JP2006110808A - Radio-wave transmissible wavelength selection plate - Google Patents

Radio-wave transmissible wavelength selection plate Download PDF

Info

Publication number
JP2006110808A
JP2006110808A JP2004299251A JP2004299251A JP2006110808A JP 2006110808 A JP2006110808 A JP 2006110808A JP 2004299251 A JP2004299251 A JP 2004299251A JP 2004299251 A JP2004299251 A JP 2004299251A JP 2006110808 A JP2006110808 A JP 2006110808A
Authority
JP
Japan
Prior art keywords
fine particles
wavelength selection
radio wave
selection plate
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299251A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakajima
弘 中嶋
Atsushi Takamatsu
敦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004299251A priority Critical patent/JP2006110808A/en
Publication of JP2006110808A publication Critical patent/JP2006110808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio-wave transmissible wavelength selection plate suitable as window glass for an automobile and window glass for a building, which is constituted so as to reduce the reflectivity against the radio wave of the frequency band of TV broadcasting, satellite broadcasting and a portable telephone and as a sufficient solar radiation shielding capacity and a visible light transmissivity reduced in irregular reflection and excellent in perspective properties. <P>SOLUTION: The radio-wave transmissible wavelength selection plate is constituted by forming a transparent dielectric layer on a transparent substrate and forming Ag fine particles 1 on the transparent dielectric layer and characterized in that each of the Ag fine particles has apex parts at least at two places, the height of the apex parts is 8-150 nm, the diameter of the circumcircle of the Ag fine particles is 100-600 nm and the ratio of the coating area of the Ag fine particles to the surface area of the transparent substrate is 0.2-0.8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建造物、自動車などの窓ガラスに到来する電波および可視光線を効
率よく透過させることができるとともに、太陽の熱線を反射して充分な断熱性を
発揮する電波透過性波長選択板の作製法に関する。
The present invention is a radio wave transmission wavelength selection plate that can efficiently transmit radio waves and visible light arriving on a window glass of a building, an automobile, etc., and exhibit sufficient heat insulation by reflecting solar heat rays. It relates to a manufacturing method.

近年、日射を遮蔽することを目的として、導電性薄膜を被覆した窓ガラス、または導電性薄膜を塗布したフィルムを貼り付けた窓ガラスが普及し始めた。   In recent years, for the purpose of shielding solar radiation, a window glass coated with a conductive thin film or a window glass attached with a film coated with a conductive thin film has begun to spread.

このような窓ガラスを高層ビルに施工すると、TV周波数帯域の電波を反射して、TV画面にゴーストを発生させる原因となる。さらに、屋内に設けたアンテナを用いて衛星放送を受信することが、困難となる。   If such a window glass is constructed in a high-rise building, it will cause radio waves in the TV frequency band to be reflected and cause ghosts on the TV screen. Furthermore, it becomes difficult to receive satellite broadcasts using an antenna provided indoors.

また、住宅用窓ガラス或いは自動車用窓ガラスとして用いた場合には、携帯電話による通信が困難となる恐れがある。 また、室内アンテナや車両の窓ガラスに設けられたガラスアンテナの利得を低下させる原因となった。   Further, when used as a window glass for a house or a window glass for an automobile, communication by a mobile phone may be difficult. Moreover, it became the cause of reducing the gain of the glass antenna provided in the indoor antenna and the window glass of the vehicle.

このような事情から、現状では、ガラス基板に電気抵抗の比較的高い透明な熱線反射膜を被覆して、可視光線の一部を透過させるとともに電波の反射を低減させて電波障害を防止することが行なわれている。   Under such circumstances, at present, a transparent heat ray reflective film having a relatively high electrical resistance is coated on a glass substrate to transmit a part of visible light and reduce radio wave reflection to prevent radio interference. Has been done.

例えば、導電性膜付きガラスの場合には、ガラス基板に被覆させた導電性膜を、入射電波の電界方向に平行な導電性膜の長さを電波の波長の1/20倍以下になるように分割し、電波障害を防止することが知られている(特許文献1)。   For example, in the case of glass with a conductive film, the length of the conductive film parallel to the direction of the electric field of the incident radio wave is 1/20 times or less the wavelength of the radio wave. It is known to divide into two to prevent radio interference (Patent Document 1).

しかしながら、前記の電気抵抗の比較的高い透明な熱線反射膜を被覆する方法は、電波の反射を低減して電波障害を防止することは出来るが、熱線遮蔽性能が十分ではなく、生活の快適性において問題があった。   However, the method of coating a transparent heat ray reflective film having a relatively high electrical resistance can reduce radio wave reflection and prevent radio wave interference, but the heat ray shielding performance is not sufficient, and the comfort of life. There was a problem.

また、特許文献1には、導電性膜を分割する方法が示されている。分割する長さが太陽光の大部分を占める可視光、近赤外光の波長より非常に大きいので、これらの光は全て反射してしまい、電波障害を防止し充分な日射遮蔽性能を有する電波透過性波長選択スクリーンガラスは得られるが、可視光の透過性が確保できないという問題がある。さらに、開口部のサイズが2m×3mのように大きな窓では、例えば、衛星放送波を透過させるためには、衛星放送の波長約25mmの1/20、少なくとも導電膜を1.25mm平方に、好ましくは0.5mm平方に切断しなければならない。大面積の導電性膜をこのような小さいセグメントに、例えば、イットリウム−アルミニウム−ガーネットレーザで切断するには、長時間を要し現実的でない等の問題があった。   Patent Document 1 discloses a method of dividing a conductive film. The splitting length is much larger than the wavelengths of visible light and near-infrared light that occupy most of the sunlight, so all of this light is reflected, preventing radio interference and having sufficient solar radiation shielding performance. Although a transmissive wavelength selective screen glass can be obtained, there is a problem in that visible light transparency cannot be secured. Furthermore, in a large window such as the size of the opening of 2 m × 3 m, for example, in order to transmit satellite broadcast waves, 1/20 of the wavelength of satellite broadcast is about 1/20, at least the conductive film is 1.25 mm square, Preferably it must be cut to 0.5 mm square. In order to cut a large-area conductive film into such small segments with, for example, an yttrium-aluminum-garnet laser, there is a problem that it takes a long time and is not practical.

そこで、本発明者等は、透明基板にAgでなる微粒子を形成した電波透過性波長選択板を提案した(特許文献2)。   Therefore, the present inventors have proposed a radio wave transmission wavelength selection plate in which fine particles made of Ag are formed on a transparent substrate (Patent Document 2).

特許文献2に示すような、粒状のAgを透明基板に形成してなる電波透過性波長選択ガラスにおいて、(1)式で定義する近赤外線遮蔽係数(Es)を高くするために、分光反射率の最大となる波長(以下、共振波長と略す)を600nm〜1500nmの範囲にシフトさせると、全波長域において、分光反射率が低くなるという不具合が生じた。   In the radio wave transmission wavelength selection glass formed by forming granular Ag on a transparent substrate as shown in Patent Document 2, in order to increase the near-infrared shielding coefficient (Es) defined by the equation (1), the spectral reflectance is increased. When the maximum wavelength (hereinafter abbreviated as the resonance wavelength) is shifted to a range of 600 nm to 1500 nm, there is a problem that the spectral reflectance is lowered in the entire wavelength region.

Figure 2006110808
Figure 2006110808

ここで、λ:膜面に入射する電磁波の波長
Rdp:波長λにおける膜面の反射率
特開平6−40752号公報 特開2000−281388号公報
Where λ is the wavelength of the electromagnetic wave incident on the film surface
Rdp: reflectance of film surface at wavelength λ
JP-A-6-40752 JP 2000-281388 A

本発明者等は、上記の不具合は、微粒子の底面が占める面積の割合(以下、面積比と略す)が0.25程度と小さいことに原因があることを見出し、面積比を増大させるために、透明基板表面のAg微粒子にAg層を積層した後、加熱処理を行い、Ag微粒子の周囲にAgのみでなる微粒子を形成する方法を特願2003−107752号で提案した。 In order to increase the area ratio, the present inventors have found that the above-mentioned problem is caused by the small proportion of the area occupied by the bottom surface of the fine particles (hereinafter abbreviated as area ratio) of about 0.25. Japanese Patent Application No. 2003-107752 proposes a method in which an Ag layer is laminated on Ag fine particles on the surface of a transparent substrate and then heat treatment is performed to form fine particles made of only Ag around Ag fine particles.

特願2003−107752号の提案では、Ag微粒子を透明基板に形成してなる電波透過性波長選択ガラスにおいて、近赤外線遮蔽係数(Es)を高くするために、分光反射率の最大となる波長(以下、共振波長と略す)を600nm〜1500nmの範囲にする必要があり、Ag微粒子の粒径を大きくしていたが、Ag微粒子の粒径を大きくすると、乱反射が発生して、ヘーズ値が高くなるという不具合があった。   In the proposal of Japanese Patent Application No. 2003-107752, in a radio wave transmission wavelength selection glass formed by forming Ag fine particles on a transparent substrate, a wavelength (maximum spectral reflectance) in order to increase the near-infrared shielding coefficient (Es) ( In the following, the abbreviated resonance wavelength is required to be in the range of 600 nm to 1500 nm, and the particle size of the Ag fine particles has been increased. There was a problem of becoming.

本発明の電波透過性波長選択板は、透明基板にAg微粒子の層が形成されてなる電波透過性波長選択板において、透明基板に誘電体層が形成され、該透明誘電体層の上にAg微粒子が形成されてなり、、該Ag微粒子が少なくとも2カ所以上の頂点部を有し、頂点部の高さが8〜150nmの範囲にあり、Ag微粒子の外接円の直径が100nm〜600nmの範囲にあり、透明基板の表面面積に対するAg微粒子の被覆面積の割合が0.2〜0.8の範囲であることを特徴とする電波透過性波長選択板である。   The radio wave transmission wavelength selection plate of the present invention is a radio wave transmission wavelength selection plate in which a layer of Ag fine particles is formed on a transparent substrate. A dielectric layer is formed on the transparent substrate, and Ag is formed on the transparent dielectric layer. Fine particles are formed, the Ag fine particles have at least two vertex portions, the height of the vertex portions is in the range of 8 to 150 nm, and the diameter of the circumscribed circle of the Ag fine particles is in the range of 100 nm to 600 nm. In the radio wave transmission wavelength selection plate, the ratio of the coated area of the Ag fine particles to the surface area of the transparent substrate is in the range of 0.2 to 0.8.

また、本発明の電波透過性波長選択板は、前記電波透過性波長選択板において、Ag微粒子に3カ所以上の頂点部を有する場合は、該Ag微粒子における一つの頂点部と該頂点部に隣接する2つの頂点部とを結ぶ2つの直線のなす角度が60度以上であることを特徴とする電波透過性波長選択板である。   Further, in the radio wave transmission wavelength selection plate of the present invention, when the Ag fine particle has three or more apex portions in the radio wave transmission wavelength selection plate, one apex portion of the Ag fine particle is adjacent to the apex portion. The radio wave transmission wavelength selection plate is characterized in that an angle formed by two straight lines connecting two vertex portions is 60 degrees or more.

また、本発明の電波透過性波長選択板は、前記電波透過性波長選択板において、式(2)で定義する乱反射比(Hr)を0.1以下とすることを特徴とする電波透過性波長選択板である。   The radio wave transmission wavelength selection plate of the present invention is characterized in that, in the radio wave transmission wavelength selection plate, the diffuse reflection ratio (Hr) defined by the equation (2) is 0.1 or less. It is a selection board.

Figure 2006110808
Figure 2006110808

ここで、Rnは波長550nmにおけるAg微粒子層側の正反射率であり、Rtは波長550nmにおけるAg微粒子層側の乱反射を含む反射率
また、本発明の電波透過性波長選択板は、前記電波透過性波長選択板において、Ag微粒子から成る層の表面に電磁波が入射し、近赤外線遮蔽係数(Es)を0.3以上とすることを特徴とする電波透過性の波長選択板である。
Here, Rn is a regular reflectance on the Ag fine particle layer side at a wavelength of 550 nm, Rt is a reflectance including irregular reflection on the Ag fine particle layer side at a wavelength of 550 nm, and the radio wave transmission wavelength selection plate of the present invention is the radio wave transmission plate. An electromagnetic wave wavelength selective plate, wherein the electromagnetic wave is incident on the surface of the layer made of Ag fine particles, and the near infrared ray shielding coefficient (Es) is set to 0.3 or more.

本発明による電波透過性波長選択板は、TV放送、衛星放送、携帯電話それぞれの周波数帯域の電波に対して反射率を低減させるとともに、充分な日射遮蔽性能と乱反射の少ない透視性に優れた可視光線透過性を有する、自動車用窓ガラス、建築用窓ガラスとして好適な電波透過性波長選択板を提供する。   The radio wave transmission wavelength selection plate according to the present invention reduces the reflectivity with respect to radio waves in the frequency bands of TV broadcast, satellite broadcast, and mobile phone, and has a sufficient solar shading performance and a low visibility and excellent visibility. Provided is a radio wave transmissive wavelength selection plate having light transmittance and suitable as a window glass for automobiles and window glass for buildings.

本発明に用いる透明基板は、ガラス基板、透明セラミック基板、耐熱性透明プラスチック基板等を用いることができ、建物や、車両の開口部に、本発明の電波透過性波長選択板を用いる場合は、ガラス基板が望ましいが、使用する場所等に応じてガラス基板、透明セラミック基板、耐熱性透明プラスチック基板等を選択することが好ましい。   As the transparent substrate used in the present invention, a glass substrate, a transparent ceramic substrate, a heat-resistant transparent plastic substrate or the like can be used, and when the radio wave transmitting wavelength selection plate of the present invention is used for a building or a vehicle opening, Although a glass substrate is desirable, it is preferable to select a glass substrate, a transparent ceramic substrate, a heat-resistant transparent plastic substrate, or the like according to the place of use.

図1は、本発明の電波透過性波長選択板の構成を示す断面図である。有透明基板5の上に透明誘電体層2を形成させ、透明誘電体層2の上にAg微粒子層3が形成される。   FIG. 1 is a cross-sectional view showing a configuration of a radio wave transmission wavelength selection plate of the present invention. The transparent dielectric layer 2 is formed on the transparent substrate 5, and the Ag fine particle layer 3 is formed on the transparent dielectric layer 2.

透明誘電体層2としては、Al、Si、Ti、Ta、Ge、In、W、V、Mn、Cr、Ni、ステンレス鋼のいずれかの金属の窒化物、Al、Si、Zn、Sn、Ti、Ta、Ge、In、W、V、Mn、Cr、Ni、ステンレス鋼のいずれかの金属の酸化物、或いはこれらを多層に積層したもの等を用いることができる。   As the transparent dielectric layer 2, Al, Si, Ti, Ta, Ge, In, W, V, Mn, Cr, Ni, nitride of any metal of stainless steel, Al, Si, Zn, Sn, Ti , Ta, Ge, In, W, V, Mn, Cr, Ni, an oxide of any metal of stainless steel, or a laminate of these in multiple layers can be used.

特に、Al、Siの金属の窒化物、Al、Si、Zn、Sn、Ti、Ta、Inの金属の酸化物は無色透明であるので、可視光透過率の高い電波透過性波長選択板を必要とする建築用、車輌用窓ガラスに好適である。   In particular, Al and Si metal nitrides and Al, Si, Zn, Sn, Ti, Ta, and In metal oxides are colorless and transparent, so a radio wave transmission wavelength selection plate with high visible light transmittance is required. It is suitable for architectural and vehicle window glass.

なお、Ag微粒子上に、さらに透明誘電体層4を被覆すると、透明基板上に成膜した透明誘電体層4との相互作用によって可視光透過率が高められるとともに、Ag粒状層の変質防止等の保護膜としての作用をするのでより好ましく、この場合に用いる透明誘電体層4としては、Al、Siの窒化物、Al、Si、Zn、Sn、Ti、Ta、Inの酸化物または、これらを多層に積層したものが望ましい。   When the transparent dielectric layer 4 is further coated on the Ag fine particles, the visible light transmittance is increased by the interaction with the transparent dielectric layer 4 formed on the transparent substrate, and the Ag granular layer is prevented from being altered. The transparent dielectric layer 4 used in this case is preferably an Al, Si nitride, Al, Si, Zn, Sn, Ti, Ta, In oxide, or these It is desirable to laminate a plurality of layers.

透明誘電体層4を成膜する方法については、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング等の成膜法を用いる。特に、DCマグネトロンスパッタリング法は生成する層の均一性、生産性の点より好ましい。   As a method for forming the transparent dielectric layer 4, a film forming method such as sputtering, vacuum deposition, CVD, or ion plating is used. In particular, the DC magnetron sputtering method is preferable from the viewpoint of the uniformity and productivity of the generated layer.

Ag微粒子は、透明誘電体層2に成膜されたAg膜を加熱することにより、球あるいは楕円体を平面で切り取った形状のAg微粒子が少なくとも2個以上重なり合い、従って2カ所以上の頂点部を有している形状のAg微粒子を形成する。図2の(イ)は、透明基板の法線方向からAg微粒子を観察したときの模式図であり、図1の(ロ)は、(イ)のaa´垂直断面を示す。図1(ロ)のP1、P2はAg微粒子の頂点部を示し、h1、h2はAg微粒子の高さを示す。   Ag fine particles are formed by heating the Ag film formed on the transparent dielectric layer 2 so that at least two Ag fine particles having a shape obtained by cutting out a sphere or an ellipsoid by a plane overlap each other. Ag fine particles having the shape they have are formed. 2A is a schematic diagram when Ag fine particles are observed from the normal direction of the transparent substrate, and FIG. 1B shows a vertical section taken along the line aa ′ of FIG. In FIG. 1B, P1 and P2 indicate the apex portions of the Ag fine particles, and h1 and h2 indicate the height of the Ag fine particles.

Ag微粒子の形状は、図2に示すような球体を平面で切り取った形状の微粒子が合体したものの他に、ドーム状、扁平状、鱗片状、針状の微粒子が合体したものであり、光学的な性能から、球体を平面で切り取った形状、ドーム状、扁平状、鱗片状の形状のAg粒子が重なり合ったような形状のAg微粒子が好ましい。   The shape of the Ag fine particles is a combination of fine particles of a shape obtained by cutting out a sphere as shown in FIG. 2 in a plane, and a combination of dome-shaped, flat, scale-like, and needle-shaped fine particles. From the viewpoint of excellent performance, Ag fine particles having a shape obtained by cutting off a sphere in a plane, a dome shape, a flat shape, or a scale-like Ag particle are preferable.

図3は、3カ所以上の頂点部を有するAg微粒子の例を模式的に示すものである。P5の頂点部に隣接する頂点部はP4とP6であり、頂点部P5に隣接する2つの頂点部を結ぶ2つの直線のなす角度がθである。   FIG. 3 schematically shows an example of Ag fine particles having three or more apexes. The vertex portions adjacent to the vertex portion of P5 are P4 and P6, and the angle formed by two straight lines connecting the two vertex portions adjacent to the vertex portion P5 is θ.

本発明のAg微粒子において、電波透過性能を有する用にするために、θは60度以上とすることが望ましい。   In order that the Ag fine particles of the present invention have radio wave transmission performance, it is desirable that θ be 60 degrees or more.

本発明は、図2に示すAg微粒子の形状制御が容易となり、その結果、本発明の電波透過性波長選択板は、式(1)で定義する乱反射比を増大することなく、共振波長を近赤外線遮蔽係数の大きい600nm〜1500nmの範囲にすることが可能となり、優れた断熱性を有する電波透過性波長選択板が得られるものである。   In the present invention, the shape control of the Ag fine particles shown in FIG. 2 is facilitated. As a result, the radio wave transmission wavelength selection plate of the present invention allows the resonance wavelength to be reduced without increasing the irregular reflection ratio defined by Equation (1). It is possible to set the infrared shielding coefficient in the range of 600 nm to 1500 nm, and a radio wave transmitting wavelength selection plate having excellent heat insulation can be obtained.

本発明の電波透過性波長選択板は、透明基板に平行となるAg微粒子の面を多く有するAg微粒子から成り、かつ粒子の頂点部の高さが外接円の直径に比べて小さい。その結果、本発明の電波透過性波長選択板は、式(1)で定義する乱反射比を増大することなく、共振波長を近赤外線遮蔽係数の大きい600nm〜1500nmの範囲に入るように設計することが可能となり、優れた断熱性を有する電波透過性波長選択板が得られるものである。   The radio wave transmitting wavelength selection plate of the present invention is composed of Ag fine particles having a large number of Ag fine particle surfaces parallel to the transparent substrate, and the height of the vertex of the particles is smaller than the diameter of the circumscribed circle. As a result, the radio wave transmission wavelength selection plate of the present invention is designed so that the resonance wavelength falls within the range of 600 nm to 1500 nm having a large near-infrared shielding coefficient without increasing the irregular reflection ratio defined by the equation (1). Thus, a radio wave transmissive wavelength selection plate having excellent heat insulation can be obtained.

透明基板上に直接成膜したAg連続膜を加熱すると、膜中のAg原子が単位体積あたりの表面エネルギーが小さい部位に移動する。その結果、連続膜に欠損部位が生じ、網目状の層に変化する。さらに、加熱を続けると、少なくとも2カ所以上の頂点部を有するAg微粒子に変化し、最後に独立粒が生成する。この粒形変化は非常に短い時間内に完了するので、2カ所以上の頂点部を有するAg微粒子を形成することは非常に困難であった。   When an Ag continuous film directly formed on a transparent substrate is heated, Ag atoms in the film move to a site where the surface energy per unit volume is small. As a result, a defect site is generated in the continuous film, and changes to a mesh-like layer. Further, when the heating is continued, it changes to Ag fine particles having at least two apexes, and finally independent grains are generated. Since this particle shape change is completed within a very short time, it was very difficult to form Ag fine particles having two or more apexes.

本発明の電波透過性波長選択板は、透明基板よりAg膜との親和性の高い誘電体膜、例えば酸化チタン膜上にAg膜を積層することで、Ag膜中のAg原子は加熱中にエネルギーが低い部位に移動する速度が減少することを見出し、比較的容易に2カ所以上の頂点部を有するAg微粒子を得ることを可能とするものである。   The radio wave transmission wavelength selection plate of the present invention is formed by laminating an Ag film on a dielectric film having a higher affinity with an Ag film than a transparent substrate, for example, a titanium oxide film, so that Ag atoms in the Ag film are heated. It is found that the speed of movement to a site with low energy is reduced, and it is possible to obtain Ag fine particles having two or more apexes relatively easily.

また、粒状Agの単位面積あたりの数は、透明誘電体膜の膜厚で制御することでき、さらに、Ag微粒子の粒径は、透明誘電体膜上に積層するAg膜の膜厚で制御可能であることが見出され、したがって、粒状Agの単位面積あたりの数は、透明誘電体膜の膜厚で制御することが好ましい。さらに、Ag微粒子の粒径は、透明誘電体膜上に積層するAg膜の膜厚で制御することが好ましい。   The number of granular Ag per unit area can be controlled by the film thickness of the transparent dielectric film, and the particle diameter of the Ag fine particles can be controlled by the film thickness of the Ag film laminated on the transparent dielectric film. Therefore, the number of granular Ag per unit area is preferably controlled by the film thickness of the transparent dielectric film. Furthermore, the particle diameter of the Ag fine particles is preferably controlled by the film thickness of the Ag film laminated on the transparent dielectric film.

なお、Ag微粒子の好ましい粒子高さは、8nm〜150nmであるが、これらに限定するものではない。また、Ag微粒子の外接円の直径が100nm〜600nmの大きさが好ましい。粒子高さは、図2において、Ag微粒子の頂点部の高さである。     In addition, although the preferable particle height of Ag microparticles | fine-particles is 8 nm-150 nm, it is not limited to these. The diameter of the circumscribed circle of the Ag fine particles is preferably 100 nm to 600 nm. The particle height is the height of the apex portion of the Ag fine particles in FIG.

Ag膜は、膜厚を5nm〜1μmの範囲とすることが好ましい。5nm未満では、Ag膜が島状になり、均一に成膜されないので好ましくなく、1μmを越えると透明基板の軟化点以下の加熱温度で、粒状に形成することが困難となり、好ましくない。   The Ag film preferably has a thickness in the range of 5 nm to 1 μm. If the thickness is less than 5 nm, the Ag film becomes island-like and is not uniformly formed. This is not preferable, and if it exceeds 1 μm, it is difficult to form in a granular form at a heating temperature below the softening point of the transparent substrate.

Ag膜を成膜する方法については、特に限定するものではなく、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング等の成膜法を用いることができる。特に、DCマグネトロンスパッタリング法は生成する層の均一性、生産性の点より好ましい。   A method for forming the Ag film is not particularly limited, and a film forming method such as a sputtering method, a vacuum evaporation method, a CVD method, or an ion plating method can be used. In particular, the DC magnetron sputtering method is preferable from the viewpoint of the uniformity and productivity of the generated layer.

Ag膜の加熱方法は、抵抗加熱、ガス燃焼加熱、レーザまたは電子線などのビームの照射、または誘導加熱等の方法で行える。   The Ag film can be heated by resistance heating, gas combustion heating, irradiation with a beam such as a laser or an electron beam, or induction heating.

耐熱性透明プラスチックを透明基板とする場合、該透明基板にほとんど吸収されないレーザービームによる加熱や、導電性物質のみを選択的に加熱できる誘導加熱は、好適な加熱方法である。   When a heat-resistant transparent plastic is used as a transparent substrate, heating with a laser beam that is hardly absorbed by the transparent substrate, or induction heating that can selectively heat only a conductive substance are suitable heating methods.

なお、加熱条件については、加熱温度は150℃以上で透明基板が軟化しない温度以下とすることが好ましい。   In addition, about heating conditions, it is preferable that heating temperature shall be 150 degreeC or more and below the temperature which a transparent substrate does not soften.

Ag膜を形成した透明基板を、例えば加熱炉などで加熱する場合、粒状Ag合金や、Ag微粒子を数時間で成形するために、150℃以上にすることが望ましい。   When the transparent substrate on which the Ag film is formed is heated in, for example, a heating furnace, it is desirable to set the temperature to 150 ° C. or higher in order to form granular Ag alloy or Ag fine particles in several hours.

透明基板の温度が軟化点を越えると、特に、透明基板に酸化物ガラスを用いる場合、Ag原子が透明基板内に拡散し、電磁波の反射による波長選択性が著しく低下する。   When the temperature of the transparent substrate exceeds the softening point, particularly when oxide glass is used for the transparent substrate, Ag atoms diffuse into the transparent substrate, and the wavelength selectivity due to the reflection of electromagnetic waves is significantly reduced.

なお、Ag膜をレーザまたは電子線などのビームの照射、あるいは誘導加熱で行う場合、透明基板を加熱せずに、Ag膜を選択的に加熱できるので、加熱温度の上限を、Agの沸点2212℃とすることができる。   Note that when the Ag film is irradiated by laser or electron beam irradiation or induction heating, the Ag film can be selectively heated without heating the transparent substrate. Therefore, the upper limit of the heating temperature is set to the boiling point 2212 of Ag. It can be set to ° C.

また、加熱時間は、抵抗加熱、ガス燃焼加熱の場合、数秒から数時間、レーザまたは電子線などのビームの照射、あるいは誘導加熱の場合は、マイクロ秒から数秒とすることが好ましい。なお、加熱後、自然放冷による冷却、あるいは空気を吹き付けるなどの強制放冷で冷却してもよい。   In addition, the heating time is preferably several seconds to several hours in the case of resistance heating or gas combustion heating, and is preferably from microseconds to several seconds in the case of irradiation with a beam such as a laser or an electron beam or induction heating. In addition, you may cool by forced cooling, such as cooling by natural cooling or blowing air after heating.

さらに、本発明の電波透過性波長選択板は、Ag膜の厚み、透明誘電体膜の厚みおよび加熱条件により、Ag微粒子の粒径、個数、分布等を制御し、近赤外線を選択的に反射するものである。個数は、粒径に対して、基板表面の占有面積比として把握してもよい。   Further, the radio wave transmission wavelength selection plate of the present invention selectively reflects near infrared rays by controlling the particle size, number, distribution, etc. of Ag fine particles according to the thickness of the Ag film, the thickness of the transparent dielectric film, and the heating conditions. To do. The number may be grasped as a ratio of the occupied area of the substrate surface to the particle diameter.

近赤外線を選択的に反射するためには、(2)式で定義した近赤外線遮蔽係数(Es)が、0.3以上であることが好ましい。近赤外線遮蔽係数を0.3以上とするために、電波透過性波長選択板の分光反射率が最大となる波長は600nm〜1500nmの波長範囲にあることが望ましく、また、Ag微粒子の個数、粒径を制御し、Ag微粒子の外接円の直径は100nm〜600nmの範囲にあることが好ましい。さらに、望ましくは、占有面積比は0.2〜0.8の範囲にあることが好ましい。   In order to selectively reflect near-infrared rays, the near-infrared shielding coefficient (Es) defined by equation (2) is preferably 0.3 or more. In order to set the near-infrared shielding coefficient to 0.3 or more, the wavelength at which the spectral reflectance of the radio wave transmission wavelength selection plate is maximized is preferably in the wavelength range of 600 nm to 1500 nm. The diameter is controlled, and the diameter of the circumcircle of the Ag fine particles is preferably in the range of 100 nm to 600 nm. Furthermore, the occupation area ratio is preferably in the range of 0.2 to 0.8.

Ag微粒子の占有面積比が0.2未満になると、粒状Ag間の平均距離が粒径の2倍以上となり、粒子間の相互干渉が小さくなり、有効な近赤外線遮蔽係数を有する電波透過性波長選択板が得られない。   When the occupied area ratio of Ag fine particles is less than 0.2, the average distance between the granular Ags is more than twice the particle size, the mutual interference between the particles is reduced, and the radio wave transmission wavelength having an effective near-infrared shielding coefficient The selection board cannot be obtained.

また、Ag微粒子の外接円の直径が100nm未満の場合、分光反射率の最大値が600nm以下となってしまい。600nmを越える場合、分光反射率の最大値が1500nm以上となり、近赤外線遮蔽効率が激減する。   Further, when the diameter of the circumscribed circle of the Ag fine particles is less than 100 nm, the maximum value of the spectral reflectance becomes 600 nm or less. When it exceeds 600 nm, the maximum value of the spectral reflectance becomes 1500 nm or more, and the near-infrared shielding efficiency is drastically reduced.

占有面積比が0.8を越えると、ほとんどのAg微粒子が連鎖上となって、電波を透過させるという波長選択の機能が失われてしまう。   When the occupied area ratio exceeds 0.8, most of the Ag fine particles are in a chain, and the wavelength selection function of transmitting radio waves is lost.

Ag微粒子の占有面積比は、例えば、透明基板の法線方向から電界放射型走査電子顕微鏡(FE−SEM)で観察した写真(以後SEM画像という)を得、Ag微粒子とAg微粒子の存在しない透明基板の表面とを画像処理でSEM画像を2値化して、Ag微粒子の総面積をSEM画像全体の面積で除して、求めることができる。   The occupied area ratio of the Ag fine particles is obtained, for example, by obtaining a photograph (hereinafter referred to as SEM image) observed with a field emission scanning electron microscope (FE-SEM) from the normal direction of the transparent substrate, and the Ag fine particles and the Ag fine particles are not present. The SEM image can be binarized by image processing with respect to the surface of the substrate, and the total area of the Ag fine particles can be divided by the area of the entire SEM image.

また、Ag微粒子の粒径は、SEM画像を2値化して得られる画像でAg微粒子の個数を求め、該個数でAg微粒子の総面積を除し、求められた面積を同面積の円として、その円の直径をAg微粒子の粒径としてもよい。   Further, the particle diameter of the Ag fine particles is obtained by obtaining the number of Ag fine particles from an image obtained by binarizing the SEM image, dividing the total area of the Ag fine particles by the number, and obtaining the obtained area as a circle having the same area. The diameter of the circle may be the particle diameter of the Ag fine particles.

従って、例えばAg微粒子の形状がドーム状の場合は、粒径はドームの底面の直径に対応する。   Therefore, for example, when the shape of the Ag fine particles is a dome shape, the particle size corresponds to the diameter of the bottom surface of the dome.

本発明の電波透過性波長選択板において、Ag微粒子の上層に透明誘電体層を設けることが好ましい。   In the radio wave transmission wavelength selection plate of the present invention, it is preferable to provide a transparent dielectric layer on the upper layer of the Ag fine particles.

Ag微粒子の上層に透明誘電体層を設ける場合には、Ag微粒子を形成した後、該Ag微粒子の上に透明誘電体層を積層する。   When a transparent dielectric layer is provided on the upper layer of the Ag fine particles, after forming the Ag fine particles, the transparent dielectric layer is laminated on the Ag fine particles.

実施例1
本発明の電波透過性波長選択板は次に示す手順で製造した。透明基板としてフロートガラス板を用いた。
Example 1
The radio wave transmission wavelength selection plate of the present invention was manufactured by the following procedure. A float glass plate was used as the transparent substrate.

(1)先ず、洗浄した厚さ3mmのフロートガラス板をDCマグネトロンスパッタリング装置内に入れ、槽内の真空度が2〜4×10−4Paに達するまで排気した。なお、ターゲットとガラス基板との距離は90mmにした。 (1) First, the washed 3 mm thick float glass plate was put in a DC magnetron sputtering apparatus and evacuated until the degree of vacuum in the tank reached 2-4 × 10 −4 Pa. The distance between the target and the glass substrate was 90 mm.

(2)次に、Tiターゲット(直径152mm、厚み5mm)にDC200Wの電力で印加して放電させ、膜厚100nmの酸化チタン膜を成膜した。成膜中、Arと酸素の混合ガスの圧力を1Paに制御した。     (2) Next, a Ti target (diameter: 152 mm, thickness: 5 mm) was applied with a power of DC 200 W and discharged to form a 100 nm-thick titanium oxide film. During the film formation, the pressure of the mixed gas of Ar and oxygen was controlled to 1 Pa.

(3)次に、Agターゲット(直径152mm、厚み5mm)にDC30Wの電力で印加して放電させ、膜厚12.7nmのAg膜を成膜した。成膜中、Arガスの圧力を1Paに制御した。     (3) Next, an Ag target (diameter: 152 mm, thickness: 5 mm) was applied with a power of DC 30 W and discharged to form an Ag film having a thickness of 12.7 nm. During the film formation, the Ar gas pressure was controlled to 1 Pa.

(4)次いで、酸化チタン膜とAg膜を積層した透明基板を雰囲気温度550℃の恒温炉で5分間加熱したのち、炉外に取り出し放冷することにより、透明基板の表面に、粒状のAgを形成した。     (4) Next, the transparent substrate on which the titanium oxide film and the Ag film are laminated is heated in a constant temperature oven at 550 ° C. for 5 minutes, and then taken out of the furnace and allowed to cool. Formed.

日立製作所製U−4000型自記分光光度計を用いて波長300〜2500nmの範囲で得られた電波透過性波長選択板の分光反射率、分光透過率を測定した。さらに、測定値を式(2)に代入し、近赤外線遮蔽係数を算出した。   The spectral reflectance and the spectral transmittance of the radio wave transmission wavelength selection plate obtained in the wavelength range of 300 to 2500 nm were measured using a Hitachi U-4000 type self-recording spectrophotometer. Furthermore, the measured value was substituted into Formula (2), and the near-infrared shielding coefficient was calculated.

その結果、共振波長が875nmで近赤外線遮蔽係数が0.45と大きく、かつ乱反射比が0.01で、可視光透過率が55%の良好な波長選択板が得られた。   As a result, a favorable wavelength selection plate having a resonance wavelength of 875 nm, a near-infrared shielding coefficient as large as 0.45, an irregular reflection ratio of 0.01, and a visible light transmittance of 55% was obtained.

さらに、日立製作所製S−4500型FE−SEMを用いて酸化チタン膜上に生成したAg微粒子の形態を観察した。   Furthermore, the form of Ag fine particles produced | generated on the titanium oxide film | membrane was observed using Hitachi S-4500 type | mold FE-SEM.

その結果、該Ag微粒子は、2カ所以上の頂点部を有するAg微粒子でなり、微粒子の面積の割合が0.48であった。粒子の高さは20nmから80nmで、誘起電流の経路長は100nm〜350nmの範囲であった。   As a result, the Ag fine particles were Ag fine particles having two or more apexes, and the area ratio of the fine particles was 0.48. The height of the particles was 20 nm to 80 nm, and the path length of the induced current was in the range of 100 nm to 350 nm.

比較例1
本発明の電波透過性波長選択板は次に示す手順で製造した。透明基板としてフロートガラス板を用いた。
Comparative Example 1
The radio wave transmission wavelength selection plate of the present invention was manufactured by the following procedure. A float glass plate was used as the transparent substrate.

(1)先ず、洗浄した厚さ3mmのフロートガラス板をDCマグネトロンスパッタリング装置内に入れ、槽内の真空度が2〜4×10−4Paに達するまで排気した。なお、ターゲットとガラス基板との距離は90mmにした。 (1) First, the washed 3 mm thick float glass plate was put in a DC magnetron sputtering apparatus and evacuated until the degree of vacuum in the tank reached 2-4 × 10 −4 Pa. The distance between the target and the glass substrate was 90 mm.

(2)次に、Agターゲット(直径152mm、厚み5mm)のエロージョン域にPdチップ(10mm×10mm×1mmの直方体)4個を等間隔に載置した。このターゲットにDC30Wの電力で印加して放電させ、膜厚13nmのAg−Pd混合膜を成膜した。成膜中、Arガスの圧力を1Paに制御した。   (2) Next, four Pd chips (10 mm × 10 mm × 1 mm rectangular parallelepiped) were placed at equal intervals in the erosion region of the Ag target (diameter 152 mm, thickness 5 mm). The target was applied with a power of DC 30 W and discharged to form an Ag—Pd mixed film having a thickness of 13 nm. During the film formation, the Ar gas pressure was controlled to 1 Pa.

(3)次いで、Ag混合膜を成膜した透明基板を雰囲気温度500℃の恒温炉で5分間加熱したのち、炉外に取り出し放冷することにより、透明基板の表面に、粒状のAg合金を形成した。   (3) Next, the transparent substrate on which the Ag mixed film is formed is heated in a constant temperature oven with an atmospheric temperature of 500 ° C. for 5 minutes, and then taken out of the furnace and allowed to cool, whereby a granular Ag alloy is formed on the surface of the transparent substrate. Formed.

(4)次いで、Agターゲット(直径152mm、厚み5mm)にDC30Wの電力で印加して放電させ、粒状のAg合金に膜厚13nmのAg膜を積層した。なお、成膜中の雰囲気は、圧力を1PaのArガスとした。   (4) Next, an Ag target (diameter: 152 mm, thickness: 5 mm) was applied with electric power of DC 30 W and discharged, and an Ag film having a thickness of 13 nm was laminated on the granular Ag alloy. The atmosphere during film formation was Ar gas having a pressure of 1 Pa.

(5)次いで、Ag膜を積層したものを雰囲気温度450℃の恒温炉で5分間加熱した後、炉外に取り出し放冷することにより、基板ガラス表面にAg微粒子を作製した。   (5) Next, the laminated Ag film was heated for 5 minutes in a constant temperature furnace having an atmospheric temperature of 450 ° C., then taken out of the furnace and allowed to cool to produce Ag fine particles on the surface of the substrate glass.

(6)次いで、(4)と(5)の工程をさらに2回繰り返して、Ag微粒子の粒径Lと高さを増大させた。   (6) Next, the steps (4) and (5) were repeated two more times to increase the particle size L and height of the Ag fine particles.

その結果、半球状の孤立粒から成るAg微粒子が生成し、共振波長が720nmで近赤外線遮蔽係数が0.51と高い値となった。 しかし、乱反射比が0.63と高くなり、良好な波長選択板が得られなかった。   As a result, Ag fine particles composed of hemispherical isolated particles were generated, and the resonance wavelength was 720 nm and the near-infrared shielding coefficient was as high as 0.51. However, the irregular reflection ratio was as high as 0.63, and a good wavelength selection plate could not be obtained.

実施例1は、乱反射比を0.1以下に抑えながら共振波長を600nm〜1500nmの範囲にシフトさせて、ヘーズ値が低く、かつ近赤外線遮蔽係数の高い波長選択板が得られた。しかし、比較例1の場合、近赤外線遮蔽係数が高い波長選択板を作製できたが、ヘーズ値が低いものは得られなかった。   In Example 1, the wavelength selection plate having a low haze value and a high near-infrared shielding coefficient was obtained by shifting the resonance wavelength to a range of 600 nm to 1500 nm while suppressing the irregular reflection ratio to 0.1 or less. However, in the case of Comparative Example 1, a wavelength selection plate having a high near-infrared shielding coefficient could be produced, but a plate having a low haze value was not obtained.

電波透過性波長選択板の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of a radio wave transmissive wavelength selection board typically. 頂点部が2カ所のAg微粒子の形状を示す模式図である。It is a schematic diagram which shows the shape of Ag fine particle with two vertex parts. 頂点部が3カ所以上のAg微粒子の形状を模式的に示す平面図である。It is a top view which shows typically the shape of Ag microparticles | fine-particles of three or more vertex parts.

符号の説明Explanation of symbols

1 Ag微粒子
2 透明誘電体層
3 Ag微粒子層
4 透明誘電体層
5、5´ 透明基板
DESCRIPTION OF SYMBOLS 1 Ag fine particle 2 Transparent dielectric material layer 3 Ag fine particle layer 4 Transparent dielectric material layer 5, 5 'Transparent substrate

Claims (4)

透明基板にAg微粒子の層が形成されてなる電波透過性波長選択板において、透明基板に誘電体層が形成され、該透明誘電体層の上にAg微粒子が形成されてなり、該Ag微粒子が少なくとも2カ所以上の頂点部を有し、頂点部の高さが8〜150nmの範囲にあり、Ag微粒子の外接円の直径が100nm〜600nmの範囲にあり、透明基板の表面面積に対するAg微粒子の被覆面積の割合が0.2〜0.8の範囲であることを特徴とする電波透過性波長選択板。 In a radio wave transmission wavelength selection plate in which a layer of Ag fine particles is formed on a transparent substrate, a dielectric layer is formed on the transparent substrate, Ag fine particles are formed on the transparent dielectric layer, and the Ag fine particles are It has at least two apex portions, the apex height is in the range of 8 to 150 nm, the diameter of the circumscribed circle of the Ag microparticles is in the range of 100 to 600 nm, and the Ag microparticles have a surface area of the transparent substrate. A radio wave transmission wavelength selection plate, wherein the ratio of the covering area is in the range of 0.2 to 0.8. Ag微粒子に3カ所以上の頂点部を有する場合は、該Ag微粒子における最隣接の3カ所の頂点を結ぶ直線の角度が60度以上であることを特徴とする請求項1に記載の電波透過性波長選択板。 2. The radio wave transmission property according to claim 1, wherein when the Ag fine particle has three or more apexes, an angle of a straight line connecting the three nearest apexes of the Ag fine particle is 60 degrees or more. Wavelength selection plate. 式(2)で定義する乱反射比(Hr)を0.1以下とすることを特徴とする請求項1あるいは請求項2に記載の電波透過性の波長選択板。
Figure 2006110808
ここで、Rnは波長550nmにおけるAg微粒子層側の正反射率であり、Rtは波長550nmにおけるAg微粒子層側の乱反射を含む反射率
3. The radio wave transmissive wavelength selective plate according to claim 1, wherein an irregular reflection ratio (Hr) defined by the equation (2) is 0.1 or less. 4.
Figure 2006110808
Here, Rn is a regular reflectance on the Ag fine particle layer side at a wavelength of 550 nm, and Rt is a reflectance including irregular reflection on the Ag fine particle layer side at a wavelength of 550 nm.
近赤外線遮蔽係数(Es)を0.3以上とすることを特徴とする請求項1乃至請求項3のいずれかに記載の電波透過性の波長選択板。 The radio wave transmissive wavelength selection plate according to any one of claims 1 to 3, wherein a near-infrared shielding coefficient (Es) is 0.3 or more.
JP2004299251A 2004-10-13 2004-10-13 Radio-wave transmissible wavelength selection plate Pending JP2006110808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299251A JP2006110808A (en) 2004-10-13 2004-10-13 Radio-wave transmissible wavelength selection plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299251A JP2006110808A (en) 2004-10-13 2004-10-13 Radio-wave transmissible wavelength selection plate

Publications (1)

Publication Number Publication Date
JP2006110808A true JP2006110808A (en) 2006-04-27

Family

ID=36379725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299251A Pending JP2006110808A (en) 2004-10-13 2004-10-13 Radio-wave transmissible wavelength selection plate

Country Status (1)

Country Link
JP (1) JP2006110808A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025634A (en) * 2009-07-29 2011-02-10 Mitsubishi Electric Corp Electromagnetic wave transmissive decorative component
WO2012070477A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Heat ray shielding material
JP2013037013A (en) * 2010-11-22 2013-02-21 Fujifilm Corp Heat-ray shielding material
WO2013122181A1 (en) * 2012-02-16 2013-08-22 東洋紡株式会社 Translucent laminate for reflecting heat rays and transmitting radio waves
US10960646B2 (en) * 2016-04-27 2021-03-30 AGC Inc. Window member and vehicle window glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025634A (en) * 2009-07-29 2011-02-10 Mitsubishi Electric Corp Electromagnetic wave transmissive decorative component
WO2012070477A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Heat ray shielding material
JP2013037013A (en) * 2010-11-22 2013-02-21 Fujifilm Corp Heat-ray shielding material
WO2013122181A1 (en) * 2012-02-16 2013-08-22 東洋紡株式会社 Translucent laminate for reflecting heat rays and transmitting radio waves
JP5527480B2 (en) * 2012-02-16 2014-06-18 東洋紡株式会社 Heat ray reflective radio wave transparent transparent laminate
US10960646B2 (en) * 2016-04-27 2021-03-30 AGC Inc. Window member and vehicle window glass

Similar Documents

Publication Publication Date Title
JP5076897B2 (en) Infrared reflective glass plate and laminated glass for vehicle windows
JP5057485B2 (en) Visible light solar radiation heat reflective film
JP5076896B2 (en) Laminated glass for vehicle windows
CN103402940B (en) For obtaining the method providing cated base material
US6689256B2 (en) Frequency selective plate and method for producing same
WO2016125823A1 (en) Heat shielding film, and heat shielding laminated glass and method for manufacturing same
WO2016192569A2 (en) Low emissivity glass, method for manufacturing the same and vehicle window
JP6549044B2 (en) Heat shielding laminated glass for automobiles
CN1356563A (en) Refractory reflecting ayer, laminated sheet made of said reflecting layer, and LCD containing one of them
KR20140010370A (en) Energy-shielding plastics film
JP4371690B2 (en) Radio wave transmissive wavelength selective plate and method for producing the same
CN113666645A (en) Infrared and radar compatible stealthy window glass with sound and heat insulation function
JP3454422B2 (en) Radio wave transmitting wavelength selective substrate and its manufacturing method
JP2006110808A (en) Radio-wave transmissible wavelength selection plate
JP4097908B2 (en) Manufacturing method of radio wave transmission wavelength selective membrane
EP1254871B1 (en) Frequency selective plate and method for producing same
JP4037135B2 (en) Manufacturing method of radio wave transmission wavelength selective membrane
CN116394610A (en) Flexible transparent radiation refrigeration window material
US20220221636A1 (en) Energy-efficient window coatings transmissible to wireless communication signals and methods of fabricating thereof
JP2006110807A (en) Radio-wave transmissible wavelength selection plate
JPH0550548A (en) Thermal ray-reflecting glass with radio wave-low reflecting property
JP3734376B2 (en) Radio wave transmissive wavelength selective glass and manufacturing method thereof
JP2007161584A (en) Method of manufacturing wavelength selective film transmittable of radiowave
JP2017071143A (en) Heat-shielding film and heat-shielding laminated glass
JP2000344547A (en) Production of base plate having transmissibility to radio waves and wavelength selectivity

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424