、ストライプ状でも、格子状でもよいものである。
That is, preferably, the width of the groove parallel to the electric field direction of the incoming radio wave is 0 to 3 mm, and the width of the groove orthogonal thereto is 0.
1 to 3 mm, more preferably the width of the parallel grooves is 0 to
The width of the groove is 3 mm and the orthogonal groove is 0.3 to 3 mm. In the case of horizontal polarization, the width of the horizontal groove may be zero,
In the case of vertically polarized waves, the width of the groove in the vertical direction may be zero, and may be stripe or lattice.

【0012】さらについで、ストライプ状の幅の下限に
ついては、例えば上述した通常の高断熱品のものでは、
日射透過率が約5〜30%程度であり、電波の周波数が
200MHzの場合、前記溝の幅が0.5mmであれ
ば、ストライプの幅が約3mm程度まで断熱効果が期待
できることとなり、例えばストライプの分割幅の範囲は
波長λの2/1000〜1/30程度となる。仮に前記
溝の幅をさらに小さくすれば、この下限はさらに小さく
なる。一方、前記溝の幅を小さくし過ぎると、TV放送
帯は高周波であるため、Maxwellの定義した変位
電流により、前記溝のギャップを電流が飛び越え、電気
的には断熱膜は連続体となってしまうという現象があ
る。しかし、レーザで加工できる前記溝幅約0.05m
m程度で、例えば到来電波が周波数10GHzの高周波
でも、前記溝の役目を果たし、該到来電波を透過した。
Further, with respect to the lower limit of the stripe width, for example, in the case of the above-mentioned ordinary high heat insulating product,
When the solar radiation transmittance is about 5 to 30% and the frequency of the radio wave is 200 MHz, if the width of the groove is 0.5 mm, a heat insulating effect can be expected up to a stripe width of about 3 mm. The range of the division width is about 2/1000 to 1/30 of the wavelength λ. If the width of the groove is made smaller, this lower limit becomes smaller. On the other hand, if the width of the groove is too small, the TV broadcasting band has a high frequency, so the current jumps over the gap of the groove due to the displacement current defined by Maxwell, and the insulating film electrically becomes a continuous body. There is a phenomenon of being lost. However, the groove width that can be processed by laser is about 0.05m
At about m, for example, even when the incoming radio wave has a high frequency of 10 GHz, it functions as the groove and transmits the incoming radio wave.

【0013】[0013]

【作用】本発明者らは、断熱ガラスなどの電波に対する
反射率の高い板状体が惹起する電波障害を極力低減すべ
く鋭意研究した結果、基板に被覆する特定の高熱線反射
の膜、フイルムもしくは板状体を、特異に分割すること
に着目して本発明をなしたものである。上述したよう
に、到来電波の電界方向に平行な辺の長さ(L)を、電
波の波長λの1/20倍以下に分割することで、素板ガ
ラスにより近い値の低電波反射率ガラスとなり、反射量
が格段に低下することがわかり、周波数が90MHzの
TV放送波VHF帯から周波数が770MHzのTV放
送波UHF帯全域まで同様の傾向があるものである。
The inventors of the present invention have made earnest studies to reduce the radio wave interference caused by a plate having a high reflectance for radio waves such as a heat insulating glass, and as a result, as a result, a specific high heat ray reflective film or film for coating a substrate. Alternatively, the present invention is made paying attention to the unique division of the plate-shaped body. As described above, by dividing the length (L) of the side parallel to the electric field direction of the incoming radio wave to 1/20 times or less of the wavelength λ of the radio wave, a low radio wave reflectance glass having a value closer to that of the base plate glass is obtained. It is found that the amount of reflection is significantly reduced, and there is a similar tendency from the TV broadcast wave VHF band of 90 MHz to the entire TV broadcast wave UHF band of 770 MHz.

【0014】このことは次のような理由に起因するもの
と思われる。すなわち、任意の散乱体に平面波が入射す
ると、散乱体には導電電流または分極電流が流れ、これ
が2次的な放射源となって電磁波を発生し、電磁波を反
射する。実際には電子が散乱体の端から端まで動くので
はなく、入射電磁波の周波数に同調して、ある点で電子
が振動しているだけである。このような電子の振動によ
って生じた電子濃度の高い部位が移動する。これが電磁
波を反射させる要因になるもので、板状体等を分割して
L/λを小さくすることにより、電子が自由に移動でき
る領域が狭くなりこの結果、単位面積あたりの反射量が
低下するものと推定される。
This is considered to be due to the following reasons. That is, when a plane wave is incident on an arbitrary scatterer, a conductive current or a polarization current flows through the scatterer, which serves as a secondary radiation source to generate an electromagnetic wave and reflect the electromagnetic wave. Actually, the electrons do not move from end to end of the scatterer, but only tuned to the frequency of the incident electromagnetic wave and the electrons oscillate at a certain point. A site having a high electron concentration generated by such electron vibration moves. This is a factor that reflects electromagnetic waves, and by dividing the plate-like body or the like to reduce L / λ, the region where electrons can move freely becomes narrower, and as a result, the amount of reflection per unit area decreases. It is estimated that

【0015】また、厚さx(m)の導電性の膜あるいは
フイルム等に周波数がfの電波を垂直方向に照射する
と、電波の透過度EはE=exp(ーαx)となる。こ
こで、αは導電性の膜の減衰定数でα=4.82・π・
1/2 と表されるので、例えばxを500Å、fを10
0MHzとすると透過度Eは0.93となりほとんど吸
収されず、かつ分割することによって反射量も低減され
ているので、電波を効率よく透過することがわかる。こ
れらによって、素板ガラスにより近似した到来電波の電
波反射率となるものである。
When a radio wave having a frequency of f is vertically radiated to a conductive film or film having a thickness of x (m), the radio wave transmittance E becomes E = exp (-αx). Here, α is the attenuation constant of the conductive film, and α = 4.82 · π ·
Since it is expressed as f 1/2 , for example, x is 500Å and f is 10
When the frequency is 0 MHz, the transmittance E is 0.93, which is hardly absorbed, and the amount of reflection is reduced by dividing, so that it is understood that the radio waves are efficiently transmitted. By these, the radio wave reflectance of the incoming radio wave becomes closer to that of the base glass.

【0016】一方、断熱性能は、比較的電波反射率の高
い、特定の表面抵抗率を有する特異な薄膜を用いて、現
行の高性能断熱ガラスに、出来るだけ限り無く近い断熱
効果を発現するようにし、現行の高性能断熱ガラスと同
等の品位とすることができるようになるものである。す
なわち、現行の高性能断熱ガラスでは、電波障害を解決
しずらいものを解決し、TV画像におけるゴースト現象
を解消し、冷暖房における負荷を低減し、しかも現行の
高性能断熱ガラスの薄膜をそのまま利用できて同色系色
調とでき、環境に優しい、居住性に優れる電波低反射特
性を有する熱線反射ガラスを提供するものである。
On the other hand, as for the heat insulating performance, a unique thin film having a relatively high radio wave reflectance and a specific surface resistivity is used so as to exhibit a heat insulating effect as close as possible to the existing high-performance heat insulating glass. In addition, it will be possible to achieve the same quality as the current high-performance insulating glass. In other words, with the current high-performance insulating glass, it is possible to solve problems that are difficult to solve radio interference, eliminate the ghost phenomenon in TV images, reduce the load on cooling and heating, and use the thin film of the current high-performance insulating glass as it is. The present invention provides a heat ray reflective glass which has the same color tone, is environmentally friendly, and has excellent habitability and low radio wave reflection characteristics.

【0017】[0017]

【実施例】以下、図面を参照しながら、本発明の一実施
例を詳細に説明する。図1および図2は本発明を実施し
た電波低反射特性を有する熱線反射ガラスの一部を表す
斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. 1 and 2 are perspective views showing a part of a heat ray reflective glass having a radio wave low reflection characteristic embodying the present invention.

【0018】すなわち、基板1として約520mm角、
板厚約10mmのフロートガラスを用い、この板ガラス
にDCマグネトロンスパッタリング法で、断熱性能を有
する膜をコーティングした例について説明する。なお、
前記断熱性能を有するコーティング膜は、金属チタンを
ターゲットとして、約10-3Torrに減圧された窒素
ガス(但し、アルゴンガスと窒素ガスの流量比が0/1
〜1/1の範囲)中で、膜の表面抵抗率が約3Ω/口、
約50Ω/口、約100Ω/口、約350Ω/口、約5
00Ω/口、約1000Ω/口の6種類の熱線反射ガラ
スを作製した。
That is, the substrate 1 is about 520 mm square,
An example will be described in which a float glass having a plate thickness of about 10 mm is used, and the plate glass is coated with a film having a heat insulating property by a DC magnetron sputtering method. In addition,
The coating film having the heat insulating property is a nitrogen gas whose target is metallic titanium and is depressurized to about 10 −3 Torr (however, the flow rate ratio of the argon gas to the nitrogen gas is 0/1.
The surface resistivity of the film is about 3 Ω / port,
About 50Ω / mouth, about 100Ω / mouth, about 350Ω / mouth, about 5
Six types of heat ray-reflecting glass having 00 Ω / mouth and about 1000 Ω / mouth were produced.

【0019】次に、上記のスパッタ膜をYAGレーザで
約0.5mm程度の分割溝(D)であるスリット幅で切
断し、図1に示すように、膜2のストライプ幅(L+
D)が約25mm、約50mm、約100mm、約15
0mmのストライプ状パッチから成る熱線反射ガラス板
をそれぞれ作製した。上記熱線反射ガラス板を、隣接す
るシールドルームの共有する壁に約500mm角の窓を
くり抜き、前記熱線反射ガラス板の周囲約25mm程度
(例えば20〜30mm)を絶縁し、垂直にした状態で
固定し取り付けた。該取付け状態で、上記した各熱線反
射ガラス板に対し、周波数200MHzの水平偏波を照
射し、シールド効果を測定したところ、表1に示すよう
な効果が得られた。
Next, the above-mentioned sputtered film is cut by a YAG laser with a slit width which is a dividing groove (D) of about 0.5 mm, and as shown in FIG. 1, the stripe width (L +
D) is about 25 mm, about 50 mm, about 100 mm, about 15
Each heat ray reflective glass plate composed of a 0 mm striped patch was produced. The heat ray reflecting glass plate is fixed in a state in which a window of about 500 mm square is hollowed out in a wall shared by adjacent shield rooms, and about 25 mm (for example, 20 to 30 mm) around the heat ray reflecting glass plate is insulated and made vertical. I installed it. In the attached state, each of the above-mentioned heat ray reflective glass plates was irradiated with horizontal polarized waves having a frequency of 200 MHz and the shield effect was measured, and the effects as shown in Table 1 were obtained.

【表1】 [Table 1]

【0020】表1から明らかなように、表面抵抗率が約
50Ω/口の熱線反射膜をストライプ状に分割したガラ
スのシールド効果は表面抵抗率約500Ω/口の熱線反
射膜を全面に被覆したものとほぼ同等である。すなわ
ち、例えば本実施例から、ストライプ状に分割すること
により、比較的低表面抵抗の膜で日射透過率を約6%程
度に維持しながら、全面被覆した日射透過率が約50%
程度の比較的高表面抵抗のものに相当するまで、電波反
射量を低減できることとなる。さらに前述したように、
例えば建築用の熱線反射ガラスでは、効率よく熱線を遮
蔽するには、日射透過率等の熱的性質の制約から日射透
過率として、少なくとも約30〜40%程度は必要であ
り、また例えば太陽光は、薄膜中の自由電子のプラズマ
振動によって反射されるので、日射透過率も薄膜の表面
抵抗に支配され、仮に日射透過率を約30%程度確保す
るには、被覆膜の表面抵抗率が約350Ω/口以下であ
ることが必要である等を、充分満足するものである。
As is clear from Table 1, the shielding effect of the glass obtained by dividing the heat ray reflective film having a surface resistivity of about 50 Ω / port into stripes was obtained by coating the entire surface with the heat ray reflective film having a surface resistivity of about 500 Ω / port. It is almost the same as the one. That is, for example, according to the present embodiment, by dividing the film into stripes, while maintaining the solar radiation transmittance of about 6% with a film having a relatively low surface resistance, the solar radiation transmittance coated on the entire surface is about 50%.
The amount of radio wave reflection can be reduced to a level corresponding to a relatively high surface resistance. Furthermore, as mentioned above,
For example, in heat ray reflective glass for construction, in order to efficiently shield heat rays, at least about 30 to 40% is required as the solar radiation transmittance due to the restriction of thermal properties such as solar radiation transmittance. Is reflected by the plasma oscillation of free electrons in the thin film, so the solar radiation transmittance is also governed by the surface resistance of the thin film. To secure the solar radiation transmittance of about 30%, the surface resistivity of the coating film is It is sufficiently satisfied that it is required to be about 350 Ω / port or less.

【0021】なお、本実施例におけるスパッタリング膜
の厚みは約300Å程度であり、該薄膜では電波の吸収
はほとんど無視できる程度であって、シールド効果の減
少は電波反射率が低下した結果、生じた現象である。な
おまた、本発明はこれら好適な前記実施例に限定される
ものではなく、種々の応用が可能である。
The thickness of the sputtered film in this embodiment is about 300Å, the absorption of radio waves is almost negligible in the thin film, and the reduction of the shield effect is caused by the reduction of the radio wave reflectance. It is a phenomenon. Furthermore, the present invention is not limited to the preferred embodiments described above, and various applications are possible.

【0022】本発明の基板上に積層される膜あるいはフ
イルム等は、電波低反射のみであれば、表面抵抗率が1
kΩ/口以下のものであれば効果が期待できるが、断熱
性能を充分兼ね備えるものとしては、表面抵抗率が50
0Ω/口以下、好ましくは約400Ω/口以下、より好
ましくは350Ω/口以下の各種の公知の膜、フイルム
等を使用することができる。また、基板上に積層される
板状体は板ガラス、プラスチック等やまたセラミック
ス、コンクリートなどの構築材あるいは反射率が高い金
属などであってもよい。さらに、例えば該高熱線反射膜
を分割し、電波低反射とした表面に、高表面抵抗(例え
ば、表面抵抗率が1kΩ/口以上、好ましくは20kΩ
/口以上)の薄膜を保護膜的に被覆してもよいことは言
うまでもない。
The film or film laminated on the substrate of the present invention has a surface resistivity of 1 if only low reflection of radio waves is present.
An effect can be expected if it is less than or equal to kΩ / port, but a material having a sufficient heat insulating property has a surface resistivity of 50.
Various known films, films and the like having a resistance of 0 Ω / port or less, preferably about 400 Ω / port or less, and more preferably 350 Ω / port or less can be used. Further, the plate-like body laminated on the substrate may be plate glass, plastic or the like, or a building material such as ceramics or concrete, or a metal having a high reflectance. Furthermore, for example, the high heat ray reflective film is divided into a low radio wave reflection surface, and a high surface resistance (for example, a surface resistivity of 1 kΩ / port or more, preferably 20 kΩ
It is needless to say that a thin film (/ port or more) may be coated as a protective film.

【0023】また、これらの到来電波の電界方向に平行
な辺の長さは、反射率低減の対象となる電波の周波数に
応じて、TV放送波VHF帯(90MHz〜220MH
z)までの場合には、例えば周波数90MHzで波長
(3333mm)/20であれば約167mm、波長
(3333mm)/30であれば約111mmであり、
周波数220MHzで波長(1364mm)/20であ
れば約68mm、波長(1364mm)/30であれば
約45mmであり、さらに、TV放送波UHF帯(47
0MHz〜770MHz)までの場合には、例えば周波
数470MHzで波長(638mm)/20であれば約
32mm、波長(638mm)/30であれば約21m
mであり、周波数770MHzで波長(390mm)/
20であれば約19mm、波長(390mm)/30で
あれば約13mmとすればよい。
The length of the side parallel to the electric field direction of these incoming radio waves depends on the frequency of the radio waves whose reflectance is to be reduced, and the TV broadcast wave VHF band (90 MHz to 220 MH).
up to z), for example, at a frequency of 90 MHz and a wavelength (3333 mm) / 20, it is about 167 mm, and a wavelength (3333 mm) / 30 is about 111 mm,
At a frequency of 220 MHz and a wavelength (1364 mm) / 20, the distance is about 68 mm, and at a wavelength (1364 mm) / 30, the distance is about 45 mm. Further, the TV broadcast wave UHF band (47
In the case of 0 MHz to 770 MHz), for example, at a frequency of 470 MHz, a wavelength (638 mm) / 20 is about 32 mm, and a wavelength (638 mm) / 30 is about 21 m.
m, the frequency is 770 MHz and the wavelength is (390 mm) /
If it is 20, it may be about 19 mm, and if it is a wavelength (390 mm) / 30, it may be about 13 mm.

【0024】基板としては、無色あるいは有色を問わ
ず、平板、曲げ板ガラス、ならびに強度アップまたは強
化ガラス等の各種のガラス以外にも、分割される膜、フ
イルムあるいは板状体より電波反射率の低いものであれ
ばよく、プラスチック等の有機質、無機質など各種のも
のを採用することができる。
The substrate may be colorless or colored, and may be flat glass, bent glass, or various types of glass such as strengthened or strengthened glass, and may have a lower radio wave reflectance than a divided film, film or plate. Any material may be used, and various materials such as organic materials such as plastics and inorganic materials can be adopted.

【0025】[0025]

【発明の効果】本発明の電波低反射特性を有する熱線反
射ガラスは、比較的電波反射率の高い、表面抵抗率が5
00Ω/口以下の比較的表面抵抗率の低い膜等の部分を
分割し、到来電波の電界方向に平行な辺の長さを電波の
波長λの1/20倍以下とし、日射透過率を50%以下
とすることにより、電波反射率を低減させ、素板ガラス
と出来るだけ近似した電波反射率とし、電波障害を極力
少なくするとともに、断熱効果を現行の高断熱品に出来
るだけ近似した断熱性能とし、しかも同色系色調とする
ことができるものである。 したがって、ビル等の建築
物の窓等において、電波が到来する窓面に本発明の例え
ば断熱性能を有する電波低反射特性を有する熱線反射ガ
ラスを配設し、その他の部分に分割しない同種の熱線反
射ガラスを配設すれば、建築物全体がより高断熱効果を
奏するとともに、同じ色調とすることができるので美観
上も好ましいものとなるものである。
The heat ray reflective glass of the present invention having a low radio wave reflection characteristic has a relatively high radio wave reflectance and a surface resistivity of 5.
Divide a part such as a film having a relatively low surface resistivity of 00 Ω / port or less, and set the length of the side parallel to the electric field direction of the incoming radio wave to 1/20 times the wavelength λ of the radio wave or less, and the solar radiation transmittance to 50 % Or less, the radio wave reflectance is reduced, and the radio wave reflectance is as close as possible to the bare plate glass to minimize radio wave interference, and the heat insulation effect is as close as possible to the current high heat insulation product. In addition, it is possible to have the same color tone. Therefore, in a window or the like of a building such as a building, a heat ray reflective glass of the present invention, which has a low radio wave reflection characteristic having, for example, heat insulation performance, is disposed on the window surface from which radio waves arrive, and the same type of heat ray that is not divided When the reflective glass is provided, the entire building exhibits a higher heat insulating effect and the same color tone can be obtained, which is aesthetically preferable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるストライプ型パッチ状
膜付き電波低反射特性を有する熱線反射ガラスの一部を
表す斜視図。
FIG. 1 is a perspective view showing a part of a heat ray reflective glass having a radio wave low reflection characteristic with a striped patch film according to an embodiment of the present invention.

【図2】本発明の他の実施例である正方形パッチ状膜付
き電波低反射特性を有する熱線反射ガラスの一部を表す
斜視図。
FIG. 2 is a perspective view showing a part of a heat ray reflection glass having a radio wave low reflection characteristic with a square patch film according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 膜 3 スリット 1 substrate 2 film 3 slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板に、熱線反射率が高い膜、フイルム
もしくは板状体が積層された熱線反射ガラスにおいて、
該膜、フイルムもしくは板状体の表面抵抗率が500Ω
/口以下であって、かつ該膜、フイルムもしくは板状体
の到来電波の電界方向に平行な辺の長さを、前記電波の
波長λの1/20倍以下になるように分割して分割溝を
形成するとともに、日射透過率を50%以下としたこと
を特徴とする電波低反射特性を有する熱線反射ガラス。
1. A heat-reflecting glass comprising a substrate, a film having a high heat-reflecting rate, a film, or a plate-shaped body laminated on the substrate,
The surface resistivity of the film, film or plate is 500Ω.
The length of a side of the film, film or plate which is parallel to the electric field direction of the incoming radio wave is divided by dividing it into 1/20 times or less of the wavelength λ of the radio wave. A heat ray reflective glass having a low radio wave reflection characteristic, which is characterized by forming a groove and having a solar radiation transmittance of 50% or less.
【請求項2】 前記分割溝については、到来電波の電界
方向に、平行な溝の幅が0〜5mm、直交する溝の幅が
0.05〜5mmであることを特徴とする請求項1記載
の電波低反射特性を有する熱線反射ガラス。
2. The division groove is characterized in that the width of the parallel groove is 0 to 5 mm and the width of the orthogonal groove is 0.05 to 5 mm in the electric field direction of the incoming radio wave. Heat ray reflection glass with low radio wave reflection characteristics.
【請求項3】 前記分割形状がストライプ状あるいは格
子状であることを特徴とする請求項1記載の電波低反射
特性を有する熱線反射ガラス。
3. The heat ray reflective glass having low radio wave reflection characteristics according to claim 1, wherein the divided shape is a stripe shape or a lattice shape.
JP3215609A 1991-08-13 1991-08-27 Heat reflection glass with low radio wave reflection characteristics Expired - Fee Related JPH0828592B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3215609A JPH0828592B2 (en) 1991-08-27 1991-08-27 Heat reflection glass with low radio wave reflection characteristics
US07/925,682 US5364685A (en) 1991-08-13 1992-08-07 Laminated panel with low reflectance for radio waves
EP92113758A EP0531734B1 (en) 1991-08-13 1992-08-12 Laminated panel with low reflectance for radio waves
DE69215173T DE69215173T2 (en) 1991-08-13 1992-08-12 Laminated plate with low reflectivity for radio waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215609A JPH0828592B2 (en) 1991-08-27 1991-08-27 Heat reflection glass with low radio wave reflection characteristics

Publications (2)

Publication Number Publication Date
JPH0550548A true JPH0550548A (en) 1993-03-02
JPH0828592B2 JPH0828592B2 (en) 1996-03-21

Family

ID=16675260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215609A Expired - Fee Related JPH0828592B2 (en) 1991-08-13 1991-08-27 Heat reflection glass with low radio wave reflection characteristics

Country Status (1)

Country Link
JP (1) JPH0828592B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195034B1 (en) 1997-03-31 2001-02-27 Nippon Sheet Glass Co., Ltd. Radio wave absorbing panel
US6870702B2 (en) 2001-09-13 2005-03-22 Funai Electric Co., Ltd. Height adjusting mechanism for a tape guide pin and tape device
DE19508042B4 (en) * 1994-03-07 2008-05-21 Nippon Sheet Glass Co., Ltd. For electromagnetic radiation permeable and heat-reflecting coating and associated manufacturing process and use
JP2010068154A (en) * 2008-09-09 2010-03-25 Asahi Glass Co Ltd Heat-ray reflecting glass
KR101307639B1 (en) * 2009-08-26 2013-09-12 도카이 고무 고교 가부시키가이샤 Transparent laminate film and method for producing same
JP2013208718A (en) * 2012-03-30 2013-10-10 Tokai Rubber Ind Ltd Transparent laminated film
JP2015205795A (en) * 2014-04-21 2015-11-19 王子ホールディングス株式会社 Heat ray-shielding glass laminate
JP2017056588A (en) * 2015-09-15 2017-03-23 大日本印刷株式会社 Radio wave-transmitting infrared reflective laminate, closing member, and method for manufacturing radio wave-transmitting infrared reflective laminate
JPWO2020054762A1 (en) * 2018-09-14 2021-09-16 Agc株式会社 Radio wave transmissive board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508042B4 (en) * 1994-03-07 2008-05-21 Nippon Sheet Glass Co., Ltd. For electromagnetic radiation permeable and heat-reflecting coating and associated manufacturing process and use
US6195034B1 (en) 1997-03-31 2001-02-27 Nippon Sheet Glass Co., Ltd. Radio wave absorbing panel
US6504501B2 (en) 1997-03-31 2003-01-07 Nippon Sheet Glass Co., Ltd. Radio wave absorbing panel
US6870702B2 (en) 2001-09-13 2005-03-22 Funai Electric Co., Ltd. Height adjusting mechanism for a tape guide pin and tape device
JP2010068154A (en) * 2008-09-09 2010-03-25 Asahi Glass Co Ltd Heat-ray reflecting glass
KR101307639B1 (en) * 2009-08-26 2013-09-12 도카이 고무 고교 가부시키가이샤 Transparent laminate film and method for producing same
JP2013208718A (en) * 2012-03-30 2013-10-10 Tokai Rubber Ind Ltd Transparent laminated film
JP2015205795A (en) * 2014-04-21 2015-11-19 王子ホールディングス株式会社 Heat ray-shielding glass laminate
JP2017056588A (en) * 2015-09-15 2017-03-23 大日本印刷株式会社 Radio wave-transmitting infrared reflective laminate, closing member, and method for manufacturing radio wave-transmitting infrared reflective laminate
JPWO2020054762A1 (en) * 2018-09-14 2021-09-16 Agc株式会社 Radio wave transmissive board

Also Published As

Publication number Publication date
JPH0828592B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US5364685A (en) Laminated panel with low reflectance for radio waves
US6504501B2 (en) Radio wave absorbing panel
ES2307791T3 (en) SUBSTRATE COVERED WITH A SELECTIVE FREQUENCY SURFACE.
US6689256B2 (en) Frequency selective plate and method for producing same
JP2003069282A (en) Specified electromagnetic wave transmitting plate
JPH0550548A (en) Thermal ray-reflecting glass with radio wave-low reflecting property
JP3454422B2 (en) Radio wave transmitting wavelength selective substrate and its manufacturing method
RU2610079C2 (en) Radar reflection damping glazing
JPH0542623A (en) Laminated sheet having low radio reflectivity characteristic
JPH0640752A (en) Radio wave transmissive and heat ray reflecting glass for vehicle
JP2862452B2 (en) Heat ray reflective glass with radio wave transmission characteristics
JP2002151885A (en) Radio wave absorbing panel and method for manufacturing the same
KR100886064B1 (en) Electromagnetic wave absorbing plate
WO2004091904A1 (en) Radio wave-transmitting wavelength-selective plate and method for producing same
US11677142B2 (en) Glazing unit with a housing
WO2021176294A1 (en) Glazing unit
JP2002076671A (en) Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP2002076678A (en) Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP2002076679A (en) Electromagnetic wave absorber
JP2006110808A (en) Radio-wave transmissible wavelength selection plate
KR102579285B1 (en) Glass Window Device for Selective Transmission of Electromagnetic Waves
JP7479734B1 (en) Radio-wave-transmitting heat-shielding double-glazed glass
WO2024084748A1 (en) Radio wave transmission-type heat-shielding multilayer glass
US20230006329A1 (en) Glazing unit with a housing
JP2000344547A (en) Production of base plate having transmissibility to radio waves and wavelength selectivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees