WO2014050367A1 - Process for producing heat-insulating laminated structure, heat-insulating laminated structure, and transparent laminated film - Google Patents

Process for producing heat-insulating laminated structure, heat-insulating laminated structure, and transparent laminated film Download PDF

Info

Publication number
WO2014050367A1
WO2014050367A1 PCT/JP2013/072181 JP2013072181W WO2014050367A1 WO 2014050367 A1 WO2014050367 A1 WO 2014050367A1 JP 2013072181 W JP2013072181 W JP 2013072181W WO 2014050367 A1 WO2014050367 A1 WO 2014050367A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated structure
film
polymer
transparent
Prior art date
Application number
PCT/JP2013/072181
Other languages
French (fr)
Japanese (ja)
Inventor
健司 竹脇
後藤 修
徹司 楢▲崎▼
正隆 犬塚
翔一 池野
竹内 哲也
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Publication of WO2014050367A1 publication Critical patent/WO2014050367A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent

Definitions

  • the present invention is suitable for a method for manufacturing a heat-insulating laminated structure, a heat-insulating laminated structure, and a heat-insulating laminated structure suitably used for window glass of buildings such as buildings and houses, and window glass of vehicles such as automobiles.
  • the present invention relates to a transparent laminated film.
  • Patent Document 1 discloses a so-called multilayer film type transparent laminated film in which metal oxide layers and metal layers are alternately laminated on one side of a transparent polymer film.
  • Patent Document 2 discloses a transparent laminate in which radio wave permeability is improved by forming a groove portion having a width of 30 ⁇ m or less in a laminated structure in which metal oxide layers and metal layers are alternately laminated on the surface of a transparent polymer film.
  • a film has been proposed.
  • the transparent polymer film is provided with an easy-adhesion layer on one side or both sides in advance in order to improve handling properties such as winding property.
  • the groove portion of the laminated structure is formed by forming a laminated structure on the easy adhesion layer of the transparent polymer film.
  • thermoplastic resin film having a conductive film formed on an uneven surface is disposed and sandwiched between two transparent substrates, and the transparent equipment and the thermoplastic resin film are bonded.
  • the resulting laminated structure is disclosed.
  • a window glass may be formed by sandwiching a heat ray cut film between two glass substrates for the purpose of shielding solar radiation.
  • the heat ray cut film is required to have visible light transmittance and solar shading as basic performance.
  • buildings such as buildings and houses may require high-frequency radio wave transmissivity of several hundred MHz or higher for the use of mobile phones and televisions.
  • radio wave transmission may be required so as not to interfere with radio wave reception of the ETC on-board unit.
  • the transparent laminated film described in Patent Document 1 has a poor radio wave transmission because the metal layer is continuous.
  • the transparent laminated film described in Patent Document 2 forms a groove portion in a laminated structure portion using an easy adhesion layer, and does not form a groove portion using an easy adhesion layer. Is different.
  • the laminated structure described in Patent Document 3 when the thermoplastic resin film is bonded to the transparent substrate, the uneven portions are deformed and flattened, and thus there is a possibility that desired radio wave transmission properties are difficult to obtain.
  • the problem to be solved by the present invention is to provide a method for manufacturing a heat-insulating laminated structure and a heat-insulating laminated structure that are excellent in solar radiation shielding properties and radio wave permeability. Moreover, it is providing the transparent laminated film which can be used suitably for such a laminated structure.
  • a method for manufacturing a heat-insulating laminated structure includes forming a polymer layer on the surface of a transparent polymer film, and forming a metal oxide layer and a metal layer on the surface of the polymer layer. Forming a laminated structure part to be laminated to obtain a transparent laminated film, and sandwiching the obtained transparent laminated film between two transparent substrates, and two transparent substrates under heating and pressure And in the film production process, the metal oxide layer of the laminated structure is formed by sol-gel curing of the metal oxide precursor, and the polymer of the polymer layer is combined with the polymer layer.
  • the gist is to form a groove part that divides the metal layer of the laminated structure part when the two transparent substrates are bonded together.
  • a polymer having a softening temperature of 40 to 130 ° C. as the polymer of the polymer layer.
  • the polymer layer is preferably formed to a thickness of 0.05 to 1.0 ⁇ m.
  • the groove for dividing the metal layer of the laminated structure is not formed in the film production process, or the width of the groove for dividing the metal layer of the laminated structure formed in the film production process is 0.6 ⁇ m or less. It is preferable to do.
  • a polymer having a softening temperature of 110 to 130 ° C. as the polymer of the polymer layer and to form the polymer layer with a thickness of 0.05 to 0.5 ⁇ m.
  • the gist of the heat-insulating laminated structure according to the present invention is obtained by the manufacturing method according to the present invention.
  • a polymer layer and a laminated structure in which a metal oxide layer and a metal layer are laminated are laminated in this order on the surface of the transparent polymer film.
  • a transparent laminated film and two transparent substrates to be bonded together, and the two transparent substrates are bonded to each other with the transparent laminated film sandwiched therebetween.
  • the gist of the present invention is that a groove part is formed to divide the line.
  • the softening temperature of the polymer in the polymer layer is preferably 40 to 130 ° C.
  • the thickness of the polymer layer is preferably 0.05 to 1.0 ⁇ m.
  • an acrylic resin, a phenoxy resin, and a butyral resin can be mentioned as a suitable thing.
  • the transparent laminated film according to the present invention has a laminated structure portion in which a metal oxide layer and a metal layer are laminated on the surface of the transparent polymer film, and is softened between the transparent polymer film and the laminated structure portion.
  • the gist is that a polymer layer having a temperature of 40 to 130 ° C. is disposed.
  • the thickness of the polymer layer is preferably 0.05 to 1.0 ⁇ m.
  • an acrylic resin, a phenoxy resin, and a butyral resin can be mentioned as a suitable thing.
  • a transparent laminated film having a laminated structure portion in which a metal oxide layer and a metal layer are laminated between two transparent substrates to be bonded is disposed. And since the groove part which divides
  • a polymer having a softening temperature of 40 to 130 ° C. is used as the polymer of the polymer layer, a groove for dividing the metal layer is easily formed in the laminated structure of the transparent laminated film.
  • the polymer layer is formed to a thickness of 0.05 to 1.0 ⁇ m, a groove part for dividing the metal layer is easily formed in the laminated structure part of the transparent laminated film.
  • the groove part that divides the metal layer of the laminated structure part is not formed in the film manufacturing process, it is possible to suppress the occurrence of a dent in the vicinity of the groove part of the metal layer during the aligning process. Thereby, the occurrence of irregular reflection of light near the groove is suppressed, and the appearance is also excellent.
  • the width of the groove part for dividing the metal layer of the laminated structure part formed in the film production process is 0.6 ⁇ m or less, the dent generated in the vicinity of the groove part of the metal layer during the aligning process can be reduced. Thereby, the influence of the irregular reflection of the light which arises in the vicinity of a groove part can be made small, and it is excellent in an external appearance.
  • the heat-insulating laminated structure according to the present invention comprising a transparent laminated film having a laminated structure part in which a metal oxide layer and a metal layer are laminated between two bonded transparent substrates, Since the groove part which divides
  • the transparent laminated film which concerns on this invention, it has a laminated structure part by which the metal oxide layer and the metal layer were laminated
  • the width of the groove portion for dividing the metal layer of the laminated structure portion formed at the time of the alignment process becomes narrower. It is possible to suppress the formation of a dent in the vicinity of the groove portion. Thereby, the occurrence of irregular reflection of light near the groove is suppressed, and the appearance is also excellent.
  • This production method includes a film production process for obtaining a transparent laminated film having heat shielding properties, and a combining process performed using the obtained transparent laminated film and two transparent substrates.
  • the film production process includes a first process of forming a polymer layer 18 on the surface of the transparent polymer film 12 as shown in FIG. 1 (a) and a polymer layer 18 as shown in FIG. 1 (b). And a second step of forming the laminated structure portion 16 in which the metal oxide layer 22 and the metal layer 24 are laminated on the surface.
  • the polymer layer 18 is provided for the purpose of forming the groove portion 20 in the laminated structure portion 16 in the combining step described later.
  • an easy-adhesion layer 14 may be formed on the surface of the transparent polymer film 12 in advance for the purpose of improving handling properties such as winding property.
  • 18 may be formed on the surface of the transparent polymer film 12 opposite to the surface on which the easy adhesion layer 14 is formed, or may be formed on the easy adhesion layer 14. May be.
  • the polymer layer 18 is formed by preparing a coating liquid containing a polymer material, coating the surface of the transparent polymer film 12, and then drying to form a coating film. it can.
  • a solvent for dissolving the polymer material can be used as necessary.
  • solvents include alcohols such as methanol, ethanol, propanol, butanol, heptanol and isopropyl alcohol, organic acid esters such as ethyl acetate, ketones such as acetonitrile, acetone and methyl ethyl ketone, and cycloethers such as tetrahydrofuran and dioxane.
  • Acid amides such as formamide and N, N-dimethylformamide, hydrocarbons such as hexane, aromatics such as toluene and xylene, and the like. These may be used alone or in combination.
  • the laminated structure portion 16 is formed by laminating a metal oxide layer 22 and a metal layer 24.
  • the metal oxide layer 22, the metal layer 24, the metal oxide layer 22... are alternately stacked on the surface of the polymer layer 18 in this order.
  • the lowermost metal oxide layer is represented by 22a
  • the uppermost metal oxide layer is represented by 22b
  • the metal oxide layer between them is the middle metal oxide layer. Call it.
  • the metal oxide layer 22 is formed by sol-gel curing of a metal oxide precursor.
  • a coating liquid (coating liquid) containing a metal oxide precursor is prepared, applied to the surface of the transparent polymer film 12 or the surface of the metal layer 24, and then dried to form a coating film.
  • sol-gel curing by a predetermined method.
  • the coating solution may contain water as necessary from the viewpoint that hydrolysis by the sol-gel method is promoted and a high refractive index is easily achieved.
  • the metal oxide precursor examples include organometallic compounds such as metal alkoxide, metal acylate, and metal chelate.
  • organometallic compounds such as metal alkoxide, metal acylate, and metal chelate.
  • the organic component derived from the organometallic compound can remain in the metal oxide layer 22.
  • flexibility of the transparent laminated film 10 increases because the metal oxide layer 22 contains an organic component with a metal oxide.
  • organometallic compounds metal chelates are preferable from the viewpoint of excellent stability in air.
  • sol-gel curing means examples include irradiation with light energy such as ultraviolet rays, electron beams, and X-rays, and heating.
  • light energy such as ultraviolet rays, electron beams, and X-rays
  • heating examples include irradiation with light energy such as ultraviolet rays, electron beams, and X-rays, and heating.
  • irradiation with light energy particularly irradiation with ultraviolet rays is preferable.
  • ultraviolet irradiation relatively simple equipment is sufficient.
  • the obtained transparent laminated film 10 is sandwiched between two transparent substrates 28 and 28, and the two transparent substrates 28 and 28 are heated and pressurized. Paste together. An adhesive can be used for bonding.
  • the transparent laminated film 10 is sandwiched between two transparent base materials 28 and 28 via an adhesive layer 26 made of an adhesive.
  • the transparent substrate 28 is not particularly limited as long as it is a plate-like transparent body that sufficiently transmits visible light, but preferred examples include a glass plate and a resin plate.
  • the glass include normal float glass, semi-tempered glass, and tempered glass.
  • the resin include an acrylic resin and a polycarbonate resin.
  • the thickness of the transparent substrate 28 may be determined as appropriate according to the application.
  • the main material of the adhesive examples include polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), acrylic resin, silicone resin, and urethane resin.
  • the adhesive may be a liquid or a solid one.
  • the solid material examples include a film material.
  • the polymer of the polymer layer 18 a polymer having a softening temperature lower than the heating temperature in the combining step is used. If it does so, the softness
  • the softening temperature is a glass transition temperature (Tg) in the case of an amorphous polymer, and a melting point (Tm) in the case of a crystalline polymer, and can be measured by differential scanning calorimetry (DSC). .
  • the heating temperature in the mating step is set to a temperature at which the adhesive used is softened.
  • the heating temperature in the combining step is set to, for example, about 130 to 135 ° C. in consideration of the softening temperature. Therefore, in consideration of the softening temperature of the adhesive used, it is preferable to use a polymer having a softening temperature of 40 to 130 ° C. as the polymer of the polymer layer 18.
  • the softening temperature may be lower than the sol-gel curing temperature in the film manufacturing process.
  • the flexibility of the polymer layer 18 during sol-gel curing or the combining process changes, and the groove portion 20 is formed in the laminated structure portion 16.
  • the timing, the size of the width of the groove 20 to be formed, the divided shape of the laminated structure 16 and the like are changed. Therefore, the flexibility of the polymer layer 18 at the time of sol-gel curing or the combining process can be controlled by selecting the polymer of the polymer layer 18, the timing at which the groove 20 is formed in the laminated structure 16, and the groove to be formed It is possible to adjust the size of the width of 20, the divided shape of the laminated structure portion 16, and the like.
  • the groove portion 20 that divides the metal layer 24 of the laminated structure portion 16 can be formed before the alignment process.
  • the polymer of the polymer layer 18 is heated to the softening temperature or higher before the combining step, whereby the polymer layer It is also possible to soften the polymer 18 and release the stress generated in the metal oxide layer 22, thereby forming the groove 20 that divides the metal layer 24 of the laminated structure 16.
  • the timing at which the groove 20 is formed in the laminated structure 16 can be adjusted by the softening temperature of the polymer in the polymer layer 18. It can also be adjusted by the thickness of the polymer layer 18 and the temperature during sol-gel curing. As an example in the case of adjusting by the softening temperature, when the softening temperature of the polymer layer 18 is less than 40 ° C., the groove 20 (crack) is formed when the first metal oxide layer 22a of the laminated structure 16 is formed. Is done. When the softening temperature is not lower than 40 ° C. and lower than 60 ° C., the groove 20 (crack) is generated for the first time when the third metal oxide layer 22 of the laminated structure 16 is formed.
  • the groove 20 (crack) is formed when the uppermost metal oxide layer 22 is formed in the three-layer laminated structure, but the middle metal oxide layer 22 is formed in the five-layer laminated structure or the seven-layer laminated structure.
  • grooves 20 (cracks) are formed.
  • the softening temperature is not less than 60 ° C. and less than 70 ° C.
  • the groove 20 (crack) is generated for the first time when the fifth metal oxide layer 22 of the laminated structure 16 is formed.
  • the softening temperature is 70 ° C. or higher and 130 ° C. or lower, since the softening temperature is relatively high, the groove 20 (crack) is generated for the first time when the seventh metal oxide layer 22b of the laminated structure 16 is formed. In this case, even in the seven-layer stacked structure, the groove 20 (crack) can be formed when the uppermost metal oxide layer 22b is formed.
  • the thickness of the polymer layer 18 is preferably 1.0 ⁇ m or less. Further, from the viewpoint of suppressing the generation of the groove 20 before the alignment step, the thickness of the polymer layer 18 is preferably 0.5 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.05 ⁇ m or more from the viewpoint of manufacturing.
  • the flexibility of the polymer layer 18 is increased by the heat of the combining step, and the degree of freedom in the in-plane direction of the laminated structure portion 16 is increased.
  • the stacked structure portion 16 is further cracked starting from the groove portion 20 formed in advance, and the metal layer 24 divided by the groove portion 20 is further divided.
  • variety of the already formed groove part 20 may spread with progress of the fragmentation of the groove part 20.
  • the groove 20 is not formed in the transparent laminated film 10 itself before the alignment process, or the groove Even if 20 is formed, it is preferable that the groove 20 has a narrow width.
  • the width of the groove 20 is 0.6 ⁇ m or less from the viewpoint of suppressing the occurrence of irregular reflection of light. preferable. More preferably, it is 0.3 ⁇ m or less.
  • the width of the groove part 20 is an average value of the widths measured at three places (15 places in total) of the groove part 20 by photographing five surfaces of the laminated structure with an optical microscope.
  • the polymer layer 18 It is preferable to increase the softening temperature and reduce the thickness of the polymer layer 18.
  • the polymer softening temperature of the polymer layer 18 is 110 ° C. or more and the thickness of the polymer layer 18 is 0.5 ⁇ m or less. It is preferable to set to. Further, in order to make the width of the groove portion 20 0.6 ⁇ m or less, it is preferable to set the polymer softening temperature of the polymer layer 18 to 40 ° C. or more and the thickness of the polymer layer 18 to 0.5 ⁇ m or less. .
  • the material for the polymer layer 18 include acrylic resin, phenoxy resin, and butyral resin. Of these, acrylic resins and butyral resins are preferred from the viewpoints of excellent optical properties (transparency) and excellent coating properties.
  • the heat shielding laminated structure 30 has two transparent base materials 28 and 28 bonded together with the transparent laminated film 10 sandwiched therebetween, and the laminated structure portion 16 of the transparent laminated film 10 is attached. A groove 20 for dividing the metal layer 24 is formed.
  • the heat shielding laminated structure 30 includes the transparent laminated film 10, it is excellent in solar shading. Moreover, since the groove part 20 which divides
  • the heat shielding laminated structure 30 can be set to a desired surface resistance value by adjusting the pressure and temperature conditions when the two transparent substrates 28 and 28 are bonded together.
  • the surface resistance value of the heat-insulating laminated structure 30 is preferably 100 ⁇ / ⁇ or more from the viewpoint of radio wave transmission.
  • the transparent laminated film 10 has a transparent polymer film 12, an easy adhesion layer 14, a laminated structure portion 16, and a polymer layer 18.
  • the easy adhesion layer 14 is provided on one surface of the transparent polymer film 12.
  • the laminated structure portion 16 is provided on a surface opposite to the surface on which the easy adhesion layer 14 of the transparent polymer film 12 is formed.
  • the polymer layer 18 is provided between the transparent polymer film 12 and the laminated structure portion 16.
  • the transparent polymer film 12 is a base material serving as a base for forming the laminated structure portion 16.
  • the material of the transparent polymer film 12 is not particularly limited as long as it has transparency in the visible light region and can form a thin film on the surface without hindrance.
  • the material of the transparent polymer film 12 include polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polystyrene, polyimide, polyamide, polybutylene terephthalate, polyethylene naphthalate.
  • Polymer materials such as polysulfone, polyethersulfone, polyetheretherketone, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, triacetyl cellulose, polyurethane, and cycloolefin polymer. These may be used alone or in combination of two or more.
  • polyethylene terephthalate, polycarbonate, polymethyl methacrylate, and cycloolefin polymer are more preferable materials from the viewpoint of excellent transparency, durability, and processability.
  • the easy-adhesion layer 14 is provided in advance on the transparent polymer film 12 in order to improve handling properties such as winding property of the transparent polymer film 12.
  • the easy adhesion layer 14 is often formed on the surface of the transparent polymer film 12 for optical applications. This is because it is difficult for the transparent polymer film 12 for optical applications to improve handling properties by blending silica particles or the like into the film.
  • the metal oxide layer 22, the metal layer 24, the metal oxide layer 22,... are alternately laminated in this order from the transparent polymer film 12 side. Further, it has a seven-layer laminated structure.
  • a metal oxide layer 22 is disposed on the innermost layer (22a) on the transparent polymer film 12 side and the outermost layer (22b) on the opposite side of the transparent polymer film 12.
  • the metal oxide layer 22 and the metal layer 24 are made of a thin film.
  • a barrier layer may be further formed on one surface or both surfaces of the metal layer 24.
  • the barrier layer is a thin film layer attached to the metal layer 24 and is counted as one layer together with the metal layer 24. The barrier layer suppresses diffusion of elements constituting the metal layer 24 into the metal oxide layer 22.
  • the metal oxide layer 22 exhibits functions such as enhancing transparency (excelling in the visible light region) by being laminated together with the metal layer 24, and can function mainly as a high refractive index layer. It is. High refractive index means a case where the refractive index for light of 633 nm is 1.7 or more.
  • the metal layer 24 can mainly function as a solar radiation shielding layer. Such a laminated structure 16 has good visible light transparency (transparency) and solar shading.
  • the number of layers of the laminated structure portion 16 may be appropriately set according to the optical characteristics such as visible light transparency (transparency) and solar shading, and the electrical characteristics such as the surface resistance of the entire film.
  • the number of layers can be other than seven.
  • the number of layers of the laminated structure portion 16 is preferably in the range of 2 to 10 layers in consideration of the material, film thickness, manufacturing cost, etc. of each thin film. In consideration of optical characteristics, odd-numbered layers are more preferable, and 3 layers, 5 layers, and 7 layers are particularly preferable.
  • the metal oxide layer 22, the metal layer 24, and the barrier layer of the laminated structure portion 16 will be described in detail.
  • Examples of the metal oxide of the metal oxide layer 22 of the multilayer structure portion 16 include titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, magnesium oxide, Examples thereof include aluminum oxide, zirconium oxide, niobium oxide, and cerium oxide. These may be contained alone or in combination of two or more. These metal oxides may be composite oxides in which two or more metal oxides are combined. Among these, titanium oxide, indium and tin oxide, zinc oxide, tin oxide, and the like are preferable from the viewpoint of relatively high refractive index with respect to visible light.
  • the lower limit of the content of the organic component contained in the metal oxide layer 22 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably, from the viewpoint of easily imparting flexibility. 7 mass% or more.
  • the upper limit of the content of the organic component contained in the metal oxide layer 22 is preferably 30% by mass or less from the viewpoint of easily ensuring a high refractive index and easily ensuring solvent resistance. More preferably, it is 25% by mass or less, and further preferably 20% by mass or less.
  • the organic content can be examined using X-ray photoelectron spectroscopy (XPS) or the like. Moreover, the kind of said organic content can be investigated using infrared spectroscopy (IR) (infrared absorption analysis) etc.
  • the metal oxide layer 22 is formed by sol-gel curing of a metal oxide precursor.
  • the organometallic compound is light-absorbing (for example, UV-absorbing). It is preferable to have a ligand that forms a chelate. By providing the light-absorbing chelate ligand, the metal oxide layer 22 can be formed at a relatively low temperature.
  • Such chelate ligands include ⁇ diketones, alkoxy alcohols, alkanolamines and the like.
  • ⁇ diketones include acetylacetone, benzoylacetone, ethyl acetoacetate, methyl acetoacetate, diethyl malonate, and the like.
  • alkoxy alcohols include 2-methoxyethanol, 2-ethoxyethanol, 2-methoxy-2-propanol and the like.
  • alkanolamines include monoethanolamine, diethanolamine, and triethanolamine. Of these, ⁇ diketones are preferred, and among them, acetylacetone can be most suitably used.
  • the content of the metal oxide precursor in the coating liquid is preferably 1 to 20% by mass, more preferably, from the viewpoint of the film thickness uniformity of the coating film and the film thickness that can be applied at one time. It is good that it is in the range of 3 to 15% by mass, more preferably 5 to 10% by mass.
  • the amount of the solvent is preferably from 5 to 100 times, more preferably from the viewpoint of the film thickness uniformity of the coating film and the film thickness that can be applied at one time with respect to the solid weight of the metal oxide precursor. 7 to 30 times, more preferably 10 to 20 times.
  • the amount of the solvent is more than 100 times, the film thickness that can be formed by one coating becomes thin, and a tendency to require many coatings to obtain a desired film thickness is observed.
  • the amount is less than 5 times, the film thickness becomes too thick and the hydrolysis / condensation reaction of the metal oxide precursor does not proceed sufficiently. Therefore, the amount of solvent should be selected in consideration of these.
  • the solvent for dissolving the metal oxide precursor include alcohols such as methanol, ethanol, propanol, butanol, heptanol, and isopropyl alcohol, organic acid esters such as ethyl acetate, acetonitrile, acetone, and methyl ethyl ketone.
  • the preparation of the coating liquid is performed by, for example, stirring the metal oxide precursor weighed so as to have a predetermined ratio, an appropriate amount of solvent, and other components added as necessary, with stirring means such as a stirrer. It can be prepared by a method such as stirring and mixing for a predetermined time. In this case, the components may be mixed at a time or may be mixed in a plurality of times.
  • the coating method of the coating liquid from the viewpoint of easy uniform coating, microgravure method, gravure method, reverse roll coating method, die coating method, knife coating method, dip coating method, spin coating method, bar coating Various wet coating methods such as the method can be exemplified as suitable ones. These may be appropriately selected and used, and one or more may be used in combination.
  • the applied coating liquid When the applied coating liquid is dried, it may be dried using a known drying device. Specific examples of the drying conditions include a temperature range of 80 ° C. to 120 ° C., Examples include a drying time of 0.5 minute to 5 minutes.
  • the sol-gel curing of the metal oxide precursor can be performed by irradiation with light energy such as ultraviolet rays, electron beams, X-rays or heating.
  • the amount of light energy to be irradiated can be variously adjusted in consideration of the type of metal oxide precursor, the thickness of the layer, and the like. However, if the amount of light energy to be irradiated is too small, it is difficult to increase the refractive index of the metal oxide layer 22. On the other hand, if the amount of light energy to be irradiated is excessively large, the transparent polymer film 12 may be deformed by the heat generated during the light energy irradiation. Therefore, these should be noted.
  • the amount of light is preferably from 300 to 8000 mJ at a measurement wavelength of 300 to 390 nm from the viewpoint of the refractive index of the metal oxide layer 22 and damage to the transparent polymer film 12. / Cm 2 , more preferably in the range of 500 to 5000 mJ / cm 2 .
  • specific examples of the ultraviolet irradiator to be used include a mercury lamp, a xenon lamp, a deuterium lamp, an excimer lamp, a metal halide lamp, and the like. These may be used alone or in combination of two or more.
  • the film thickness of the metal oxide layer 22 can be adjusted in consideration of solar shading, visibility, reflection color, and the like.
  • the lower limit of the film thickness of the metal oxide layer 22 is preferably 10 nm or more, more preferably, from the viewpoints of easily suppressing red and yellow coloring of the reflected color, and easily obtaining high transparency. It is good that it is 15 nm or more, more preferably 20 nm or more.
  • the upper limit value of the film thickness of the metal oxide layer 22 is preferably 90 nm or less, more preferably, from the viewpoint of easily suppressing the green color of the reflected color and obtaining high transparency. 85 nm or less, more preferably 80 nm or less.
  • Examples of the metal of the metal layer 24 include metals such as silver, gold, platinum, copper, aluminum, chromium, titanium, zinc, tin, nickel, cobalt, niobium, tantalum, tungsten, zirconium, lead, palladium, and indium. And alloys thereof. These may be contained alone or in combination of two or more.
  • the metal of the metal layer 24 silver or a silver alloy is preferable from the viewpoint of being excellent in visible light transmittance, heat ray reflectivity, conductivity, and the like when laminated. More preferably, from the viewpoint of improving durability against environment such as heat, light, and water vapor, the main component is silver, and at least one metal element such as copper, bismuth, gold, palladium, platinum, and titanium is included. It should be a silver alloy. More preferably, a silver alloy containing copper (Ag—Cu alloy), a silver alloy containing bismuth (Ag—Bi alloy), a silver alloy containing titanium (Ag—Ti alloy), or the like is preferable. This is because there are advantages such as a large silver diffusion suppression effect and cost advantage.
  • the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As.
  • Ag-Cu alloys such as Be, Ru, Rh, Os, Ir, Bi, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc.
  • Element which can be precipitated as a single phase in Y La, Ce, Nd, Sm, Gd, Tb, Dy, Ti, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm
  • elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
  • the lower limit of the copper content is preferably 1 atomic% or more, more preferably 2 atomic% or more, and even more preferably 3 atomic% or more, from the viewpoint of obtaining the effect of addition. Good to be.
  • the upper limit of the copper content is preferably 20 atomic% or less, more preferably 10 atomic%, from the viewpoint of manufacturability such as easy to ensure high transparency and easy production of a sputtering target. Hereinafter, it is more preferable that it is 5 atomic% or less.
  • the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be, Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc.
  • the lower limit of the bismuth content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining the effect of addition. It may be 0.1 atomic% or more.
  • the upper limit of the bismuth content is preferably 5 atomic% or less, more preferably 2 atomic% or less, and still more preferably 1 atomic% from the viewpoint of manufacturability such as easy production of a sputtering target. It is good to be below.
  • the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be-Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, Bi, etc., Ag-Ti system Elements that can be precipitated as a single phase in the alloy; Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm Examples include elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
  • the lower limit value of the titanium content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining an addition effect. It may be 0.1 atomic% or more.
  • the upper limit of the content of titanium is preferably 2 atomic% or less, more preferably 1.75 atomic% or less, and still more preferably, from the viewpoint that a complete solid solution is easily obtained when it is formed into a film. Is preferably 1.5 atomic% or less.
  • the ratio of subelements such as copper, bismuth and titanium can be measured using ICP analysis. Further, the metal (including alloy) constituting the metal layer 24 may be partially oxidized.
  • the lower limit of the film thickness of the metal layer 24 is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more from the viewpoints of stability, heat ray reflectivity, and the like.
  • the upper limit of the film thickness of the metal layer 24 is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 15 nm or less, from the viewpoints of transparency of visible light, economy, and the like.
  • a method of forming the metal layer 24 specifically, for example, a physical vapor deposition method (PVD) such as a vacuum deposition method, a sputtering method, an ion plating method, an MBE method, a laser ablation, a thermal method, etc.
  • PVD physical vapor deposition method
  • a vapor phase method such as a chemical vapor deposition method (CVD) such as a CVD method and a plasma CVD method.
  • CVD chemical vapor deposition method
  • the metal layer 24 may be formed using any one of these methods, or may be formed using two or more methods.
  • sputtering methods such as DC magnetron sputtering method and RF magnetron sputtering method can be preferably used from the viewpoint of obtaining a dense film quality and relatively easy film thickness control.
  • the metal layer 24 may be oxidized within a range that does not impair the function of the metal layer 24 by receiving post-oxidation or the like to be described later.
  • the barrier layer associated with the metal layer 24 mainly has a barrier function that suppresses the diffusion of elements constituting the metal layer 24 into the metal oxide layer 22. Further, by interposing between the metal oxide layer 22 and the metal layer 24, it is possible to contribute to improvement in adhesion between the two.
  • the barrier layer may have discontinuous portions such as floating islands as long as the diffusion can be suppressed.
  • the metal oxide constituting the barrier layer include, for example, titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, and magnesium oxide. And aluminum oxide, zirconium oxide, niobium oxide, cerium oxide, and the like. These may be contained alone or in combination of two or more. Further, these metal oxides may be double oxides in which two or more metal oxides are combined. Note that the barrier layer may contain inevitable impurities in addition to the metal oxide.
  • barrier layer it is mainly comprised from the oxide of the metal contained in the metal oxide layer 22 from a viewpoint of being excellent in the diffusion inhibitory effect of the metal which comprises the metal layer 24, and being excellent in adhesiveness. Good to be.
  • the barrier layer is a titanium oxide layer mainly composed of an oxide of Ti that is a metal contained in the TiO 2 layer. Good to be.
  • the barrier layer when the barrier layer is a titanium oxide layer, the barrier layer may be a thin film layer formed as titanium oxide from the beginning, or a thin film layer formed by post-oxidation of a metal Ti layer, Alternatively, it may be a thin film layer formed by post-oxidizing a partially oxidized titanium oxide layer.
  • the barrier layer is mainly composed of a metal oxide in the same manner as the metal oxide layer 22, but is set to be thinner than the metal oxide layer 22. This is because the diffusion of the metal constituting the metal layer 24 occurs at the atomic level, so that it is not necessary to increase the film thickness to a level necessary to ensure a sufficient refractive index. Moreover, by forming it thinly, the film-forming cost is reduced correspondingly, and it can contribute to the reduction of the manufacturing cost of the transparent laminated film 10.
  • the lower limit value of the film thickness of the barrier layer is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more from the viewpoint of easily ensuring barrier properties.
  • the upper limit value of the thickness of the barrier layer is preferably 15 nm or less, more preferably 10 nm or less, and still more preferably 8 nm or less, from the viewpoint of economy and the like.
  • the lower limit value of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is 1.0 / 4.0 or more from the viewpoint of barrier properties and the like.
  • the upper limit of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is preferably 1.0 / 0.5 or less, more preferably 1.0 / 0.7 or less, more preferably 1.0 / 1.0 or less, even more preferably 1.0 / 1.2 or less, most preferably 1 0.0 / 1.5 or less is preferable.
  • the Ti / O ratio can be calculated from the composition of the layer.
  • energy dispersive X-ray fluorescence analysis EDX
  • EDX energy dispersive X-ray fluorescence analysis
  • a test piece having a thickness of 100 nm or less in the cross-sectional direction of the laminated structure including the layer to be analyzed is prepared using an ultrathin section method (microtome) or the like.
  • the laminated structure and the position of the layer are confirmed by a transmission electron microscope (TEM) from the cross-sectional direction.
  • TEM transmission electron microscope
  • an electron beam is emitted from the electron gun of the EDX apparatus and is incident on the vicinity of the center of the film thickness of the layer to be analyzed.
  • Electrons incident from the surface of the test specimen enter to a certain depth and generate various electron beams and X-rays. By detecting and analyzing characteristic X-rays at this time, the constituent elements of the layer can be analyzed.
  • a vapor phase method can be suitably used from the viewpoint that a dense film can be formed and a thin film layer of about several nm to several tens of nm can be formed with a uniform film thickness.
  • the vapor phase method include physical vapor deposition methods (PVD) such as vacuum deposition, sputtering, ion plating, MBE, and laser ablation, thermal CVD, and plasma CVD. Examples thereof include chemical vapor deposition (CVD) and the like.
  • PVD physical vapor deposition methods
  • CVD chemical vapor deposition
  • a sputtering method such as a DC magnetron sputtering method or an RF magnetron sputtering method is preferable from the viewpoint of excellent adhesion at the film interface as compared with a vacuum deposition method and the like and easy control of the film thickness. Can be used.
  • Each barrier layer that can be included in the laminated structure may be formed using any one of these vapor phase methods, or formed using two or more methods. May be.
  • the barrier layer may be formed as the metal oxide layer 22 from the beginning using the above-described vapor phase method, or the metal layer 24 or the partially oxidized metal oxide layer 22 may be temporarily formed. It is also possible to form the film by oxidizing it after the film has been formed.
  • the partially oxidized metal oxide layer 22 refers to a metal oxide layer 22 that has room for further oxidation.
  • a gas containing oxygen as a reactive gas is mixed with an inert gas such as argon or neon as a sputtering gas, and the metal and oxygen are mixed.
  • a thin film may be formed while reacting with (reactive sputtering method).
  • the oxygen concentration in the atmosphere is the film thickness range described above. The optimum ratio may be appropriately selected in consideration of the above.
  • the metal layer 24 or the partially oxidized metal oxide layer 22 is formed and then post-oxidized later, specifically, the above-described laminated structure is formed on the transparent polymer film 12. Thereafter, the metal layer 24 or the partially oxidized metal oxide layer 22 in the laminated structure may be post-oxidized.
  • a sputtering method or the like may be used for forming the metal layer 24, and the reactive sputtering method or the like described above may be used for forming the partially oxidized metal oxide layer 22.
  • examples of the post-oxidation method include heat treatment, pressure treatment, chemical treatment, and natural oxidation. Of these post-oxidation techniques, heat treatment is preferable from the viewpoint of enabling post-oxidation relatively easily and reliably.
  • examples of the heat treatment include a method of causing the transparent polymer film 12 having the above-described laminated structure to exist in a heating atmosphere such as a heating furnace, a method of immersing in warm water, a method of microwave heating, A method of energizing and heating the metal layer 24, the partially oxidized metal oxide layer 22, and the like can be exemplified. These may be performed in combination of one or two or more.
  • the heating conditions at the time of the heat treatment are, for example, preferably 30 ° C. to 60 ° C., more preferably 32 ° C. to 57 ° C., and still more preferably 35 ° C. to 55 ° C.
  • the heating time is preferably selected from 5 days or longer, more preferably 10 days or longer, and even more preferably 15 days or longer. This is because the post-oxidation effect, the thermal deformation / fusion suppression of the transparent polymer film 12 and the like are good within the above heating condition range.
  • the heating atmosphere at the time of the heat treatment is preferably an atmosphere containing oxygen or moisture, such as the air, a high oxygen atmosphere, or a high humidity atmosphere. Particularly preferably, it is in the air from the viewpoint of manufacturability and cost reduction.
  • the moisture and oxygen contained in the metal oxide layer 22 are consumed during the post-oxidation.
  • the physical layer 22 becomes difficult to chemically react.
  • the metal oxide layer 22 is formed by a sol-gel method, moisture and oxygen contained in the metal oxide layer 22 are consumed at the time of post-oxidation.
  • the starting material (metal alkoxide or the like) by the sol-gel method remaining in the oxide layer 22 and moisture (adsorbed water or the like), oxygen, or the like hardly undergo a sol-gel curing reaction by sunlight. Therefore, it is possible to relieve internal stress caused by volume change such as curing shrinkage, and it is easy to suppress interfacial peeling of the laminated structure, and to improve durability against sunlight.
  • the transparent laminated film 10 is not limited to the configuration of the above embodiment, and may have a configuration in which the easy adhesion layer 14 is not provided in FIG. Moreover, the structure by which the easily bonding layer 14 is provided between the transparent polymer film 12 and the polymer body layer 18 in FIG.1 (b) may be sufficient.
  • the laminated structure portion 16 and the polymer layer 18 may be provided on both surfaces of the transparent polymer film 12, respectively. When the polymer layer 18 is formed on the easy-adhesion layer 14, adhesion to the transparent polymer film 12 is ensured via the easy-adhesion layer 14. There is an advantage that the range of selection of the resin is widened.
  • This coating liquid ⁇ 1> is opposite to the easy adhesive layer of a 50 ⁇ m thick polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4100”) having an easy adhesive layer formed on one side.
  • the polymer layer (thickness 0.5 ⁇ m) made of an acrylic resin was formed by coating on the surface and drying at 100 ° C. for 2 minutes.
  • a three-layer laminated structure composed of metal oxide layer / metal layer / metal oxide layer was formed on the formed polymer layer.
  • the method for forming the three-layer laminated structure is as follows.
  • a TiO 2 layer was formed by a sol-gel method using ultraviolet energy during sol-gel curing (hereinafter sometimes abbreviated as “(sol-gel + UV)”).
  • ⁇ Coating solution for TiO 2 layer As titanium alkoxide, tetra-n-butoxytitanium tetramer (“B4” manufactured by Nippon Soda Co., Ltd.), acetylacetone as an additive that forms an ultraviolet-absorbing chelate, n-butanol and isopropyl alcohol The resulting mixture was mixed for 10 minutes using a stirrer to prepare a TiO 2 layer coating solution. At this time, the composition of tetra-n-butoxy titanium tetramer / acetylacetone / n-butanol / isopropyl alcohol was 6.75 mass% / 3.38 mass% / 59.87 mass% / 30.00 mass%, respectively. did.
  • each thin film constituting the second layer was formed on the formed first layer. That is, a lower metal Ti layer was formed by sputtering on the first TiO 2 layer using a DC magnetron sputtering apparatus. Next, an Ag—Cu alloy layer was formed on the lower metal Ti layer by sputtering. Next, an upper metal Ti layer was formed on this Ag—Cu alloy layer by sputtering. At this time, the film formation conditions of the upper and lower metal Ti layers were as follows: Ti target (purity 4N), vacuum ultimate pressure: 5 ⁇ 10 ⁇ 6 (Torr), inert gas: Ar, gas pressure: 2.5 ⁇ 10 ⁇ 3 (Torr), input power: 1.5 (kW), and film formation time: 1.1 seconds.
  • the film formation conditions of the Ag—Cu alloy thin film are as follows: Ag—Cu alloy target (Cu content: 4 atomic%), vacuum ultimate pressure: 5 ⁇ 10 ⁇ 6 (Torr), inert gas: Ar, gas pressure: 2.5 ⁇ 10 ⁇ 3 (Torr), input power: 1.5 (kW), and film formation time: 1.1 seconds.
  • a TiO 2 layer by (sol gel + UV) was formed as a third layer on the formed second layer.
  • the film forming procedure according to the first layer is performed twice to obtain a predetermined film thickness.
  • the film after the formation of the third layer is heat-treated in a heating furnace at 40 ° C. for 300 hours to thereby form the second layer (metal Ti layer / Ag—Cu alloy layer / metal Ti layer) of metal Ti.
  • the layer was post-oxidized.
  • the transparent laminated film of Example 1 which has a 3 layer laminated structure part was produced by the above.
  • 3 Transparent laminated films of Examples 2 to 4 having a layer laminated structure were produced.
  • the method for forming the seven-layer laminated structure is as follows. The same procedure as in Example 1 was performed until the formation of the third layer. The third layer had a predetermined thickness by performing the film formation procedure according to the first layer three times.
  • Each thin film constituting the fourth layer was formed on the formed third layer.
  • a film forming procedure according to the second layer was performed.
  • the above-mentioned film formation conditions are as follows: Ag—Cu alloy target (Cu content: 4 atom%), vacuum ultimate pressure: 5 ⁇ 10 ⁇ 6 (Torr), inert gas
  • the film thickness was changed by changing: Ar, gas pressure: 2.5 ⁇ 10 ⁇ 3 (Torr), input power: 1.8 (kW), and film formation time: 1.1 seconds.
  • a TiO 2 layer having the same configuration as that of the third layer (sol gel + UV) was formed as a fifth layer on the formed fourth layer.
  • each thin film having the same configuration as the second layer was formed as the sixth layer on the formed fifth layer.
  • a TiO 2 layer by (sol gel + UV) was formed as a seventh layer on the formed sixth layer.
  • a predetermined film thickness is obtained by performing the film formation procedure according to the first layer once.
  • the film after forming the seventh layer is heat-treated in a heating furnace at 40 ° C. for 300 hours, whereby the second, fourth, and sixth layers (metal Ti layer / Ag—Cu alloy layer / metal Ti layer).
  • the metal Ti layer was post-oxidized.
  • a transparent laminated film of Example 5 having a 7-layer laminated structure was produced.
  • Example 8 A transparent laminated film of Example 8 having a 7-layer laminated structure was produced in the same manner as in Example 5 except that the polyethylene terephthalate film having a thickness of 50 ⁇ m was changed to a polyethylene terephthalate film having a thickness of 125 ⁇ m.
  • Comparative Example 2 The 7-layer laminated structure was formed in the same manner as in Example 5 except that the 7-layer laminated structure was formed directly on the easy-adhesive layer of the polyethylene terephthalate film and the polymer layer corresponding to Example 1 was not formed. A transparent laminated film of Comparative Example 2 was prepared.
  • Table 1 shows the detailed layer structure of the transparent laminated films of Examples 1 to 4 and Comparative Example 1 (transparent laminated film having a three-layer laminated structure).
  • Table 2 shows the detailed layer structure of the transparent laminated films of Examples 5 to 8 and Comparative Example 2 (transparent laminated film having a 7-layer laminated structure).
  • unit was measured using the eddy current meter (made by DELCOM company), and the groove width was measured. Furthermore, optical characteristics, radio wave permeability, and appearance were evaluated by the evaluation methods shown below.
  • a 22 ⁇ m thick acrylic adhesive sheet (“N-CLE”, manufactured by Toyo Packaging Co., Ltd.) was attached to the thin film laminated surface of the transparent laminated film, and the adhesive layer of this adhesive sheet was What was affixed on the single side
  • FIG. 3 (e): Example 6 Comparative Example 2
  • the thin film layer forming surface side of the transparent laminated film was attached with water using a window glass. It was confirmed whether a groove part was visually recognized from the position 30 cm away. The appearance was good when the groove was not visually recognized, and the appearance was poor when the groove was visible.
  • the refractive index of the TiO 2 layer was measured by FilmTek 3000 (manufactured by Scientific Computing International). Moreover, content of the organic component contained in the TiO 2 layer was measured by X-ray photoelectron spectroscopy (XPS).
  • EDX analysis was performed on the titanium oxide thin film formed by post-oxidizing the metal Ti layer, and the Ti / O ratio was determined as follows. That is, a transparent laminated film is cut out with a microtome (“Lultrome V2088” manufactured by LKB Co., Ltd.), and a test piece having a thickness in a cross-sectional direction of a laminated structure portion including a titanium oxide layer (barrier layer) to be analyzed is 100 nm or less. Was made. The cross section of the produced test piece was confirmed with a field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”).
  • HRTEM field emission electron microscope
  • an electron beam is emitted from the electron gun of this device, and a titanium oxide layer (barrier layer) to be analyzed
  • the elemental component of the titanium oxide layer (barrier layer) was analyzed by making it incident near the center of the film thickness and detecting and analyzing the generated characteristic X-rays.
  • the content of the sub-element Cu in the alloy layer was determined as follows. That is, under each film forming condition, a test piece in which an Ag—Cu alloy layer was separately formed on a glass substrate was prepared, and this test piece was immersed in a 6% HNO 3 solution and eluted with ultrasonic waves for 20 minutes. Then, it measured by the concentration method of ICP analysis method using the obtained sample solution.
  • the film thickness of each layer was measured from the cross-sectional observation of the test piece by the field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”). Further, the width of the groove formed in the metal layer was measured from the surface observation of the test piece by the field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”).
  • HRTEM field emission electron microscope
  • the polymer softening temperature of the polymer layer is less than 40 ° C.
  • a crack was generated in the laminated structure portion when the first layer of sol-gel was cured, and a groove portion was formed. Since the formed groove was visually recognized, the appearance was poor.
  • the 7-layer laminated structure is formed directly on the easy-adhesion layer without providing a polymer layer.
  • no crack was formed in the laminated structure portion and no groove portion was formed even when the seventh layer of sol-gel was cured. For this reason, the radio wave permeability was inferior.
  • the softening temperature of the polymer in the polymer layer is within a desired range.
  • Examples 1 to 5 and 7 to 8 cracks were formed in the laminated structure portion when the metal oxide layer was formed. The manner in which cracks are formed in the laminated structure is shown in FIGS. 3B to 3D as an example. The groove width was 0.3 to 0.6 ⁇ m.
  • Example 6 no crack was generated in the laminated structure portion and no groove portion was formed even when the seventh layer of sol-gel was cured. This situation is shown in FIG.
  • the surface resistance of the film alone was high (100 ⁇ / ⁇ or more), and it was confirmed that the film alone was excellent in radio wave transmission.
  • Example 6 the surface resistance of the film alone was slightly low (less than 100 ⁇ / ⁇ ). And in all of the Examples, the solar shading was excellent and the appearance was also good.
  • the softening temperature of the polymer in the polymer layer is 70 ° C. or higher, and cracks are formed in the laminated structure for the first time when the seventh layer of sol-gel is cured to form a groove. It was.
  • the softening temperature of the polymer in the polymer layer was less than 60 ° C., and cracks were formed in the laminated structure for the first time when the third layer of sol-gel was cured to form a groove. From these results, it was shown that by adjusting the softening temperature of the polymer in the polymer layer, it is possible to control the timing of generating cracks in the laminated structure.
  • laminated glass was made using each of the produced transparent laminated films, and the obtained laminated glass was evaluated.
  • Comparative Example 1 the appearance of the film alone was poor, the width of the groove was further expanded by vitrification, and the appearance of the laminated glass was also poor.
  • Comparative Example 2 no crack was formed in the laminated structure portion in the film alone, but no crack was formed in the laminated structure portion even by vitrification. For this reason, the laminated glass was inferior in radio wave transmission.
  • Example 1 to 5 and 7 to 8 in which the groove portion was formed in the laminated structure portion by a single film the laminated structure portion (metal layer) was divided due to the laminated glass.
  • An example of the progress of the segmentation of the laminated structure portion (metal layer) is shown in FIGS. 4B to 4D.
  • Example 6 in which the groove portion was not formed in the laminated structure portion with a single film cracks (groove portions) were formed in the laminated structure portion (metal layer) due to the laminated glass. This is shown in FIG.
  • Example 6 the surface resistance value of the film alone was less than 100 ⁇ / ⁇ , but the surface resistance value greatly increased as a result of the laminated glass, and the laminated glass was 100 ⁇ / ⁇ or more, and was excellent in radio wave transmission. Was confirmed. In all of the examples, the solar shading was excellent and the appearance was also good.
  • Example 6 since the groove portion was not formed in the laminated structure portion in the film alone, no dent was formed in the vicinity of the groove portion formed at the time of forming the laminated glass, and the occurrence of irregular reflection of light near the groove portion was suppressed. It can be seen that it has the best appearance as a laminated glass.
  • Examples 1 to 5 and 7 to 8 since a groove was formed in the laminated structure portion of the film alone, it was found that a recess was formed in the vicinity of the groove portion when the laminated glass was formed. However, the smaller the width of the groove is, the smaller the recess is formed, and the less the influence on the appearance is.
  • the width of the groove was 0.3 to 0.6 ⁇ m, the influence on the appearance was small, and the appearance was good.
  • the groove widths of 0.6 ⁇ m or less those having a groove width of 0.3 ⁇ m or less were particularly good in appearance.

Landscapes

  • Laminated Bodies (AREA)

Abstract

Provided is a process for producing a heat-insulating laminated structure which exhibits both excellent solar shading performance and excellent radio wave transmissivity. This process includes: a film-making step for making a transparent laminated film by forming a polymer layer (18) on the surface of a transparent polymer film (12) and then forming a laminated structure part which comprises both a metal oxide layer and a metal layer on the surface of the polymer layer (18); and a lamination step for laminating, by heating and pressing, two transparent substrates (28,28) with the transparent laminated film therebetween. In the film-making step, the metal oxide layer of the laminated structure part is formed by the sol-gel hardening of a metal oxide precursor, while a polymer that has a softening point lower than the heating temperature in the lamination step is used as the polymer constituting the polymer layer (18). In laminating the two transparent substrates (28,28), a groove is formed so as to divide the metal layer of the laminated structure part.

Description

遮熱性合わせ構造体の製造方法、遮熱性合わせ構造体、透明積層フィルムMethod for producing heat-insulating laminated structure, heat-insulating laminated structure, transparent laminated film
 本発明は、ビル・住宅等の建築物の窓ガラスや自動車等の車両の窓ガラスなどに好適に用いられる遮熱性合わせ構造体の製造方法、遮熱性合わせ構造体、遮熱性合わせ構造体に好適な透明積層フィルムに関するものである。 INDUSTRIAL APPLICABILITY The present invention is suitable for a method for manufacturing a heat-insulating laminated structure, a heat-insulating laminated structure, and a heat-insulating laminated structure suitably used for window glass of buildings such as buildings and houses, and window glass of vehicles such as automobiles. The present invention relates to a transparent laminated film.
 従来、日射を遮蔽するフィルムとして、熱線カットフィルムが知られている。熱線カットフィルムの構成としては、例えば特許文献1に、透明高分子フィルムの片面に、金属酸化物層と金属層とを交互に積層した、いわゆる多層膜タイプの透明積層フィルムが開示されている。 Conventionally, a heat ray cut film is known as a film for shielding solar radiation. As a configuration of the heat ray cut film, for example, Patent Document 1 discloses a so-called multilayer film type transparent laminated film in which metal oxide layers and metal layers are alternately laminated on one side of a transparent polymer film.
 また、例えば特許文献2には、透明高分子フィルムの面上に金属酸化物層と金属層とを交互に積層した積層構造に幅30μm以下の溝部を形成して電波透過性を高めた透明積層フィルムが提案されている。透明高分子フィルムには、巻き取り性などのハンドリング性を高めるために、片面または両面に予め易接着層が備えられている。積層構造の溝部は、透明高分子フィルムの易接着層上に積層構造を形成することにより形成されている。 For example, Patent Document 2 discloses a transparent laminate in which radio wave permeability is improved by forming a groove portion having a width of 30 μm or less in a laminated structure in which metal oxide layers and metal layers are alternately laminated on the surface of a transparent polymer film. A film has been proposed. The transparent polymer film is provided with an easy-adhesion layer on one side or both sides in advance in order to improve handling properties such as winding property. The groove portion of the laminated structure is formed by forming a laminated structure on the easy adhesion layer of the transparent polymer film.
 また、例えば特許文献3には、凹凸表面に導電性膜を形成した熱可塑性樹脂フィルムを、2枚の透明基材の間に配設して挟持し、透明機材と熱可塑性樹脂フィルムを接着することにより得られる合わせ構造体が開示されている。 Further, for example, in Patent Document 3, a thermoplastic resin film having a conductive film formed on an uneven surface is disposed and sandwiched between two transparent substrates, and the transparent equipment and the thermoplastic resin film are bonded. The resulting laminated structure is disclosed.
特開2005-353656号公報JP 2005-353656 A 国際公開2011/024756International Publication 2011/024756 特開2005-104793号公報JP 2005-104793 A
 ビル・住宅等の建築物や自動車等の車両においては、日射を遮蔽する目的で、2枚のガラス基材の間に熱線カットフィルムを挟んで窓ガラスを構成することがある。この場合、熱線カットフィルムには、基本的な性能として、可視光透過性、日射遮蔽性が要求される。 In buildings such as buildings and houses, and vehicles such as automobiles, a window glass may be formed by sandwiching a heat ray cut film between two glass substrates for the purpose of shielding solar radiation. In this case, the heat ray cut film is required to have visible light transmittance and solar shading as basic performance.
 また、ビル・住宅等の建築物においては、携帯電話やテレビジョン等の使用のために、数百MHz以上の高周波数の電波透過性が要求されることがある。また、自動車においては、ETCシステムの普及に伴い、ETC車載器の電波受信を妨げることがないように電波透過性が要求されることがある。 In addition, buildings such as buildings and houses may require high-frequency radio wave transmissivity of several hundred MHz or higher for the use of mobile phones and televisions. Moreover, in the automobile, with the spread of the ETC system, radio wave transmission may be required so as not to interfere with radio wave reception of the ETC on-board unit.
 しかしながら、特許文献1に記載の透明積層フィルムは、金属層が連続するものであるため、電波透過性が悪い。特許文献2に記載の透明積層フィルムは、易接着層を利用して積層構造部に溝部を形成するものであり、易接着層を利用して溝部を形成するものではない本願発明とは技術思想が異なる。特許文献3に記載の合わせ構造体は、熱可塑性樹脂フィルムを透明基材に接着する際に凹凸部が変形・平坦化するため、所望の電波透過性が得られにくいおそれがある。 However, the transparent laminated film described in Patent Document 1 has a poor radio wave transmission because the metal layer is continuous. The transparent laminated film described in Patent Document 2 forms a groove portion in a laminated structure portion using an easy adhesion layer, and does not form a groove portion using an easy adhesion layer. Is different. In the laminated structure described in Patent Document 3, when the thermoplastic resin film is bonded to the transparent substrate, the uneven portions are deformed and flattened, and thus there is a possibility that desired radio wave transmission properties are difficult to obtain.
 本発明が解決しようとする課題は、日射遮蔽性に優れるとともに電波透過性にも優れる遮熱性合わせ構造体の製造方法と遮熱性合わせ構造体を提供することにある。また、このような合わせ構造体に好適に用いることができる透明積層フィルムを提供することにある。 The problem to be solved by the present invention is to provide a method for manufacturing a heat-insulating laminated structure and a heat-insulating laminated structure that are excellent in solar radiation shielding properties and radio wave permeability. Moreover, it is providing the transparent laminated film which can be used suitably for such a laminated structure.
 上記課題を解決するため本発明に係る遮熱性合わせ構造体の製造方法は、透明高分子フィルムの面に高分子体層を形成し、該高分子体層の面に金属酸化物層と金属層とが積層される積層構造部を形成して透明積層フィルムを得るフィルム作製工程と、得られた透明積層フィルムを2枚の透明基材で挟み、加熱・加圧下にて2枚の透明基材を貼り合わせる合わせ化工程と、を有し、フィルム作製工程において、積層構造部の金属酸化物層を金属酸化物前駆体のゾルゲル硬化によって形成するとともに、高分子体層の高分子には、合わせ化工程の加熱温度よりも低い温度に軟化温度を有する高分子を用い、2枚の透明基材の貼り合わせ時に積層構造部の金属層を分断する溝部を形成することを要旨とするものである。 In order to solve the above problems, a method for manufacturing a heat-insulating laminated structure according to the present invention includes forming a polymer layer on the surface of a transparent polymer film, and forming a metal oxide layer and a metal layer on the surface of the polymer layer. Forming a laminated structure part to be laminated to obtain a transparent laminated film, and sandwiching the obtained transparent laminated film between two transparent substrates, and two transparent substrates under heating and pressure And in the film production process, the metal oxide layer of the laminated structure is formed by sol-gel curing of the metal oxide precursor, and the polymer of the polymer layer is combined with the polymer layer. Using a polymer having a softening temperature at a temperature lower than the heating temperature in the forming step, the gist is to form a groove part that divides the metal layer of the laminated structure part when the two transparent substrates are bonded together. .
 この際、高分子体層の高分子には、軟化温度が40~130℃の高分子を用いることが好ましい。そして、高分子体層を0.05~1.0μmの厚みに形成することが好ましい。また、フィルム作製工程において積層構造部の金属層を分断する溝部が形成されないようにする、あるいは、フィルム作製工程において形成される積層構造部の金属層を分断する溝部の幅を0.6μm以下にすることが好ましい。また、高分子体層の高分子には軟化温度が110~130℃の高分子を用いるとともに、高分子体層を0.05~0.5μmの厚みに形成することが好ましい。 In this case, it is preferable to use a polymer having a softening temperature of 40 to 130 ° C. as the polymer of the polymer layer. The polymer layer is preferably formed to a thickness of 0.05 to 1.0 μm. In addition, the groove for dividing the metal layer of the laminated structure is not formed in the film production process, or the width of the groove for dividing the metal layer of the laminated structure formed in the film production process is 0.6 μm or less. It is preferable to do. Further, it is preferable to use a polymer having a softening temperature of 110 to 130 ° C. as the polymer of the polymer layer and to form the polymer layer with a thickness of 0.05 to 0.5 μm.
 そして、本発明に係る遮熱性合わせ構造体は、上記の本発明に係る製造方法により得られたことを要旨とするものである。 The gist of the heat-insulating laminated structure according to the present invention is obtained by the manufacturing method according to the present invention.
 また、本発明に係る遮熱性合わせ構造体は、透明高分子フィルムの面に、高分子体層と、金属酸化物層と金属層とが積層された積層構造部と、がこの順で積層されている透明積層フィルムと、貼り合わされる2枚の透明基材と、を備え、透明積層フィルムを挟んで2枚の透明基材が貼り合わされており、透明積層フィルムの積層構造部には金属層を分断する溝部が形成されていることを要旨とするものである。 In the heat-insulating laminated structure according to the present invention, a polymer layer and a laminated structure in which a metal oxide layer and a metal layer are laminated are laminated in this order on the surface of the transparent polymer film. A transparent laminated film and two transparent substrates to be bonded together, and the two transparent substrates are bonded to each other with the transparent laminated film sandwiched therebetween. The gist of the present invention is that a groove part is formed to divide the line.
 この際、高分子体層の高分子の軟化温度は40~130℃であることが好ましい。また、高分子体層の厚さは0.05~1.0μmであることが好ましい。そして、高分子体層の材質としてはアクリル樹脂やフェノキシ樹脂、ブチラール樹脂を好適なものとして挙げることができる。 In this case, the softening temperature of the polymer in the polymer layer is preferably 40 to 130 ° C. The thickness of the polymer layer is preferably 0.05 to 1.0 μm. And as a material of a polymer layer, an acrylic resin, a phenoxy resin, and a butyral resin can be mentioned as a suitable thing.
 そして、本発明に係る透明積層フィルムは、透明高分子フィルムの面に金属酸化物層と金属層とが積層された積層構造部を有し、透明高分子フィルムと積層構造部の間には軟化温度が40~130℃の高分子体層が配置されていることを要旨とするものである。 The transparent laminated film according to the present invention has a laminated structure portion in which a metal oxide layer and a metal layer are laminated on the surface of the transparent polymer film, and is softened between the transparent polymer film and the laminated structure portion. The gist is that a polymer layer having a temperature of 40 to 130 ° C. is disposed.
 この際、積層構造部には金属層を分断する溝部が形成されていないことが好ましい。また、高分子体層の厚さは0.05~1.0μmであることが好ましい。そして、高分子体層の材質としてはアクリル樹脂やフェノキシ樹脂、ブチラール樹脂を好適なものとして挙げることができる。 At this time, it is preferable that a groove for dividing the metal layer is not formed in the laminated structure. The thickness of the polymer layer is preferably 0.05 to 1.0 μm. And as a material of a polymer layer, an acrylic resin, a phenoxy resin, and a butyral resin can be mentioned as a suitable thing.
 本発明に係る遮熱性合わせ構造体の製造方法によれば、貼り合わされる2枚の透明基材の間に金属酸化物層と金属層とが積層される積層構造部を有する透明積層フィルムが配置され、この透明積層フィルムの積層構造部に金属層を分断する溝部が形成されるので、日射遮蔽性と電波透過性に優れる遮熱性合わせ構造体が得られる。 According to the method for manufacturing a heat-insulating laminated structure according to the present invention, a transparent laminated film having a laminated structure portion in which a metal oxide layer and a metal layer are laminated between two transparent substrates to be bonded is disposed. And since the groove part which divides | segments a metal layer is formed in the laminated structure part of this transparent laminated film, the heat-insulating laminated structure excellent in solar radiation shielding property and radio wave permeability is obtained.
 この際、高分子体層の高分子に軟化温度が40~130℃の高分子を用いると、透明積層フィルムの積層構造部に金属層を分断する溝部が形成されやすい。また、高分子体層を0.05~1.0μmの厚みに形成すると、透明積層フィルムの積層構造部に金属層を分断する溝部が形成されやすい。 At this time, if a polymer having a softening temperature of 40 to 130 ° C. is used as the polymer of the polymer layer, a groove for dividing the metal layer is easily formed in the laminated structure of the transparent laminated film. In addition, when the polymer layer is formed to a thickness of 0.05 to 1.0 μm, a groove part for dividing the metal layer is easily formed in the laminated structure part of the transparent laminated film.
 そして、フィルム作製工程において積層構造部の金属層を分断する溝部が形成されないようにすると、合わせ化工程時に金属層の溝部の近傍に凹みが発生するのを抑えられる。これにより、溝部の近傍で光の乱反射が生じるのが抑えられ、外観にも優れる。また、フィルム作製工程において形成される積層構造部の金属層を分断する溝部の幅を0.6μm以下にすると、合わせ化工程時に金属層の溝部の近傍に発生する凹みを小さくできる。これにより、溝部の近傍で生じる光の乱反射の影響を小さくでき、外観に優れる。 Further, if the groove part that divides the metal layer of the laminated structure part is not formed in the film manufacturing process, it is possible to suppress the occurrence of a dent in the vicinity of the groove part of the metal layer during the aligning process. Thereby, the occurrence of irregular reflection of light near the groove is suppressed, and the appearance is also excellent. Moreover, when the width of the groove part for dividing the metal layer of the laminated structure part formed in the film production process is 0.6 μm or less, the dent generated in the vicinity of the groove part of the metal layer during the aligning process can be reduced. Thereby, the influence of the irregular reflection of the light which arises in the vicinity of a groove part can be made small, and it is excellent in an external appearance.
 そして、本発明に係る遮熱性合わせ構造体によれば、貼り合わされた2枚の透明基材の間に金属酸化物層と金属層とが積層される積層構造部を有する透明積層フィルムを備え、この透明積層フィルムの積層構造部に金属層を分断する溝部が形成されているので、日射遮蔽性と電波透過性に優れる。 And according to the heat-insulating laminated structure according to the present invention, comprising a transparent laminated film having a laminated structure part in which a metal oxide layer and a metal layer are laminated between two bonded transparent substrates, Since the groove part which divides | segments a metal layer is formed in the laminated structure part of this transparent laminated film, it is excellent in solar radiation shielding property and radio wave permeability.
 そして、本発明に係る透明積層フィルムによれば、透明高分子フィルムの面に金属酸化物層と金属層とが積層された積層構造部を有し、透明高分子フィルムと積層構造部の間には軟化温度が40~130℃の高分子体層が配置されているので、透明積層フィルムを2枚の透明基材で挟み、加熱・加圧下にて2枚の透明基材を貼り合わせたときに、積層構造部の金属層を分断する溝部が形成される。したがって、日射遮蔽性と電波透過性に優れる遮熱性合わせ構造体が得られる。 And according to the transparent laminated film which concerns on this invention, it has a laminated structure part by which the metal oxide layer and the metal layer were laminated | stacked on the surface of the transparent polymer film, Between a transparent polymer film and a laminated structure part Since a polymer layer with a softening temperature of 40-130 ° C is placed, when a transparent laminated film is sandwiched between two transparent substrates and the two transparent substrates are bonded together under heat and pressure In addition, a groove part for dividing the metal layer of the laminated structure part is formed. Therefore, a heat shielding laminated structure excellent in solar radiation shielding and radio wave transmission can be obtained.
 この際、積層構造部に金属層を分断する溝部が形成されていないと、合わせ化工程時に形成される積層構造部の金属層を分断する溝部の幅がより狭くなり、合わせ化工程時に金属層の溝部の近傍に凹みが発生するのを抑えられる。これにより、溝部の近傍で光の乱反射が生じるのが抑えられ、外観にも優れる。 At this time, if the groove portion for dividing the metal layer is not formed in the laminated structure portion, the width of the groove portion for dividing the metal layer of the laminated structure portion formed at the time of the alignment process becomes narrower. It is possible to suppress the formation of a dent in the vicinity of the groove portion. Thereby, the occurrence of irregular reflection of light near the groove is suppressed, and the appearance is also excellent.
本発明に係る遮熱性合わせ構造体の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the heat insulating laminated structure which concerns on this invention. 積層構造部の溝部の拡大図である。It is an enlarged view of the groove part of a laminated structure part. 透明積層フィルムの表面をマイクロスコープで撮影して得られた画像である。It is the image obtained by image | photographing the surface of a transparent laminated film with a microscope. 合わせガラス中の透明積層フィルムの表面をマイクロスコープで撮影して得られた画像である。It is the image obtained by image | photographing the surface of the transparent laminated film in a laminated glass with a microscope. 合わせガラスの断面をFE-SEM(電界放出走査型電子顕微鏡)で撮影して得られた画像である。3 is an image obtained by photographing a cross section of a laminated glass with an FE-SEM (field emission scanning electron microscope).
 本発明に係る遮熱性合わせ構造体の製造方法(以下、本製造方法ということがある。)について詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION A method for manufacturing a heat-insulating laminated structure according to the present invention (hereinafter sometimes referred to as the present manufacturing method) will be described in detail.
 本製造方法は、遮熱性を有する透明積層フィルムを得るフィルム作製工程と、得られた透明積層フィルムおよび2枚の透明基材を用いて行う合わせ化工程と、を有する。 This production method includes a film production process for obtaining a transparent laminated film having heat shielding properties, and a combining process performed using the obtained transparent laminated film and two transparent substrates.
 フィルム作製工程は、図1(a)に示すように透明高分子フィルム12の面に高分子体層18を形成する第1工程と、図1(b)に示すように高分子体層18の面に金属酸化物層22と金属層24とが積層される積層構造部16を形成する第2工程と、を有する。高分子体層18は、後述する合わせ化工程において積層構造部16に溝部20を形成する目的で設けられる。 The film production process includes a first process of forming a polymer layer 18 on the surface of the transparent polymer film 12 as shown in FIG. 1 (a) and a polymer layer 18 as shown in FIG. 1 (b). And a second step of forming the laminated structure portion 16 in which the metal oxide layer 22 and the metal layer 24 are laminated on the surface. The polymer layer 18 is provided for the purpose of forming the groove portion 20 in the laminated structure portion 16 in the combining step described later.
 図1(a)に示すように、透明高分子フィルム12の表面には、巻き取り性などのハンドリング性を高める目的で予め易接着層14が形成されている場合があるが、高分子体層18は、図1(a)に示すように、透明高分子フィルム12の易接着層14が形成されている面とは反対の面に形成してもよいし、易接着層14の上に形成してもよい。 As shown in FIG. 1A, an easy-adhesion layer 14 may be formed on the surface of the transparent polymer film 12 in advance for the purpose of improving handling properties such as winding property. As shown in FIG. 1A, 18 may be formed on the surface of the transparent polymer film 12 opposite to the surface on which the easy adhesion layer 14 is formed, or may be formed on the easy adhesion layer 14. May be.
 第1工程において、高分子体層18は、高分子材料を含む塗工液を調製し、これを透明高分子フィルム12の面に塗工した後、乾燥させて塗工膜とすることにより形成できる。塗工液の調製には、高分子材料を溶解させる溶剤を必要に応じて用いることができる。このような溶剤としては、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、イソプロピルアルコールなどのアルコール類、酢酸エチルなどの有機酸エステル、アセトニトリル、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのシクロエーテル類、ホルムアミド、N,N-ジメチルホルムアミドなどの酸アミド類、ヘキサンなどの炭化水素類、トルエン、キシレンなどの芳香族類などが挙げられる。これらは1種または2種以上混合されていても良い。 In the first step, the polymer layer 18 is formed by preparing a coating liquid containing a polymer material, coating the surface of the transparent polymer film 12, and then drying to form a coating film. it can. In preparing the coating solution, a solvent for dissolving the polymer material can be used as necessary. Examples of such solvents include alcohols such as methanol, ethanol, propanol, butanol, heptanol and isopropyl alcohol, organic acid esters such as ethyl acetate, ketones such as acetonitrile, acetone and methyl ethyl ketone, and cycloethers such as tetrahydrofuran and dioxane. Acid amides such as formamide and N, N-dimethylformamide, hydrocarbons such as hexane, aromatics such as toluene and xylene, and the like. These may be used alone or in combination.
 積層構造部16は、金属酸化物層22と金属層24とが積層されたものからなる。高分子体層18の面に金属酸化物層22・金属層24・金属酸化物層22・・・の順で金属酸化物層22と金属層24とを交互に積層する。なお、図1(b)においては、最下位の金属酸化物層を22aと表し、最上位の金属酸化物層を22bと表し、これらの間の金属酸化物層を中位の金属酸化物層と呼ぶ。 The laminated structure portion 16 is formed by laminating a metal oxide layer 22 and a metal layer 24. The metal oxide layer 22, the metal layer 24, the metal oxide layer 22... Are alternately stacked on the surface of the polymer layer 18 in this order. In FIG. 1B, the lowermost metal oxide layer is represented by 22a, the uppermost metal oxide layer is represented by 22b, and the metal oxide layer between them is the middle metal oxide layer. Call it.
 第2工程において、金属酸化物層22は、金属酸化物前駆体のゾルゲル硬化によって形成する。具体的には、金属酸化物前駆体を含む塗工液(コーティング液)を調製し、これを透明高分子フィルム12の面あるいは金属層24の面に塗工した後、乾燥させて塗工膜とし、所定の方法にてゾルゲル硬化させる。塗工液中には、ゾル-ゲル法による加水分解が促進され、高屈折率化が図りやすくなるなどの観点から、必要に応じて水が含まれていても良い。 In the second step, the metal oxide layer 22 is formed by sol-gel curing of a metal oxide precursor. Specifically, a coating liquid (coating liquid) containing a metal oxide precursor is prepared, applied to the surface of the transparent polymer film 12 or the surface of the metal layer 24, and then dried to form a coating film. And sol-gel curing by a predetermined method. The coating solution may contain water as necessary from the viewpoint that hydrolysis by the sol-gel method is promoted and a high refractive index is easily achieved.
 金属酸化物前駆体としては、金属アルコキシド、金属アシレート、金属キレートなどの有機金属化合物が挙げられる。有機金属化合物を金属酸化物前駆体とすることで、金属酸化物層22には有機金属化合物に由来する有機分を残存させることができる。金属酸化物層22が金属酸化物とともに有機分を含有することで、透明積層フィルム10の柔軟性が高まる。有機金属化合物のうちでは、空気中での安定性に優れるなどの観点から、金属キレートが好ましい。 Examples of the metal oxide precursor include organometallic compounds such as metal alkoxide, metal acylate, and metal chelate. By using the organometallic compound as the metal oxide precursor, the organic component derived from the organometallic compound can remain in the metal oxide layer 22. The softness | flexibility of the transparent laminated film 10 increases because the metal oxide layer 22 contains an organic component with a metal oxide. Among organometallic compounds, metal chelates are preferable from the viewpoint of excellent stability in air.
 ゾルゲル硬化の手段としては、紫外線、電子線、X線などの光エネルギーの照射や加熱などの手段が挙げられる。これらのうちでは、低温、短時間で金属酸化物を生成できる、熱による負荷を透明高分子フィルム12に与え難いなどの観点から、光エネルギーの照射、とりわけ、紫外線照射が好ましい。紫外線照射の場合は、比較的簡易な設備で済む。 Examples of the sol-gel curing means include irradiation with light energy such as ultraviolet rays, electron beams, and X-rays, and heating. Among these, from the viewpoint of being able to produce a metal oxide at a low temperature and in a short time, and being difficult to give a load due to heat to the transparent polymer film 12, irradiation with light energy, particularly irradiation with ultraviolet rays is preferable. In the case of ultraviolet irradiation, relatively simple equipment is sufficient.
 合わせ化工程では、図1(c)に示すように、得られた透明積層フィルム10を2枚の透明基材28,28で挟み、加熱・加圧下にて2枚の透明基材28,28を貼り合わせる。貼り合わせには接着剤を用いることができる。透明積層フィルム10は、接着剤よりなる接着層26を介して2枚の透明基材28,28で挟み込まれている。 In the combining step, as shown in FIG. 1 (c), the obtained transparent laminated film 10 is sandwiched between two transparent substrates 28 and 28, and the two transparent substrates 28 and 28 are heated and pressurized. Paste together. An adhesive can be used for bonding. The transparent laminated film 10 is sandwiched between two transparent base materials 28 and 28 via an adhesive layer 26 made of an adhesive.
 透明基材28は、可視光を十分に透過する板状の透明体であれば、特に限定されるものではないが、好ましいものとしては、ガラス板、樹脂板などを挙げることができる。ガラスとしては、通常のフロートガラス、半強化ガラス、強化ガラスを挙げることができる。樹脂としては、アクリル樹脂、ポリカーボネート樹脂などを挙げることができる。透明基材28の厚みは、用途等に応じて適宜定めれば良い。 The transparent substrate 28 is not particularly limited as long as it is a plate-like transparent body that sufficiently transmits visible light, but preferred examples include a glass plate and a resin plate. Examples of the glass include normal float glass, semi-tempered glass, and tempered glass. Examples of the resin include an acrylic resin and a polycarbonate resin. The thickness of the transparent substrate 28 may be determined as appropriate according to the application.
 接着剤の主材料としては、ポリビニルブチラール(PVB)、エチレンビニルアセテート(EVA)、アクリル樹脂、シリコーン樹脂、ウレタン樹脂などを挙げることができる。接着剤は、液状のものを用いても良いし、固体状のものを用いても良い。固体状のものとしては、フィルム状のものなどを挙げることができる。 Examples of the main material of the adhesive include polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), acrylic resin, silicone resin, and urethane resin. The adhesive may be a liquid or a solid one. Examples of the solid material include a film material.
 ここで、高分子体層18の高分子には、合わせ化工程の加熱温度よりも低い温度に軟化温度を有する高分子を用いる。そうすると、合わせ化工程の熱によって高分子体層18の柔軟性が増し、積層構造部16の面内方向の自由度が高くなる。この状況で圧力を加えて2枚の透明基材28,28を貼り合わせると、その圧力により積層構造部16に亀裂が生じ、金属層24が分断化される。つまり、2枚の透明基材28,28の貼り合わせ時に積層構造部16の金属層24を分断する溝部20を形成する。亀裂はランダムに形成されることから、亀裂よりなる溝部20は方向性のない溝部20となりやすい。このため、表面抵抗の方向性が出にくく、表面抵抗が均一化されやすい。なお、軟化温度は、非晶性高分子の場合はガラス転移温度(Tg)であり、結晶性高分子の場合は融点(Tm)であり、示差走査熱量測定(DSC)により測定することができる。 Here, as the polymer of the polymer layer 18, a polymer having a softening temperature lower than the heating temperature in the combining step is used. If it does so, the softness | flexibility of the polymer layer 18 will increase with the heat | fever of a matching process, and the freedom degree of the in-plane direction of the laminated structure part 16 will become high. If pressure is applied in this situation and the two transparent base materials 28 and 28 are bonded together, the pressure causes a crack in the laminated structure portion 16 and the metal layer 24 is divided. That is, the groove part 20 which divides the metal layer 24 of the laminated structure part 16 when the two transparent base materials 28 and 28 are bonded together is formed. Since the cracks are randomly formed, the groove part 20 formed of the cracks tends to be a groove part 20 having no directionality. For this reason, the directivity of the surface resistance is difficult to be obtained, and the surface resistance is easily made uniform. The softening temperature is a glass transition temperature (Tg) in the case of an amorphous polymer, and a melting point (Tm) in the case of a crystalline polymer, and can be measured by differential scanning calorimetry (DSC). .
 合わせ化工程の加熱温度は、用いる接着剤が軟化する温度に設定される。接着剤として例えばポリビニルブチラールを用いる場合、その軟化温度を考慮して、合わせ化工程の加熱温度は例えば130~135℃程度に設定される。そこで、用いる接着剤の軟化する温度を考慮して、高分子体層18の高分子には軟化温度が40~130℃の高分子を用いることが好ましい。 The heating temperature in the mating step is set to a temperature at which the adhesive used is softened. When, for example, polyvinyl butyral is used as the adhesive, the heating temperature in the combining step is set to, for example, about 130 to 135 ° C. in consideration of the softening temperature. Therefore, in consideration of the softening temperature of the adhesive used, it is preferable to use a polymer having a softening temperature of 40 to 130 ° C. as the polymer of the polymer layer 18.
 高分子体層18の高分子に合わせ化工程の加熱温度よりも低い温度に軟化温度を有する高分子を用いた場合、その軟化温度はフィルム作製工程のゾルゲル硬化温度よりも低い場合がある。 When a polymer having a softening temperature at a temperature lower than the heating temperature in the polymerizing process is used in accordance with the polymer of the polymer layer 18, the softening temperature may be lower than the sol-gel curing temperature in the film manufacturing process.
 高分子体層18の高分子にフィルム作製工程のゾルゲル硬化時の温度よりも低い温度に軟化温度を有する高分子を用いた場合には、ゾルゲル硬化時の熱により高分子体層18の柔軟性が増し、積層構造部16の面内方向の自由度が高くなる。ゾルゲル硬化時には金属酸化物前駆体の硬化収縮により積層構造部16に応力が蓄積されるが、積層構造部16の面内方向の自由度が高くなると、積層構造部16に蓄積された応力が解放されて、積層構造部16に亀裂が発生する場合がある。この亀裂が溝部20となる。つまり、ゾルゲル硬化時に、高分子体層18上でのゾルゲル硬化で生じる応力によって積層構造部16に溝部20が形成される場合がある。 When a polymer having a softening temperature at a temperature lower than the temperature at the time of sol-gel curing in the film production process is used as the polymer of the polymer layer 18, the flexibility of the polymer layer 18 by heat at the time of sol-gel curing. Increases, and the degree of freedom in the in-plane direction of the laminated structure portion 16 increases. At the time of sol-gel curing, stress accumulates in the laminated structure portion 16 due to curing shrinkage of the metal oxide precursor. However, when the degree of freedom in the in-plane direction of the laminated structure portion 16 increases, the accumulated stress in the laminated structure portion 16 is released. As a result, a crack may occur in the laminated structure portion 16. This crack becomes the groove 20. That is, when the sol-gel is cured, the groove 20 may be formed in the laminated structure portion 16 due to the stress generated by the sol-gel curing on the polymer layer 18.
 高分子体層18の高分子の軟化温度が低いほどゾルゲル硬化時に積層構造部16の自由度が高くなり、積層構造部16に応力が蓄積されにくく(解放されやすく)なる。そうすると、ゾルゲル硬化時の早い段階で金属酸化物前駆体の層に亀裂が発生して硬化途中の金属酸化物前駆体の島を形成し、亀裂によって分断された硬化途中の金属酸化物前駆体の島が面内方向に硬化収縮するため、溝部20の幅が比較的大きくなりやすい。また、積層構造部16の最上位ではなく中位あるいは最下位の金属酸化物層22のゾルゲル硬化時に亀裂が発生しやすい。 The lower the softening temperature of the polymer in the polymer layer 18 is, the higher the degree of freedom of the laminated structure portion 16 is during sol-gel curing, and stress is less likely to be accumulated (easily released) in the laminated structure portion 16. Then, cracks occur in the metal oxide precursor layer at an early stage of sol-gel curing, forming islands of the metal oxide precursor in the middle of curing, and the metal oxide precursor in the middle of curing divided by the cracks. Since the island cures and shrinks in the in-plane direction, the width of the groove 20 tends to be relatively large. Further, cracks are likely to occur during the sol-gel curing of the middle or lowest metal oxide layer 22 instead of the uppermost layer of the laminated structure portion 16.
 一方、高分子体層18の高分子の軟化温度が高くなると、ゾルゲル硬化時に積層構造部16の自由度が低下し、積層構造部16に応力が蓄積されやすくなる。そうすると、応力の解放時に応力が分散されるので、より幅の狭い亀裂が多く形成される。また、積層構造部16のより上位の金属酸化物層22のゾルゲル硬化時に亀裂が発生しやすくなる。高分子体層18の高分子の軟化温度がさらに高くなると、ゾルゲル硬化時に積層構造部16に亀裂が発生しなくなる。 On the other hand, when the softening temperature of the polymer in the polymer layer 18 is increased, the degree of freedom of the laminated structure portion 16 is reduced during sol-gel curing, and stress is easily accumulated in the laminated structure portion 16. Then, since the stress is dispersed when the stress is released, many narrower cracks are formed. Further, cracks are likely to occur during the sol-gel curing of the upper metal oxide layer 22 of the laminated structure portion 16. When the softening temperature of the polymer in the polymer layer 18 is further increased, cracks are not generated in the laminated structure portion 16 during sol-gel curing.
 このように、高分子体層18の高分子の軟化温度が変わると、ゾルゲル硬化時や合わせ化工程時の高分子体層18の柔軟性が変わり、積層構造部16に溝部20が形成されるタイミング、形成される溝部20の幅の大きさ、積層構造部16の分断形状などが変わる。したがって、高分子体層18の高分子の選択によってゾルゲル硬化時や合わせ化工程時の高分子体層18の柔軟性をコントロールでき、積層構造部16に溝部20を形成するタイミング、形成される溝部20の幅の大きさ、積層構造部16の分断形状などを調整することができる。なお、ゾルゲル硬化時に積層構造部16に亀裂が発生しない場合でも、合わせ化工程前に、積層構造部16の金属層24を分断する溝部20を形成することもできる。例えば、金属酸化物層22を金属酸化物前駆体のゾルゲル硬化によって形成した後、合わせ化工程前に、高分子体層18の高分子をその軟化温度以上に加熱することにより、高分子体層18の高分子を軟化させて金属酸化物層22に生じた応力を解放し、これにより積層構造部16の金属層24を分断する溝部20を形成することもできる。 As described above, when the softening temperature of the polymer of the polymer layer 18 changes, the flexibility of the polymer layer 18 during sol-gel curing or the combining process changes, and the groove portion 20 is formed in the laminated structure portion 16. The timing, the size of the width of the groove 20 to be formed, the divided shape of the laminated structure 16 and the like are changed. Therefore, the flexibility of the polymer layer 18 at the time of sol-gel curing or the combining process can be controlled by selecting the polymer of the polymer layer 18, the timing at which the groove 20 is formed in the laminated structure 16, and the groove to be formed It is possible to adjust the size of the width of 20, the divided shape of the laminated structure portion 16, and the like. In addition, even when a crack does not occur in the laminated structure portion 16 during sol-gel curing, the groove portion 20 that divides the metal layer 24 of the laminated structure portion 16 can be formed before the alignment process. For example, after the metal oxide layer 22 is formed by sol-gel curing of a metal oxide precursor, the polymer of the polymer layer 18 is heated to the softening temperature or higher before the combining step, whereby the polymer layer It is also possible to soften the polymer 18 and release the stress generated in the metal oxide layer 22, thereby forming the groove 20 that divides the metal layer 24 of the laminated structure 16.
 積層構造部16に溝部20が形成されるタイミングは、高分子体層18の高分子の軟化温度によって調整できる。また、高分子体層18の厚みや、ゾルゲル硬化時の温度などによっても調整できる。軟化温度によって調整する場合の一例として説明すると、高分子体層18の軟化温度が40℃未満では、積層構造部16の1層目の金属酸化物層22aの形成時に溝部20(亀裂)が形成される。軟化温度が40℃以上~60℃未満においては、積層構造部16の3層目の金属酸化物層22の形成時に初めて溝部20(亀裂)が発生する。この場合、3層積層構造では最上位の金属酸化物層22の形成時に溝部20(亀裂)が形成されるが、5層積層構造あるいは7層積層構造では中位の金属酸化物層22の形成時に溝部20(亀裂)が形成される。軟化温度が60℃以上~70℃未満においては、積層構造部16の5層目の金属酸化物層22の形成時に初めて溝部20(亀裂)が発生する。軟化温度が70℃以上~130℃以下においては、比較的軟化温度が高いため、積層構造部16の7層目の金属酸化物層22bの形成時に初めて溝部20(亀裂)が発生する。この場合、7層積層構造においても最上位の金属酸化物層22bの形成時に溝部20(亀裂)を形成できる。 The timing at which the groove 20 is formed in the laminated structure 16 can be adjusted by the softening temperature of the polymer in the polymer layer 18. It can also be adjusted by the thickness of the polymer layer 18 and the temperature during sol-gel curing. As an example in the case of adjusting by the softening temperature, when the softening temperature of the polymer layer 18 is less than 40 ° C., the groove 20 (crack) is formed when the first metal oxide layer 22a of the laminated structure 16 is formed. Is done. When the softening temperature is not lower than 40 ° C. and lower than 60 ° C., the groove 20 (crack) is generated for the first time when the third metal oxide layer 22 of the laminated structure 16 is formed. In this case, the groove 20 (crack) is formed when the uppermost metal oxide layer 22 is formed in the three-layer laminated structure, but the middle metal oxide layer 22 is formed in the five-layer laminated structure or the seven-layer laminated structure. Sometimes grooves 20 (cracks) are formed. When the softening temperature is not less than 60 ° C. and less than 70 ° C., the groove 20 (crack) is generated for the first time when the fifth metal oxide layer 22 of the laminated structure 16 is formed. When the softening temperature is 70 ° C. or higher and 130 ° C. or lower, since the softening temperature is relatively high, the groove 20 (crack) is generated for the first time when the seventh metal oxide layer 22b of the laminated structure 16 is formed. In this case, even in the seven-layer stacked structure, the groove 20 (crack) can be formed when the uppermost metal oxide layer 22b is formed.
 高分子体層18は、厚いほどゾルゲル硬化時に積層構造部16の自由度を高くでき、積層構造部16に溝部20(亀裂)を発生させやすい。しかしながら、図2に示すように、厚いほど溝部20を構成する端部で高分子体層18側への沈み込みが大きくなって乱反射の原因となる。したがって、溝部20における乱反射を抑えるなどの観点から、高分子体層18の厚みは1.0μm以下であることが好ましい。また、合わせ化工程前に溝部20の発生を抑えるなどの観点からいえば、高分子体層18の厚みは0.5μm以下であることが好ましい。一方、厚みの下限は特に限定されるものではないが、製造上の観点などから0.05μm以上であることが好ましい。 As the polymer layer 18 is thicker, the degree of freedom of the laminated structure portion 16 can be increased when the sol-gel is cured, and the groove portion 20 (crack) is easily generated in the laminated structure portion 16. However, as shown in FIG. 2, as the thickness increases, the sinking toward the polymer layer 18 side becomes larger at the end portion constituting the groove portion 20 and causes irregular reflection. Therefore, from the viewpoint of suppressing irregular reflection at the groove 20, the thickness of the polymer layer 18 is preferably 1.0 μm or less. Further, from the viewpoint of suppressing the generation of the groove 20 before the alignment step, the thickness of the polymer layer 18 is preferably 0.5 μm or less. On the other hand, the lower limit of the thickness is not particularly limited, but is preferably 0.05 μm or more from the viewpoint of manufacturing.
 合わせ化工程前の透明積層フィルム10自体に溝部20が形成されている場合には、合わせ化工程の熱によって高分子体層18の柔軟性が増し、積層構造部16の面内方向の自由度が高くなる結果、予め形成されている溝部20を起点として、積層構造部16にはさらに亀裂が生じ、溝部20により分断されている金属層24の分断化がさらに進行する。また、溝部20の分断化の進行とともに、すでに形成されている溝部20の幅が広がる場合もある。 When the groove 20 is formed in the transparent laminated film 10 itself before the combining step, the flexibility of the polymer layer 18 is increased by the heat of the combining step, and the degree of freedom in the in-plane direction of the laminated structure portion 16 is increased. As a result, the stacked structure portion 16 is further cracked starting from the groove portion 20 formed in advance, and the metal layer 24 divided by the groove portion 20 is further divided. Moreover, the width | variety of the already formed groove part 20 may spread with progress of the fragmentation of the groove part 20. FIG.
 溝部20の幅が広すぎる場合、合わせ化工程時の圧力によって金属層24の溝部20の近傍に凹みが発生する。この凹みによって溝部20の近傍で光の乱反射が生じ、外観不良となる場合がある。 When the width of the groove portion 20 is too wide, a dent is generated in the vicinity of the groove portion 20 of the metal layer 24 due to the pressure during the alignment process. Due to this dent, irregular reflection of light occurs in the vicinity of the groove portion 20, and the appearance may be poor.
 したがって、溝部20の近傍に凹みが発生することによる光の乱反射が生じるのを抑えるなどの観点から、合わせ化工程前の透明積層フィルム10自体には溝部20が形成されていないこと、あるいは、溝部20が形成されていたとしても幅の狭い溝部20であることが好ましい。合わせ化工程前の透明積層フィルム10自体に溝部20が形成されている場合には、溝部20の幅としては、光の乱反射が生じるのを抑えるなどの観点から、0.6μm以下であることが好ましい。より好ましくは0.3μm以下である。溝部20の幅は、光学顕微鏡により積層構造の表面を5枚撮影し、1枚ごとに溝部20の3箇所(計15箇所)について測定した幅の平均値である。 Therefore, from the viewpoint of suppressing the occurrence of irregular reflection of light due to the occurrence of a dent in the vicinity of the groove 20, the groove 20 is not formed in the transparent laminated film 10 itself before the alignment process, or the groove Even if 20 is formed, it is preferable that the groove 20 has a narrow width. When the groove 20 is formed in the transparent laminated film 10 itself before the combining step, the width of the groove 20 is 0.6 μm or less from the viewpoint of suppressing the occurrence of irregular reflection of light. preferable. More preferably, it is 0.3 μm or less. The width of the groove part 20 is an average value of the widths measured at three places (15 places in total) of the groove part 20 by photographing five surfaces of the laminated structure with an optical microscope.
 合わせ化工程前の透明積層フィルム10自体に溝部20が形成されないようにする、あるいは、形成されたとしても溝部20の幅を0.6μm以下にするには、高分子体層18の高分子の軟化温度を高くし、高分子体層18の厚みを薄くするとよい。合わせ化工程前の透明積層フィルム10自体に溝部20が形成されないようにするには、高分子体層18の高分子の軟化温度を110℃以上、高分子体層18の厚みを0.5μm以下に設定することが好ましい。また、溝部20の幅を0.6μm以下にするには、高分子体層18の高分子の軟化温度を40℃以上、高分子体層18の厚みを0.5μm以下に設定することが好ましい。 In order to prevent the groove 20 from being formed in the transparent laminated film 10 itself before the combining step, or to reduce the width of the groove 20 to 0.6 μm or less even if it is formed, the polymer layer 18 It is preferable to increase the softening temperature and reduce the thickness of the polymer layer 18. In order to prevent the groove 20 from being formed in the transparent laminated film 10 itself before the combining step, the polymer softening temperature of the polymer layer 18 is 110 ° C. or more and the thickness of the polymer layer 18 is 0.5 μm or less. It is preferable to set to. Further, in order to make the width of the groove portion 20 0.6 μm or less, it is preferable to set the polymer softening temperature of the polymer layer 18 to 40 ° C. or more and the thickness of the polymer layer 18 to 0.5 μm or less. .
 高分子体層18の材料としては、具体的には、アクリル樹脂、フェノキシ樹脂、ブチラール樹脂などが挙げられる。これらのうちでは、光学特性(透明性)に優れる、塗工性に優れるなどの観点から、アクリル樹脂、ブチラール樹脂が好ましい。 Specific examples of the material for the polymer layer 18 include acrylic resin, phenoxy resin, and butyral resin. Of these, acrylic resins and butyral resins are preferred from the viewpoints of excellent optical properties (transparency) and excellent coating properties.
 本製造方法により、日射遮蔽性、電波透過性に優れた遮熱性合わせ構造体30を得ることができる。遮熱性合わせ構造体30は、図1(c)に示すように、透明積層フィルム10を挟んで2枚の透明基材28,28が貼り合わされており、透明積層フィルム10の積層構造部16には金属層24を分断する溝部20が形成されている。 This manufacturing method makes it possible to obtain a heat shielding laminated structure 30 having excellent solar radiation shielding properties and radio wave transmission properties. As shown in FIG. 1 (c), the heat shielding laminated structure 30 has two transparent base materials 28 and 28 bonded together with the transparent laminated film 10 sandwiched therebetween, and the laminated structure portion 16 of the transparent laminated film 10 is attached. A groove 20 for dividing the metal layer 24 is formed.
 得られた遮熱性合わせ構造体30は、透明積層フィルム10を含むものであるから、日射遮蔽性に優れる。また、積層構造部16には金属層24を分断する溝部20が形成されていることから、電波透過性にも優れる。遮熱性合わせ構造体30は、2枚の透明基材28,28を貼り合わせる際の圧力や温度の条件を調整することにより、所望の表面抵抗値に設定することができる。遮熱性合わせ構造体30の表面抵抗値としては、電波透過性の観点から、100Ω/□以上であることが好ましい。 Since the obtained heat shielding laminated structure 30 includes the transparent laminated film 10, it is excellent in solar shading. Moreover, since the groove part 20 which divides | segments the metal layer 24 is formed in the laminated structure part 16, it is excellent also in radio wave permeability. The heat shielding laminated structure 30 can be set to a desired surface resistance value by adjusting the pressure and temperature conditions when the two transparent substrates 28 and 28 are bonded together. The surface resistance value of the heat-insulating laminated structure 30 is preferably 100Ω / □ or more from the viewpoint of radio wave transmission.
 透明積層フィルム10は、図1(b)に示すように、透明高分子フィルム12と、易接着層14と、積層構造部16と、高分子体層18と、を有している。易接着層14は、透明高分子フィルム12の一方面に設けられている。積層構造部16は、透明高分子フィルム12の易接着層14が形成された面とは反対の面に設けられている。高分子体層18は、透明高分子フィルム12と積層構造部16の間に設けられている。 As shown in FIG. 1B, the transparent laminated film 10 has a transparent polymer film 12, an easy adhesion layer 14, a laminated structure portion 16, and a polymer layer 18. The easy adhesion layer 14 is provided on one surface of the transparent polymer film 12. The laminated structure portion 16 is provided on a surface opposite to the surface on which the easy adhesion layer 14 of the transparent polymer film 12 is formed. The polymer layer 18 is provided between the transparent polymer film 12 and the laminated structure portion 16.
 透明高分子フィルム12は、積層構造部16を形成するためのベースとなる基材である。透明高分子フィルム12の材料としては、可視光領域において透明性を有し、その表面に薄膜を支障なく形成できるものであれば、特に限定されるものではない。 The transparent polymer film 12 is a base material serving as a base for forming the laminated structure portion 16. The material of the transparent polymer film 12 is not particularly limited as long as it has transparency in the visible light region and can form a thin film on the surface without hindrance.
 透明高分子フィルム12の材料としては、具体的には、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリイミド、ポリアミド、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、トリアセチルセルロース、ポリウレタン、シクロオレフィンポリマーなどの高分子材料が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのうちでは、透明性、耐久性、加工性に優れるなどの観点から、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、シクロオレフィンポリマーがより好ましい材料として挙げられる。 Specific examples of the material of the transparent polymer film 12 include polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polystyrene, polyimide, polyamide, polybutylene terephthalate, polyethylene naphthalate. , Polymer materials such as polysulfone, polyethersulfone, polyetheretherketone, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, triacetyl cellulose, polyurethane, and cycloolefin polymer. These may be used alone or in combination of two or more. Among these, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, and cycloolefin polymer are more preferable materials from the viewpoint of excellent transparency, durability, and processability.
 易接着層14は、透明高分子フィルム12の巻き取り性などのハンドリング性を高めるために透明高分子フィルム12に予め備えられたものである。易接着層14は、光学用途向けの透明高分子フィルム12の表面に形成されていることが多い。これは、光学用途向けの透明高分子フィルム12は、シリカ粒子などをフィルム中に配合することでハンドリング性を高めることが困難なためである。 The easy-adhesion layer 14 is provided in advance on the transparent polymer film 12 in order to improve handling properties such as winding property of the transparent polymer film 12. The easy adhesion layer 14 is often formed on the surface of the transparent polymer film 12 for optical applications. This is because it is difficult for the transparent polymer film 12 for optical applications to improve handling properties by blending silica particles or the like into the film.
 積層構造部16は、透明高分子フィルム12側から金属酸化物層22・金属層24・金属酸化物層22・・・・の順で金属酸化物層22と金属層24とが交互に積層された7層積層構造のものからなる。透明高分子フィルム12側の最内層(22a)と透明高分子フィルム12とは反対側の最外層(22b)には金属酸化物層22が配置されている。金属酸化物層22および金属層24は薄膜よりなる。金属層24の一方面または両面には、さらにバリア層が形成されていてもよい。バリア層は金属層24に付随する薄膜層であり、金属層24とともに1層として数える。バリア層は、金属層24を構成する元素が金属酸化物層22中に拡散するのを抑制する。 In the laminated structure portion 16, the metal oxide layer 22, the metal layer 24, the metal oxide layer 22,... Are alternately laminated in this order from the transparent polymer film 12 side. Further, it has a seven-layer laminated structure. A metal oxide layer 22 is disposed on the innermost layer (22a) on the transparent polymer film 12 side and the outermost layer (22b) on the opposite side of the transparent polymer film 12. The metal oxide layer 22 and the metal layer 24 are made of a thin film. A barrier layer may be further formed on one surface or both surfaces of the metal layer 24. The barrier layer is a thin film layer attached to the metal layer 24 and is counted as one layer together with the metal layer 24. The barrier layer suppresses diffusion of elements constituting the metal layer 24 into the metal oxide layer 22.
 金属酸化物層22は、金属層24とともに積層されることで透明性を高める(可視光領域で透過性に優れる)などの機能を発揮するものであり、主として高屈折率層として機能しうるものである。高屈折率とは、633nmの光に対する屈折率が1.7以上ある場合をいう。金属層24は、主として日射遮蔽層として機能しうる。このような積層構造部16により、良好な可視光透過性(透明性)、日射遮蔽性を有する。 The metal oxide layer 22 exhibits functions such as enhancing transparency (excelling in the visible light region) by being laminated together with the metal layer 24, and can function mainly as a high refractive index layer. It is. High refractive index means a case where the refractive index for light of 633 nm is 1.7 or more. The metal layer 24 can mainly function as a solar radiation shielding layer. Such a laminated structure 16 has good visible light transparency (transparency) and solar shading.
 なお、積層構造部16の層数は、可視光透過性(透明性)、日射遮蔽性などの光学特性やフィルム全体の表面抵抗値などの電気特性の求めなどに応じて適宜設定すればよく、7層以外の層数にすることができる。積層構造部16の層数としては、各薄膜の材料や膜厚、製造コストなどを考慮すると、2~10層の範囲内であることが好ましい。また、光学特性を考慮すると、奇数層がより好ましく、特に3層、5層、7層が好ましい。 In addition, the number of layers of the laminated structure portion 16 may be appropriately set according to the optical characteristics such as visible light transparency (transparency) and solar shading, and the electrical characteristics such as the surface resistance of the entire film. The number of layers can be other than seven. The number of layers of the laminated structure portion 16 is preferably in the range of 2 to 10 layers in consideration of the material, film thickness, manufacturing cost, etc. of each thin film. In consideration of optical characteristics, odd-numbered layers are more preferable, and 3 layers, 5 layers, and 7 layers are particularly preferable.
 以下、積層構造部16の金属酸化物層22、金属層24、バリア層について詳細に説明する。 Hereinafter, the metal oxide layer 22, the metal layer 24, and the barrier layer of the laminated structure portion 16 will be described in detail.
 積層構造部16の金属酸化物層22の金属酸化物としては、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などが挙げられる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複合酸化物であっても良い。これらのうちでは、可視光に対する屈折率が比較的大きいなどの観点から、チタンの酸化物、インジウムとスズとの酸化物、亜鉛の酸化物、スズの酸化物などが好ましい。 Examples of the metal oxide of the metal oxide layer 22 of the multilayer structure portion 16 include titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, magnesium oxide, Examples thereof include aluminum oxide, zirconium oxide, niobium oxide, and cerium oxide. These may be contained alone or in combination of two or more. These metal oxides may be composite oxides in which two or more metal oxides are combined. Among these, titanium oxide, indium and tin oxide, zinc oxide, tin oxide, and the like are preferable from the viewpoint of relatively high refractive index with respect to visible light.
 金属酸化物層22中に含まれる有機分の含有量の下限値は、柔軟性を付与しやすいなどの観点から、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、7質量%以上であると良い。一方、金属酸化物層22中に含まれる有機分の含有量の上限値は、高屈折率を確保しやくなる、耐溶剤性を確保しやすくなるなどの観点から、好ましくは、30質量%以下、より好ましくは、25質量%以下、さらに好ましくは、20質量%以下であると良い。有機分の含有量は、X線光電子分光法(XPS)などを用いて調べることができる。また、上記有機分の種類は、赤外分光法(IR)(赤外吸収分析)などを用いて調べることができる。 The lower limit of the content of the organic component contained in the metal oxide layer 22 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably, from the viewpoint of easily imparting flexibility. 7 mass% or more. On the other hand, the upper limit of the content of the organic component contained in the metal oxide layer 22 is preferably 30% by mass or less from the viewpoint of easily ensuring a high refractive index and easily ensuring solvent resistance. More preferably, it is 25% by mass or less, and further preferably 20% by mass or less. The organic content can be examined using X-ray photoelectron spectroscopy (XPS) or the like. Moreover, the kind of said organic content can be investigated using infrared spectroscopy (IR) (infrared absorption analysis) etc.
 金属酸化物層22は、金属酸化物前駆体のゾルゲル硬化により形成されるが、ゾルゲル硬化の手段として光エネルギーの照射を選択する場合、有機金属化合物は光吸収性(例えば、紫外線吸収性)のキレートを形成する配位子を備えていることが好ましい。光吸収性のキレート配位子を備えることで、比較的低温下において金属酸化物層22が形成できる。 The metal oxide layer 22 is formed by sol-gel curing of a metal oxide precursor. When light energy irradiation is selected as the sol-gel curing means, the organometallic compound is light-absorbing (for example, UV-absorbing). It is preferable to have a ligand that forms a chelate. By providing the light-absorbing chelate ligand, the metal oxide layer 22 can be formed at a relatively low temperature.
 このようなキレート配位子としては、βジケトン類、アルコキシアルコール類、アルカノールアミン類などが挙げられる。βジケトン類としては、アセチルアセトン、ベンゾイルアセトン、アセト酢酸エチル、アセト酢酸メチル、マロン酸ジエチルなどが挙げられる。アルコキシアルコール類としては、2-メトキシエタノール、2-エトキシエタノール、2-メトキシ-2-プロパノールなどが挙げられる。アルカノールアミン類としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどが挙げられる。これらのうちでは、βジケトン類が好ましく、中でもアセチルアセトンを最も好適に用いることができる。 Such chelate ligands include β diketones, alkoxy alcohols, alkanolamines and the like. Examples of β diketones include acetylacetone, benzoylacetone, ethyl acetoacetate, methyl acetoacetate, diethyl malonate, and the like. Examples of alkoxy alcohols include 2-methoxyethanol, 2-ethoxyethanol, 2-methoxy-2-propanol and the like. Examples of alkanolamines include monoethanolamine, diethanolamine, and triethanolamine. Of these, β diketones are preferred, and among them, acetylacetone can be most suitably used.
 塗工液中に占める金属酸化物前駆体の含有量は、塗膜の膜厚均一性や一回に塗工できる膜厚などの観点から、好ましくは、1~20質量%、より好ましくは、3~15質量%、さらに好ましくは、5~10質量%の範囲内にあると良い。 The content of the metal oxide precursor in the coating liquid is preferably 1 to 20% by mass, more preferably, from the viewpoint of the film thickness uniformity of the coating film and the film thickness that can be applied at one time. It is good that it is in the range of 3 to 15% by mass, more preferably 5 to 10% by mass.
 溶媒量は、金属酸化物前駆体の固形分重量に対して、塗膜の膜厚均一性や一回に塗工できる膜厚などの観点から、好ましくは、5~100倍量、より好ましくは、7~30倍量、さらに好ましくは、10~20倍量の範囲内であると良い。溶媒量が100倍量より多くなると、一回の塗工で形成できる膜厚が薄くなり、所望の膜厚を得るために多数回の塗工が必要となる傾向が見られる。一方、5倍量より少なくなると、膜厚が厚くなり過ぎ、金属酸化物前駆体の加水分解・縮合反応が十分に進行し難くなる傾向が見られる。したがって、溶媒量は、これらを考慮して選択すると良い。 The amount of the solvent is preferably from 5 to 100 times, more preferably from the viewpoint of the film thickness uniformity of the coating film and the film thickness that can be applied at one time with respect to the solid weight of the metal oxide precursor. 7 to 30 times, more preferably 10 to 20 times. When the amount of the solvent is more than 100 times, the film thickness that can be formed by one coating becomes thin, and a tendency to require many coatings to obtain a desired film thickness is observed. On the other hand, if the amount is less than 5 times, the film thickness becomes too thick and the hydrolysis / condensation reaction of the metal oxide precursor does not proceed sufficiently. Therefore, the amount of solvent should be selected in consideration of these.
 金属酸化物前駆体を溶解させる溶媒としては、具体的には、例えば、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、イソプロピルアルコールなどのアルコール類、酢酸エチルなどの有機酸エステル、アセトニトリル、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのシクロエーテル類、ホルムアミド、N,N-ジメチルホルムアミドなどの酸アミド類、ヘキサンなどの炭化水素類、トルエンなどの芳香族類などを例示することができる。これらは1種または2種以上混合されていても良い。 Specific examples of the solvent for dissolving the metal oxide precursor include alcohols such as methanol, ethanol, propanol, butanol, heptanol, and isopropyl alcohol, organic acid esters such as ethyl acetate, acetonitrile, acetone, and methyl ethyl ketone. Ketones, cycloethers such as tetrahydrofuran and dioxane, acid amides such as formamide and N, N-dimethylformamide, hydrocarbons such as hexane, aromatics such as toluene, and the like. These may be used alone or in combination.
 塗工液の調製は、例えば、所定割合となるように秤量した金属酸化物前駆体と、適当な量の溶媒と、必要に応じて添加される他の成分とを、攪拌機などの撹拌手段により所定時間撹拌・混合するなどの方法により調製することができる。この場合、各成分の混合は、1度に混合しても良いし、複数回に分けて混合しても良い。 The preparation of the coating liquid is performed by, for example, stirring the metal oxide precursor weighed so as to have a predetermined ratio, an appropriate amount of solvent, and other components added as necessary, with stirring means such as a stirrer. It can be prepared by a method such as stirring and mixing for a predetermined time. In this case, the components may be mixed at a time or may be mixed in a plurality of times.
 塗工液の塗工法としては、均一な塗工が行いやすいなどの観点から、マイクログラビア法、グラビア法、リバースロールコート法、ダイコート法、ナイフコート法、ディップコート法、スピンコート法、バーコート法など、各種のウェットコーティング法を好適なものとして例示することができる。これらは適宜選択して用いることができ、1種または2種以上併用しても良い。塗工された塗工液を乾燥する場合、公知の乾燥装置などを用いて乾燥させれば良く、この際、乾燥条件としては、具体的には、例えば、80℃~120℃の温度範囲、0.5分~5分の乾燥時間などを例示することができる。 As the coating method of the coating liquid, from the viewpoint of easy uniform coating, microgravure method, gravure method, reverse roll coating method, die coating method, knife coating method, dip coating method, spin coating method, bar coating Various wet coating methods such as the method can be exemplified as suitable ones. These may be appropriately selected and used, and one or more may be used in combination. When the applied coating liquid is dried, it may be dried using a known drying device. Specific examples of the drying conditions include a temperature range of 80 ° C. to 120 ° C., Examples include a drying time of 0.5 minute to 5 minutes.
 金属酸化物前駆体のゾルゲル硬化は、紫外線、電子線、X線などの光エネルギーの照射や加熱などによって行うことができる。 The sol-gel curing of the metal oxide precursor can be performed by irradiation with light energy such as ultraviolet rays, electron beams, X-rays or heating.
 光エネルギーの照射を行う場合、照射する光エネルギーの光量は、金属酸化物前駆体の種類、層の厚みなどを考慮して種々調節することができる。もっとも、照射する光エネルギーの光量が過度に小さすぎると、金属酸化物層22の高屈折率化を図り難くなる。一方、照射する光エネルギーの光量が過度に大きすぎると、光エネルギーの照射の際に生じる熱により透明高分子フィルム12が変形することがある。したがって、これらに留意すると良い。 When performing light energy irradiation, the amount of light energy to be irradiated can be variously adjusted in consideration of the type of metal oxide precursor, the thickness of the layer, and the like. However, if the amount of light energy to be irradiated is too small, it is difficult to increase the refractive index of the metal oxide layer 22. On the other hand, if the amount of light energy to be irradiated is excessively large, the transparent polymer film 12 may be deformed by the heat generated during the light energy irradiation. Therefore, these should be noted.
 照射する光エネルギーが紫外線である場合、その光量は、金属酸化物層22の屈折率、透明高分子フィルム12が受けるダメージなどの観点から、測定波長300~390nmのとき、好ましくは、300~8000mJ/cm、より好ましくは、500~5000mJ/cmの範囲内であると良い。この際、用いる紫外線照射機としては、具体的には、例えば、水銀ランプ、キセノンランプ、重水素ランプ、エキシマランプ、メタルハライドランプなどを例示することができる。これらは1種または2種以上組み合わせて用いても良い。 When the light energy to be irradiated is ultraviolet light, the amount of light is preferably from 300 to 8000 mJ at a measurement wavelength of 300 to 390 nm from the viewpoint of the refractive index of the metal oxide layer 22 and damage to the transparent polymer film 12. / Cm 2 , more preferably in the range of 500 to 5000 mJ / cm 2 . In this case, specific examples of the ultraviolet irradiator to be used include a mercury lamp, a xenon lamp, a deuterium lamp, an excimer lamp, a metal halide lamp, and the like. These may be used alone or in combination of two or more.
 金属酸化物層22の膜厚は、日射遮蔽性、視認性、反射色などを考慮して調節することができる。金属酸化物層22の膜厚の下限値は、反射色の赤色や黄色の着色を抑制しやすくなる、高透明性が得られやすくなるなどの観点から、好ましくは、10nm以上、より好ましくは、15nm以上、さらに好ましくは、20nm以上であると良い。一方、金属酸化物層22の膜厚の上限値は、反射色の緑色の着色を抑制しやすくなる、高透明性が得られやすくなるなどの観点から、好ましくは、90nm以下、より好ましくは、85nm以下、さらに好ましくは、80nm以下であると良い。 The film thickness of the metal oxide layer 22 can be adjusted in consideration of solar shading, visibility, reflection color, and the like. The lower limit of the film thickness of the metal oxide layer 22 is preferably 10 nm or more, more preferably, from the viewpoints of easily suppressing red and yellow coloring of the reflected color, and easily obtaining high transparency. It is good that it is 15 nm or more, more preferably 20 nm or more. On the other hand, the upper limit value of the film thickness of the metal oxide layer 22 is preferably 90 nm or less, more preferably, from the viewpoint of easily suppressing the green color of the reflected color and obtaining high transparency. 85 nm or less, more preferably 80 nm or less.
 金属層24の金属としては、銀、金、白金、銅、アルミニウム、クロム、チタン、亜鉛、スズ、ニッケル、コバルト、ニオブ、タンタル、タングステン、ジルコニウム、鉛、パラジウム、インジウムなどの金属や、これら金属の合金などが挙げられる。これらは1種または2種以上含まれていても良い。 Examples of the metal of the metal layer 24 include metals such as silver, gold, platinum, copper, aluminum, chromium, titanium, zinc, tin, nickel, cobalt, niobium, tantalum, tungsten, zirconium, lead, palladium, and indium. And alloys thereof. These may be contained alone or in combination of two or more.
 金属層24の金属としては、積層時の可視光透過性、熱線反射性、導電性などに優れるなどの観点から、銀または銀合金が好ましい。より好ましくは、熱、光、水蒸気などの環境に対する耐久性が向上するなどの観点から、銀を主成分とし、銅、ビスマス、金、パラジウム、白金、チタンなどの金属元素を少なくとも1種以上含んだ銀合金であると良い。さらに好ましくは、銅を含む銀合金(Ag-Cu系合金)、ビスマスを含む銀合金(Ag-Bi系合金)、チタンを含む銀合金(Ag-Ti系合金)等であると良い。銀の拡散抑制効果が大きい、コスト的に有利であるなどの利点があるからである。 As the metal of the metal layer 24, silver or a silver alloy is preferable from the viewpoint of being excellent in visible light transmittance, heat ray reflectivity, conductivity, and the like when laminated. More preferably, from the viewpoint of improving durability against environment such as heat, light, and water vapor, the main component is silver, and at least one metal element such as copper, bismuth, gold, palladium, platinum, and titanium is included. It should be a silver alloy. More preferably, a silver alloy containing copper (Ag—Cu alloy), a silver alloy containing bismuth (Ag—Bi alloy), a silver alloy containing titanium (Ag—Ti alloy), or the like is preferable. This is because there are advantages such as a large silver diffusion suppression effect and cost advantage.
 銅を含む銀合金を用いる場合、銀、銅以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。 When using a silver alloy containing copper, other elements and inevitable impurities may be contained in addition to silver and copper, for example, within a range that does not adversely affect the aggregation / diffusion suppression effect of silver.
 上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Bi、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pbなど、Ag-Cu系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Ti、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。 Specific examples of the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. In Ag-Cu alloys such as Be, Ru, Rh, Os, Ir, Bi, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc. Element which can be precipitated as a single phase in Y; La, Ce, Nd, Sm, Gd, Tb, Dy, Ti, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm Examples include elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
 銅を含む銀合金を用いる場合、銅の含有量の下限値は、添加効果を得る観点から、好ましくは、1原子%以上、より好ましくは、2原子%以上、さらに好ましくは、3原子%以上であると良い。一方、銅の含有量の上限値は、高透明性を確保しやすくなる、スパッタターゲットが作製しやすい等の製造性などの観点から、好ましくは、20原子%以下、より好ましくは、10原子%以下、さらに好ましくは、5原子%以下であると良い。 When using a silver alloy containing copper, the lower limit of the copper content is preferably 1 atomic% or more, more preferably 2 atomic% or more, and even more preferably 3 atomic% or more, from the viewpoint of obtaining the effect of addition. Good to be. On the other hand, the upper limit of the copper content is preferably 20 atomic% or less, more preferably 10 atomic%, from the viewpoint of manufacturability such as easy to ensure high transparency and easy production of a sputtering target. Hereinafter, it is more preferable that it is 5 atomic% or less.
 また、ビスマスを含む銀合金を用いる場合、銀、ビスマス以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。 Further, when using a silver alloy containing bismuth, in addition to silver and bismuth, for example, other elements and inevitable impurities may be included as long as they do not adversely affect the aggregation / diffusion suppression effect of silver. good.
 上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Cu、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pbなど、Ag-Bi系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Ti、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。 Specific examples of the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be, Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc. in Ag-Bi alloys Element which can be precipitated as a single phase in Y; La, Ce, Nd, Sm, Gd, Tb, Dy, Ti, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm Examples include elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
 ビスマスを含む銀合金を用いる場合、ビスマスの含有量の下限値は、添加効果を得る観点から、好ましくは、0.01原子%以上、より好ましくは、0.05原子%以上、さらに好ましくは、0.1原子%以上であると良い。一方、ビスマスの含有量の上限値は、スパッタターゲットが作製しやすい等の製造性などの観点から、好ましくは、5原子%以下、より好ましくは、2原子%以下、さらに好ましくは、1原子%以下であると良い。 When using a silver alloy containing bismuth, the lower limit of the bismuth content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining the effect of addition. It may be 0.1 atomic% or more. On the other hand, the upper limit of the bismuth content is preferably 5 atomic% or less, more preferably 2 atomic% or less, and still more preferably 1 atomic% from the viewpoint of manufacturability such as easy production of a sputtering target. It is good to be below.
 また、チタンを含む銀合金を用いる場合、銀、チタン以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。 In addition, when using a silver alloy containing titanium, other than silver and titanium, for example, other elements and inevitable impurities may be included as long as they do not adversely affect the aggregation / diffusion suppression effect of silver. good.
 上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Cu、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pb、Biなど、Ag-Ti系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。 Specific examples of the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be-Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, Bi, etc., Ag-Ti system Elements that can be precipitated as a single phase in the alloy; Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm Examples include elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
 チタンを含む銀合金を用いる場合、チタンの含有量の下限値は、添加効果を得る観点から、好ましくは、0.01原子%以上、より好ましくは、0.05原子%以上、さらに好ましくは、0.1原子%以上であると良い。一方、チタンの含有量の上限値は、膜にした場合、完全な固溶体が得られやすくなるなどの観点から、好ましくは、2原子%以下、より好ましくは、1.75原子%以下、さらに好ましくは、1.5原子%以下であると良い。 When using a silver alloy containing titanium, the lower limit value of the titanium content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining an addition effect. It may be 0.1 atomic% or more. On the other hand, the upper limit of the content of titanium is preferably 2 atomic% or less, more preferably 1.75 atomic% or less, and still more preferably, from the viewpoint that a complete solid solution is easily obtained when it is formed into a film. Is preferably 1.5 atomic% or less.
 なお、上記銅、ビスマス、チタン等の副元素割合は、ICP分析法を用いて測定することができる。また、上記金属層24を構成する金属(合金含む)は、部分的に酸化されていても良い。 It should be noted that the ratio of subelements such as copper, bismuth and titanium can be measured using ICP analysis. Further, the metal (including alloy) constituting the metal layer 24 may be partially oxidized.
 金属層24の膜厚の下限値は、安定性、熱線反射性などの観点から、好ましくは、3nm以上、より好ましくは、5nm以上、さらに好ましくは、7nm以上であると良い。一方、金属層24の膜厚の上限値は、可視光の透明性、経済性などの観点から、好ましくは、30nm以下、より好ましくは、20nm以下、さらに好ましくは、15nm以下であると良い。 The lower limit of the film thickness of the metal layer 24 is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more from the viewpoints of stability, heat ray reflectivity, and the like. On the other hand, the upper limit of the film thickness of the metal layer 24 is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 15 nm or less, from the viewpoints of transparency of visible light, economy, and the like.
 ここで、金属層24を形成する方法としては、具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーションなどといった物理的気相成長法(PVD)、熱CVD法、プラズマCVD法などといった化学的気相成長法(CVD)などの気相法などを例示することができる。金属層24は、これらのうち何れか1つの方法を用いて形成されていても良いし、あるいは、2つ以上の方法を用いて形成されていても良い。 Here, as a method of forming the metal layer 24, specifically, for example, a physical vapor deposition method (PVD) such as a vacuum deposition method, a sputtering method, an ion plating method, an MBE method, a laser ablation, a thermal method, etc. Examples thereof include a vapor phase method such as a chemical vapor deposition method (CVD) such as a CVD method and a plasma CVD method. The metal layer 24 may be formed using any one of these methods, or may be formed using two or more methods.
 これら方法のうち、緻密な膜質が得られる、膜厚制御が比較的容易であるなどの観点から、好ましくは、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法などのスパッタリング法を好適に用いることができる。 Among these methods, sputtering methods such as DC magnetron sputtering method and RF magnetron sputtering method can be preferably used from the viewpoint of obtaining a dense film quality and relatively easy film thickness control.
 なお、金属層24は、後述する後酸化等を受けて、金属層24の機能を損なわない範囲内で酸化されていても良い。 Note that the metal layer 24 may be oxidized within a range that does not impair the function of the metal layer 24 by receiving post-oxidation or the like to be described later.
 金属層24に付随するバリア層は、主として、金属層24を構成する元素が、金属酸化物層22中へ拡散するのを抑制するバリア的な機能を有している。また、金属酸化物層22と金属層24との間に介在することで、両者の密着性の向上にも寄与しうる。バリア層は、上記拡散を抑制できれば、浮島状など、不連続な部分があっても良い。 The barrier layer associated with the metal layer 24 mainly has a barrier function that suppresses the diffusion of elements constituting the metal layer 24 into the metal oxide layer 22. Further, by interposing between the metal oxide layer 22 and the metal layer 24, it is possible to contribute to improvement in adhesion between the two. The barrier layer may have discontinuous portions such as floating islands as long as the diffusion can be suppressed.
 バリア層を構成する金属酸化物としては、具体的には、例えば、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などを例示することができる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複酸化物であっても良い。なお、バリア層は、上記金属酸化物以外に不可避不純物などを含んでいても良い。 Specific examples of the metal oxide constituting the barrier layer include, for example, titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, and magnesium oxide. And aluminum oxide, zirconium oxide, niobium oxide, cerium oxide, and the like. These may be contained alone or in combination of two or more. Further, these metal oxides may be double oxides in which two or more metal oxides are combined. Note that the barrier layer may contain inevitable impurities in addition to the metal oxide.
 ここで、バリア層としては、金属層24を構成する金属の拡散抑制効果に優れる、密着性に優れるなどの観点から、金属酸化物層22中に含まれる金属の酸化物より主に構成されていると良い。 Here, as a barrier layer, it is mainly comprised from the oxide of the metal contained in the metal oxide layer 22 from a viewpoint of being excellent in the diffusion inhibitory effect of the metal which comprises the metal layer 24, and being excellent in adhesiveness. Good to be.
 より具体的には、例えば、金属酸化物層22としてTiO層を選択した場合、バリア層は、TiO層中に含まれる金属であるTiの酸化物より主に構成されるチタン酸化物層であると良い。 More specifically, for example, when a TiO 2 layer is selected as the metal oxide layer 22, the barrier layer is a titanium oxide layer mainly composed of an oxide of Ti that is a metal contained in the TiO 2 layer. Good to be.
 また、バリア層がチタン酸化物層である場合、当該バリア層は、当初からチタン酸化物として形成された薄膜層であっても良いし、金属Ti層が後酸化されて形成された薄膜層、または、部分酸化されたチタン酸化物層が後酸化されて形成された薄膜層等であっても良い。 When the barrier layer is a titanium oxide layer, the barrier layer may be a thin film layer formed as titanium oxide from the beginning, or a thin film layer formed by post-oxidation of a metal Ti layer, Alternatively, it may be a thin film layer formed by post-oxidizing a partially oxidized titanium oxide layer.
 バリア層は、金属酸化物層22と同じように主に金属酸化物から構成されるが、金属酸化物層22よりも膜厚が薄く設定される。これは、金属層24を構成する金属の拡散は、原子レベルで生じるので、屈折率を十分確保するのに必要な膜厚まで厚くする必要性が低いからである。また、薄く形成することで、その分、成膜コストが安価になり、透明積層フィルム10の製造コストの低減にも寄与することができる。 The barrier layer is mainly composed of a metal oxide in the same manner as the metal oxide layer 22, but is set to be thinner than the metal oxide layer 22. This is because the diffusion of the metal constituting the metal layer 24 occurs at the atomic level, so that it is not necessary to increase the film thickness to a level necessary to ensure a sufficient refractive index. Moreover, by forming it thinly, the film-forming cost is reduced correspondingly, and it can contribute to the reduction of the manufacturing cost of the transparent laminated film 10.
 バリア層の膜厚の下限値は、バリア性を確保しやすくなるなどの観点から、好ましくは、1nm以上、より好ましくは、1.5nm以上、さらに好ましくは、2nm以上であると良い。一方、バリア層の膜厚の上限値は、経済性などの観点から、好ましくは、15nm以下、より好ましくは、10nm以下、さらに好ましくは、8nm以下であると良い。 The lower limit value of the film thickness of the barrier layer is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more from the viewpoint of easily ensuring barrier properties. On the other hand, the upper limit value of the thickness of the barrier layer is preferably 15 nm or less, more preferably 10 nm or less, and still more preferably 8 nm or less, from the viewpoint of economy and the like.
 バリア層が主にチタン酸化物より構成される場合、チタン酸化物における酸素に対するチタンの原子モル比Ti/Oの下限値は、バリア性などの観点から、1.0/4.0以上、より好ましくは、1.0/3.8以上、さらに好ましくは、1.0/3.5以上、さらにより好ましくは、1.0/3.0以上、最も好ましくは、1.0/2.8以上であると良い。 When the barrier layer is mainly composed of titanium oxide, the lower limit value of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is 1.0 / 4.0 or more from the viewpoint of barrier properties and the like. Preferably, 1.0 / 3.8 or higher, more preferably 1.0 / 3.5 or higher, even more preferably 1.0 / 3.0 or higher, most preferably 1.0 / 2.8. It is good to be above.
 バリア層が主にチタン酸化物より構成される場合、チタン酸化物における酸素に対するチタンの原子モル比Ti/Oの上限値は、可視光の透明性などの観点から、好ましくは、1.0/0.5以下、より好ましくは、1.0/0.7以下、さらに好ましくは、1.0/1.0以下、さらにより好ましくは、1.0/1.2以下、最も好ましくは、1.0/1.5以下であると良い。 When the barrier layer is mainly composed of titanium oxide, the upper limit of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is preferably 1.0 / 0.5 or less, more preferably 1.0 / 0.7 or less, more preferably 1.0 / 1.0 or less, even more preferably 1.0 / 1.2 or less, most preferably 1 0.0 / 1.5 or less is preferable.
 上記Ti/O比は、当該層の組成から算出することができる。当該層の組成分析方法としては、極めて薄い薄膜層の組成を比較的正確に分析することが可能な観点から、エネルギー分散型蛍光X線分析(EDX)を好適に用いることができる。 The Ti / O ratio can be calculated from the composition of the layer. As a composition analysis method of the layer, energy dispersive X-ray fluorescence analysis (EDX) can be preferably used from the viewpoint of enabling comparatively accurate analysis of the composition of an extremely thin thin film layer.
 具体的な組成分析方法について説明すると、先ず、超薄切片法(ミクロトーム)などを用いて、分析対象となる当該層を含む積層構造の断面方向の厚みが100nm以下の試験片を作製する。次いで、断面方向から積層構造と当該層の位置を、透過型電子顕微鏡(TEM)により確認する。次いで、EDX装置の電子銃から電子線を放出させ、分析対象となる当該層の膜厚中央部近傍に入射させる。試験片表面から入射した電子は、ある深さまで入り込み、各種の電子線やX線を発生させる。この際の特性X線を検出して分析することで、当該層の構成元素分析を行うことができる。 Describing a specific composition analysis method, first, a test piece having a thickness of 100 nm or less in the cross-sectional direction of the laminated structure including the layer to be analyzed is prepared using an ultrathin section method (microtome) or the like. Next, the laminated structure and the position of the layer are confirmed by a transmission electron microscope (TEM) from the cross-sectional direction. Next, an electron beam is emitted from the electron gun of the EDX apparatus and is incident on the vicinity of the center of the film thickness of the layer to be analyzed. Electrons incident from the surface of the test specimen enter to a certain depth and generate various electron beams and X-rays. By detecting and analyzing characteristic X-rays at this time, the constituent elements of the layer can be analyzed.
 バリア層は、緻密な膜を形成できる、数nm~数十nm程度の薄膜層を均一な膜厚で形成できるなどの観点から、気相法を好適に利用することができる。 As the barrier layer, a vapor phase method can be suitably used from the viewpoint that a dense film can be formed and a thin film layer of about several nm to several tens of nm can be formed with a uniform film thickness.
 上記気相法としては、具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーションなどといった物理的気相成長法(PVD)、熱CVD法、プラズマCVD法などといった化学的気相成長法(CVD)などを例示することができる。上記気相法としては、真空蒸着法などと比較して膜界面の密着性に優れる、膜厚制御が容易であるなどの観点から、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法などのスパッタリング法を好適に用いることができる。 Specific examples of the vapor phase method include physical vapor deposition methods (PVD) such as vacuum deposition, sputtering, ion plating, MBE, and laser ablation, thermal CVD, and plasma CVD. Examples thereof include chemical vapor deposition (CVD) and the like. As the vapor phase method, a sputtering method such as a DC magnetron sputtering method or an RF magnetron sputtering method is preferable from the viewpoint of excellent adhesion at the film interface as compared with a vacuum deposition method and the like and easy control of the film thickness. Can be used.
 なお、上記積層構造中に含まれうる各バリア層は、これら気相法のうち何れか1つの方法を利用して形成されていても良いし、あるいは、2つ以上の方法を利用して形成されていても良い。 Each barrier layer that can be included in the laminated structure may be formed using any one of these vapor phase methods, or formed using two or more methods. May be.
 また、上記バリア層は、上述した気相法を利用し、当初から金属酸化物層22として成膜しても良いし、あるいは、一旦、金属層24や部分酸化された金属酸化物層22を成膜した後、これを事後的に酸化して形成することも可能である。なお、部分酸化された金属酸化物層22とは、さらに酸化される余地がある金属酸化物層22を指す。 The barrier layer may be formed as the metal oxide layer 22 from the beginning using the above-described vapor phase method, or the metal layer 24 or the partially oxidized metal oxide layer 22 may be temporarily formed. It is also possible to form the film by oxidizing it after the film has been formed. The partially oxidized metal oxide layer 22 refers to a metal oxide layer 22 that has room for further oxidation.
 当初から金属酸化物層22として成膜する場合、具体的には、例えば、スパッタリングガスとしてのアルゴン、ネオンなどの不活性ガスに、さらに反応性ガスとして酸素を含むガスを混合し、金属と酸素とを反応させながら薄膜を形成すれば良い(反応性スパッタリング法)。反応性スパッタリング法を用いて、例えば、上記Ti/O比を有するチタン酸化物層を得る場合、雰囲気中の酸素濃度(不活性ガスに対する酸素を含むガスの体積割合)は、上述した膜厚範囲を考慮して最適な割合を適宜選択すれば良い。 In the case where the metal oxide layer 22 is formed from the beginning, specifically, for example, a gas containing oxygen as a reactive gas is mixed with an inert gas such as argon or neon as a sputtering gas, and the metal and oxygen are mixed. A thin film may be formed while reacting with (reactive sputtering method). For example, when a titanium oxide layer having the Ti / O ratio is obtained by using the reactive sputtering method, the oxygen concentration in the atmosphere (the volume ratio of the gas containing oxygen to the inert gas) is the film thickness range described above. The optimum ratio may be appropriately selected in consideration of the above.
 一方、金属層24や部分酸化された金属酸化物層22を成膜した後、これを事後的に後酸化する場合、具体的には、透明高分子フィルム12上に上述した積層構造を形成した後、積層構造中の金属層24や部分酸化された金属酸化物層22を後酸化させる等すれば良い。なお、金属層24の成膜には、スパッタリング法等を、部分酸化された金属酸化物層22の成膜には、上述した反応性スパッタリング法等を用いれば良い。 On the other hand, when the metal layer 24 or the partially oxidized metal oxide layer 22 is formed and then post-oxidized later, specifically, the above-described laminated structure is formed on the transparent polymer film 12. Thereafter, the metal layer 24 or the partially oxidized metal oxide layer 22 in the laminated structure may be post-oxidized. A sputtering method or the like may be used for forming the metal layer 24, and the reactive sputtering method or the like described above may be used for forming the partially oxidized metal oxide layer 22.
 また、後酸化手法としては、加熱処理、加圧処理、化学処理、自然酸化等を例示することができる。これら後酸化手法のうち、比較的簡単かつ確実に後酸化を行うことができるなどの観点から、加熱処理が好ましい。上記加熱処理としては、例えば、上述した積層構造を有する透明高分子フィルム12を加熱炉等の加熱雰囲気中に存在させる方法、温水中に浸漬する方法、マイクロ波加熱する方法や、積層構造中の金属層24や部分酸化された金属酸化物層22等を通電加熱する方法などを例示することができる。これらは1または2以上組み合わせて行っても良い。 Also, examples of the post-oxidation method include heat treatment, pressure treatment, chemical treatment, and natural oxidation. Of these post-oxidation techniques, heat treatment is preferable from the viewpoint of enabling post-oxidation relatively easily and reliably. Examples of the heat treatment include a method of causing the transparent polymer film 12 having the above-described laminated structure to exist in a heating atmosphere such as a heating furnace, a method of immersing in warm water, a method of microwave heating, A method of energizing and heating the metal layer 24, the partially oxidized metal oxide layer 22, and the like can be exemplified. These may be performed in combination of one or two or more.
 上記加熱処理時の加熱条件としては、具体的には、例えば、好ましくは、30℃~60℃、より好ましくは、32℃~57℃、さらに好ましくは、35℃~55℃の加熱温度、加熱雰囲気中に存在させる場合、好ましくは、5日間以上、より好ましくは、10日間以上、さらに好ましくは、15日間以上の加熱時間から選択すると良い。上記加熱条件の範囲内であれば、後酸化効果、透明高分子フィルム12の熱変形・融着抑制等が良好だからである。 Specifically, the heating conditions at the time of the heat treatment are, for example, preferably 30 ° C. to 60 ° C., more preferably 32 ° C. to 57 ° C., and still more preferably 35 ° C. to 55 ° C. When present in the atmosphere, the heating time is preferably selected from 5 days or longer, more preferably 10 days or longer, and even more preferably 15 days or longer. This is because the post-oxidation effect, the thermal deformation / fusion suppression of the transparent polymer film 12 and the like are good within the above heating condition range.
 また、上記加熱処理時の加熱雰囲気は、大気中、高酸素雰囲気中、高湿度雰囲気中など酸素や水分の存在する雰囲気が好ましい。特に好ましくは、製造性、低コスト化等の観点から、大気中であると良い。 Further, the heating atmosphere at the time of the heat treatment is preferably an atmosphere containing oxygen or moisture, such as the air, a high oxygen atmosphere, or a high humidity atmosphere. Particularly preferably, it is in the air from the viewpoint of manufacturability and cost reduction.
 積層構造中に上述した後酸化薄膜を含んでいる場合には、後酸化時に、金属酸化物層22中に含まれていた水分や酸素が消費されているため、太陽光が当たっても金属酸化物層22が化学反応し難くなる。具体的には、例えば、金属酸化物層22がゾル-ゲル法により形成されている場合、後酸化時に、金属酸化物層22中に含まれていた水分や酸素が消費されているため、金属酸化物層22中に残存していたゾル-ゲル法による出発原料(金属アルコキシド等)と水分(吸着水等)・酸素等とが、太陽光によってゾルゲル硬化反応し難くなる。そのため、硬化収縮等の体積変化によって生じる内部応力を緩和することが可能となり、積層構造の界面剥離等を抑制しやすくなる等、太陽光に対する耐久性を向上させやすくなる。 When the above-described post-oxidation thin film is included in the laminated structure, the moisture and oxygen contained in the metal oxide layer 22 are consumed during the post-oxidation. The physical layer 22 becomes difficult to chemically react. Specifically, for example, when the metal oxide layer 22 is formed by a sol-gel method, moisture and oxygen contained in the metal oxide layer 22 are consumed at the time of post-oxidation. The starting material (metal alkoxide or the like) by the sol-gel method remaining in the oxide layer 22 and moisture (adsorbed water or the like), oxygen, or the like hardly undergo a sol-gel curing reaction by sunlight. Therefore, it is possible to relieve internal stress caused by volume change such as curing shrinkage, and it is easy to suppress interfacial peeling of the laminated structure, and to improve durability against sunlight.
 透明積層フィルム10は、上記実施形態の構成に限定されるものではなく、例えば図1(b)において易接着層14が設けられていない構成であってもよい。また、図1(b)において透明高分子フィルム12と高分子体層18の間に易接着層14が設けられている構成であってもよい。また、積層構造部16および高分子体層18は透明高分子フィルム12の両面にそれぞれ設けられていてもよい。高分子体層18が易接着層14の上に形成されている場合には、易接着層14を介して透明高分子フィルム12との密着性が確保されるため、高分子体層18に用いる樹脂の選択の幅が広がるという利点がある。 The transparent laminated film 10 is not limited to the configuration of the above embodiment, and may have a configuration in which the easy adhesion layer 14 is not provided in FIG. Moreover, the structure by which the easily bonding layer 14 is provided between the transparent polymer film 12 and the polymer body layer 18 in FIG.1 (b) may be sufficient. The laminated structure portion 16 and the polymer layer 18 may be provided on both surfaces of the transparent polymer film 12, respectively. When the polymer layer 18 is formed on the easy-adhesion layer 14, adhesion to the transparent polymer film 12 is ensured via the easy-adhesion layer 14. There is an advantage that the range of selection of the resin is widened.
 以下、実施例を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail using examples.
(実施例1)
 アクリル樹脂(軟化温度=40℃、日本化工塗料社製「FS-3022」)を溶剤で希釈して塗工液<1>を調製した。この塗工液<1>を、易接着層が片面に形成された厚み50μmのポリエチレンテレフタレートフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4100」)の易接着層とは反対の面に塗工し、100℃で2分間乾燥させることにより、アクリル樹脂よりなる高分子層(厚さ0.5μm)を形成した。次いで、形成した高分子層の上に金属酸化物層/金属層/金属酸化物層よりなる3層積層構造部を形成した。3層積層構造部の形成方法は以下の通りである。
(Example 1)
Acrylic resin (softening temperature = 40 ° C., “FS-3022” manufactured by Nippon Kako Paint Co., Ltd.) was diluted with a solvent to prepare a coating liquid <1>. This coating liquid <1> is opposite to the easy adhesive layer of a 50 μm thick polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4100”) having an easy adhesive layer formed on one side. The polymer layer (thickness 0.5 μm) made of an acrylic resin was formed by coating on the surface and drying at 100 ° C. for 2 minutes. Next, a three-layer laminated structure composed of metal oxide layer / metal layer / metal oxide layer was formed on the formed polymer layer. The method for forming the three-layer laminated structure is as follows.
 形成した高分子層の上に、マイクログラビアコーターを用いて、それぞれ所定の溝容積のグラビアロールで下記のTiO層用コーティング液を連続的に塗工した。次いで、インラインの乾燥炉を用いて、塗工膜を100℃で80秒間乾燥させ、TiO層の前駆体層を形成した。次いで、インラインの紫外線照射機〔高圧水銀ランプ(160W/cm)〕を用いて、上記塗工時と同線速で、上記前駆体層に対して連続的に紫外線を1.5秒間照射した。これにより、ゾルゲル硬化時に紫外線エネルギーを用いるゾル-ゲル法(以下「(ゾルゲル+UV)」と省略することがある。)によるTiO層(1層目)を成膜した。 On the formed polymer layer, using a micro gravure coater, the following coating solution for TiO 2 layer was continuously applied with a gravure roll having a predetermined groove volume. Subsequently, the coating film was dried at 100 ° C. for 80 seconds using an in-line drying furnace to form a precursor layer of TiO 2 layer. Then, using an in-line ultraviolet irradiator [high pressure mercury lamp (160 W / cm)], the precursor layer was continuously irradiated with ultraviolet rays for 1.5 seconds at the same linear velocity as that during the coating. Thus, a TiO 2 layer (first layer) was formed by a sol-gel method using ultraviolet energy during sol-gel curing (hereinafter sometimes abbreviated as “(sol-gel + UV)”).
<TiO層用コーティング液>
 チタンアルコキシドとして、テトラ-n-ブトキシチタン4量体(日本曹達(株)製、「B4」)と、紫外線吸収性のキレートを形成する添加剤として、アセチルアセトンとを、n-ブタノールとイソプロピルアルコールとの混合溶媒に配合し、これを攪拌機を用いて10分間混合することにより、TiO層用コーティング液を調製した。この際、テトラ-n-ブトキシチタン4量体/アセチルアセトン/n-ブタノール/イソプロピルアルコールの配合は、それぞれ6.75質量%/3.38質量%/59.87質量%/30.00質量%とした。
<Coating solution for TiO 2 layer>
As titanium alkoxide, tetra-n-butoxytitanium tetramer (“B4” manufactured by Nippon Soda Co., Ltd.), acetylacetone as an additive that forms an ultraviolet-absorbing chelate, n-butanol and isopropyl alcohol The resulting mixture was mixed for 10 minutes using a stirrer to prepare a TiO 2 layer coating solution. At this time, the composition of tetra-n-butoxy titanium tetramer / acetylacetone / n-butanol / isopropyl alcohol was 6.75 mass% / 3.38 mass% / 59.87 mass% / 30.00 mass%, respectively. did.
 次に、形成した1層目の上に、2層目を構成する各薄膜を成膜した。すなわち、DCマグネトロンスパッタ装置を用い、1層目のTiO層上に、下側の金属Ti層をスパッタリングにより成膜した。次いで、この下側の金属Ti層上に、Ag-Cu合金層をスパッタリングにより成膜した。次いで、このAg-Cu合金層上に、上側の金属Ti層をスパッタリングにより成膜した。この際、上側および下側の金属Ti層の成膜条件は、Tiターゲット(純度4N)、真空到達圧:5×10-6(Torr)、不活性ガス:Ar、ガス圧:2.5×10-3(Torr)、投入電力:1.5(kW)、成膜時間:1.1秒とした。また、Ag-Cu合金薄膜の成膜条件は、Ag-Cu合金ターゲット(Cu含有量:4原子%)、真空到達圧:5×10-6(Torr)、不活性ガス:Ar、ガス圧:2.5×10-3(Torr)、投入電力:1.5(kW)、成膜時間:1.1秒とした。 Next, each thin film constituting the second layer was formed on the formed first layer. That is, a lower metal Ti layer was formed by sputtering on the first TiO 2 layer using a DC magnetron sputtering apparatus. Next, an Ag—Cu alloy layer was formed on the lower metal Ti layer by sputtering. Next, an upper metal Ti layer was formed on this Ag—Cu alloy layer by sputtering. At this time, the film formation conditions of the upper and lower metal Ti layers were as follows: Ti target (purity 4N), vacuum ultimate pressure: 5 × 10 −6 (Torr), inert gas: Ar, gas pressure: 2.5 × 10 −3 (Torr), input power: 1.5 (kW), and film formation time: 1.1 seconds. The film formation conditions of the Ag—Cu alloy thin film are as follows: Ag—Cu alloy target (Cu content: 4 atomic%), vacuum ultimate pressure: 5 × 10 −6 (Torr), inert gas: Ar, gas pressure: 2.5 × 10 −3 (Torr), input power: 1.5 (kW), and film formation time: 1.1 seconds.
 次に、形成した2層目の上に、3層目として(ゾルゲル+UV)によるTiO層を成膜した。ここでは、1層目に準じた成膜手順を2回行うことにより、所定の膜厚とした。 Next, a TiO 2 layer by (sol gel + UV) was formed as a third layer on the formed second layer. Here, the film forming procedure according to the first layer is performed twice to obtain a predetermined film thickness.
 次に、3層目を形成した後のフィルムを加熱炉内にて40℃で300時間加熱処理することにより、2層目(金属Ti層/Ag-Cu合金層/金属Ti層)の金属Ti層を後酸化させた。以上により、3層積層構造部を有する実施例1の透明積層フィルムを作製した。 Next, the film after the formation of the third layer is heat-treated in a heating furnace at 40 ° C. for 300 hours to thereby form the second layer (metal Ti layer / Ag—Cu alloy layer / metal Ti layer) of metal Ti. The layer was post-oxidized. The transparent laminated film of Example 1 which has a 3 layer laminated structure part was produced by the above.
(実施例2~4)
 高分子層の材料としてアクリル樹脂(軟化温度=58℃、DIC社製「UVインキEXP100119メジューム」)を用い、高分子層の厚みを所定の厚みとした以外は実施例1と同様にして、3層積層構造部を有する実施例2~4の透明積層フィルムを作製した。
(Examples 2 to 4)
As in Example 1, except that an acrylic resin (softening temperature = 58 ° C., “UV ink EXP100119 medium” manufactured by DIC) was used as the material of the polymer layer, and the thickness of the polymer layer was set to a predetermined thickness, 3 Transparent laminated films of Examples 2 to 4 having a layer laminated structure were produced.
(比較例1)
 高分子層の材料としてフェノキシ樹脂(軟化温度=30℃、新日鐵化学社製「フェノトートYPS-007 A30」)を用いた以外は実施例1と同様にして、3層積層構造部を有する比較例1の透明積層フィルムを作製した。
(Comparative Example 1)
It has a three-layer laminated structure in the same manner as in Example 1 except that phenoxy resin (softening temperature = 30 ° C., “Phenotote YPS-007 A30” manufactured by Nippon Steel Chemical Co., Ltd.) was used as the polymer layer material. A transparent laminated film of Comparative Example 1 was produced.
(実施例5)
 高分子層の材料としてアクリル樹脂(軟化温度=73℃、綜研化学社製「サーモラックM-45C」)を用い、高分子層の上に金属酸化物層/金属層/金属酸化物層/金属層/金属酸化物層/金属層/金属酸化物層よりなる7層積層構造部を形成した。7層積層構造部の形成方法は以下の通りである。3層目の形成までは実施例1と同様の手順で行った。なお、3層目は、1層目に準じた成膜手順を3回行うことにより、所定の膜厚とした。
(Example 5)
Acrylic resin (softening temperature = 73 ° C., “Thermolac M-45C” manufactured by Soken Chemical Co., Ltd.) is used as a material for the polymer layer, and a metal oxide layer / metal layer / metal oxide layer / metal on the polymer layer A seven-layer laminated structure composed of layer / metal oxide layer / metal layer / metal oxide layer was formed. The method for forming the seven-layer laminated structure is as follows. The same procedure as in Example 1 was performed until the formation of the third layer. The third layer had a predetermined thickness by performing the film formation procedure according to the first layer three times.
 形成した3層目の上に、4層目を構成する各薄膜を成膜した。ここでは、2層目に準じた成膜手順を行った。但し、Ag-Cu合金薄膜の成膜時に、上述した成膜条件を、Ag-Cu合金ターゲット(Cu含有量:4原子%)、真空到達圧:5×10-6(Torr)、不活性ガス:Ar、ガス圧:2.5×10-3(Torr)、投入電力:1.8(kW)、成膜時間:1.1秒と変更することで、膜厚を変化させた。 Each thin film constituting the fourth layer was formed on the formed third layer. Here, a film forming procedure according to the second layer was performed. However, when forming the Ag—Cu alloy thin film, the above-mentioned film formation conditions are as follows: Ag—Cu alloy target (Cu content: 4 atom%), vacuum ultimate pressure: 5 × 10 −6 (Torr), inert gas The film thickness was changed by changing: Ar, gas pressure: 2.5 × 10 −3 (Torr), input power: 1.8 (kW), and film formation time: 1.1 seconds.
 次に、形成した4層目の上に、5層目として3層目と同じ構成の(ゾルゲル+UV)によるTiO層を成膜した。また、形成した5層目の上に、6層目として2層目と同じ構成の各薄膜を成膜した。また、形成した6層目の上に、7層目として(ゾルゲル+UV)によるTiO層を成膜した。ここでは、1層目に準じた成膜手順を1回行うことにより、所定の膜厚とした。 Next, a TiO 2 layer having the same configuration as that of the third layer (sol gel + UV) was formed as a fifth layer on the formed fourth layer. Moreover, each thin film having the same configuration as the second layer was formed as the sixth layer on the formed fifth layer. In addition, a TiO 2 layer by (sol gel + UV) was formed as a seventh layer on the formed sixth layer. Here, a predetermined film thickness is obtained by performing the film formation procedure according to the first layer once.
 次に、7層目を形成した後のフィルムを加熱炉内にて40℃で300時間加熱処理することにより、2、4、6層目(金属Ti層/Ag-Cu合金層/金属Ti層)の金属Ti層を後酸化させた。以上により、7層積層構造部を有する実施例5の透明積層フィルムを作製した。 Next, the film after forming the seventh layer is heat-treated in a heating furnace at 40 ° C. for 300 hours, whereby the second, fourth, and sixth layers (metal Ti layer / Ag—Cu alloy layer / metal Ti layer). The metal Ti layer was post-oxidized. Thus, a transparent laminated film of Example 5 having a 7-layer laminated structure was produced.
(実施例6)
 高分子層の材料としてフェノキシ樹脂(軟化温度=120℃、新日鐵化学社製「フェノトートERF-001 M30」を用い、高分子層の厚みを所定の厚みとした以外は実施例5と同様にして、7層積層構造部を有する実施例6の透明積層フィルムを作製した。
(Example 6)
Phenoxy resin (softening temperature = 120 ° C., “Phenotote ERF-001 M30” manufactured by Nippon Steel Chemical Co., Ltd.) was used as the material of the polymer layer, and the thickness of the polymer layer was changed to a predetermined thickness. Thus, a transparent laminated film of Example 6 having a 7-layer laminated structure was produced.
(実施例7)
 易接着層とは反対の面ではなく、ポリエチレンテレフタレートフィルムの易接着層の上に高分子層を形成し、形成した高分子層の上に7層積層構造部を形成した以外は実施例5と同様にして、7層積層構造部を有する実施例7の透明積層フィルムを作製した。なお、実施例7で用いた高分子層のアクリル樹脂は実施例5と同様の軟化温度=73℃のものである。
(Example 7)
Example 5 except that the polymer layer was formed on the easy-adhesion layer of the polyethylene terephthalate film and the seven-layer laminated structure was formed on the formed polymer layer instead of the surface opposite to the easy-adhesion layer. Similarly, the transparent laminated film of Example 7 which has a 7-layer laminated structure part was produced. In addition, the acrylic resin of the polymer layer used in Example 7 has the same softening temperature as in Example 5 = 73 ° C.
(実施例8)
 厚さ50μmのポリエチレンテレフタレートフィルムから厚さ125μmのポリエチレンテレフタレートフィルムに変更した以外は実施例5と同様にして、7層積層構造部を有する実施例8の透明積層フィルムを作製した。
(Example 8)
A transparent laminated film of Example 8 having a 7-layer laminated structure was produced in the same manner as in Example 5 except that the polyethylene terephthalate film having a thickness of 50 μm was changed to a polyethylene terephthalate film having a thickness of 125 μm.
(比較例2)
 ポリエチレンテレフタレートフィルムの易接着層の上に直接7層積層構造部を形成し、実施例1に対応する高分子層を形成しなかった以外は実施例5と同様にして、7層積層構造部を有する比較例2の透明積層フィルムを作製した。
(Comparative Example 2)
The 7-layer laminated structure was formed in the same manner as in Example 5 except that the 7-layer laminated structure was formed directly on the easy-adhesive layer of the polyethylene terephthalate film and the polymer layer corresponding to Example 1 was not formed. A transparent laminated film of Comparative Example 2 was prepared.
 表1に、実施例1~4、比較例1の透明積層フィルム(3層積層構造部を有する透明積層フィルム)の詳細な層構成を示す。また、表2に、実施例5~8、比較例2の透明積層フィルム(7層積層構造部を有する透明積層フィルム)の詳細な層構成を示す。 Table 1 shows the detailed layer structure of the transparent laminated films of Examples 1 to 4 and Comparative Example 1 (transparent laminated film having a three-layer laminated structure). Table 2 shows the detailed layer structure of the transparent laminated films of Examples 5 to 8 and Comparative Example 2 (transparent laminated film having a 7-layer laminated structure).
 作製した各透明積層フィルムについて、渦電流計(DELCOM社製)を用いてフィルム単体の表面抵抗値を測定し、また、溝幅を測定した。さらに下記に示す評価方法にて、光学特性、電波透過性、外観を評価した。測定サンプルには、透明積層フィルムの薄膜積層面に、厚さ22μmのアクリル粘着シート(東洋包材(株)製、「N-CLE」)を貼り付け、この粘着シートの粘着層を、厚さ3mmのフロートガラスの片面に貼り付けたものを用いた。また、光学特性評価時の測定光は、ガラス面側から入射させた。これらの結果を表3に示す。また、図3には、一例として、実施例2、4~6、比較例2のそれぞれについて、透明積層フィルム単体の表面をマイクロスコープ(オムロン社製「デジタルファインスコープ VCR800」)で撮影して得られた画像を示す。(図3(a):比較例2、図3(b):実施例2、図3(c):実施例4、図3(d):実施例5、図3(e):実施例6) About each produced transparent laminated film, the surface resistance value of the film single-piece | unit was measured using the eddy current meter (made by DELCOM company), and the groove width was measured. Furthermore, optical characteristics, radio wave permeability, and appearance were evaluated by the evaluation methods shown below. To the measurement sample, a 22 μm thick acrylic adhesive sheet (“N-CLE”, manufactured by Toyo Packaging Co., Ltd.) was attached to the thin film laminated surface of the transparent laminated film, and the adhesive layer of this adhesive sheet was What was affixed on the single side | surface of 3 mm float glass was used. Moreover, the measurement light at the time of optical characteristic evaluation was entered from the glass surface side. These results are shown in Table 3. Also, in FIG. 3, as an example, the surface of the transparent laminated film alone was obtained with each of Examples 2, 4 to 6, and Comparative Example 2 by photographing with a microscope (“Digital Fine Scope VCR800” manufactured by OMRON). The displayed image is shown. (FIG. 3 (a): Comparative example 2, FIG. 3 (b): Example 2, FIG. 3 (c): Example 4, FIG. 3 (d): Example 5, FIG. 3 (e): Example 6 )
(溝幅)
 SEM(走査型電子顕微鏡)による断面観察にて行った。1サンプルにつき5カ所のSEM写真を撮影し、各々の溝幅の最大値の平均値を算出した。
(Groove width)
This was performed by cross-sectional observation with an SEM (scanning electron microscope). Five SEM photographs were taken for each sample, and the average value of the maximum values of each groove width was calculated.
(可視光透過率、可視光反射率)
 JIS A5759に準拠し、分光光度計(島津製作所(株)製、「UV3100」)を用いて、波長300~1000nmの透過スペクトルを測定し、可視光透過率および可視光反射率を計算することにより求めた。
(Visible light transmittance, visible light reflectance)
In accordance with JIS A5759, by using a spectrophotometer (manufactured by Shimadzu Corporation, “UV3100”), a transmission spectrum with a wavelength of 300 to 1000 nm is measured, and a visible light transmittance and a visible light reflectance are calculated. Asked.
(日射透過率)
 JIS A5759に準拠し、分光光度計(島津製作所(株)製、「UV3100」)を用いて、波長300~2500nmの透過スペクトルを測定し、日射透過率を計算することにより求めた。
(Solar radiation transmittance)
In accordance with JIS A5759, a transmission spectrum at a wavelength of 300 to 2500 nm was measured using a spectrophotometer (manufactured by Shimadzu Corporation, “UV3100”), and the solar transmittance was calculated.
(電波透過性)
 電磁波シールド性電磁シールド特性試験機(アンリツ株式会社製、「MA8602B」とスペクトラムアナライザー(アンリツ株式会社製、「MS2661C」)を用いて、社団法人関西電子工業振興センター(KEC)法に準拠し、周波数1GHzにおける透過減衰量を測定した。
(Radio wave transmission)
An electromagnetic shielding characteristic tester (“MA8602B” manufactured by Anritsu Co., Ltd.) and a spectrum analyzer (“MS2661C” manufactured by Anritsu Co., Ltd.) are used to comply with the Kansai Electronics Industry Promotion Center (KEC) method. The transmission attenuation at 1 GHz was measured.
(外観)
 透明積層フィルムの薄膜層形成面側を窓ガラスにて水貼り施工した。30cm離れた位置から目視にて溝部が視認されるか否かを確認した。溝部が視認されない場合を外観が良好であるとし、溝部が視認される場合を外観不良とした。
(appearance)
The thin film layer forming surface side of the transparent laminated film was attached with water using a window glass. It was confirmed whether a groove part was visually recognized from the position 30 cm away. The appearance was good when the groove was not visually recognized, and the appearance was poor when the groove was visible.
 なお、TiO層の屈折率(測定波長は633nm)は、FilmTek3000(Scientific Computing International社製)により測定した。また、TiO層中に含まれる有機分の含有量は、X線光電子分光法(XPS)により測定した。 The refractive index of the TiO 2 layer (measurement wavelength was 633 nm) was measured by FilmTek 3000 (manufactured by Scientific Computing International). Moreover, content of the organic component contained in the TiO 2 layer was measured by X-ray photoelectron spectroscopy (XPS).
 また、金属Ti層を後酸化させて形成したチタン酸化物薄膜についてEDX分析を行い、Ti/O比を次のようにして求めた。すなわち、透明積層フィルムをミクロトーム(LKB(株)製、「ウルトロームV2088」)により切り出し、分析対象となるチタン酸化物層(バリア層)を含む積層構造部の断面方向の厚みが100nm以下の試験片を作製した。作製した試験片の断面を、電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)により確認した。そして、EDX装置(分解能133eV以下)(日本電子(株)製、「JED-2300T」)を用い、この装置の電子銃から電子線を放出させ、分析対象となるチタン酸化物層(バリア層)の膜厚中央部近傍に入射させ、発生した特性X線を検出して分析することにより、チタン酸化物層(バリア層)の構成元素分析を行った。 Further, EDX analysis was performed on the titanium oxide thin film formed by post-oxidizing the metal Ti layer, and the Ti / O ratio was determined as follows. That is, a transparent laminated film is cut out with a microtome (“Lultrome V2088” manufactured by LKB Co., Ltd.), and a test piece having a thickness in a cross-sectional direction of a laminated structure portion including a titanium oxide layer (barrier layer) to be analyzed is 100 nm or less. Was made. The cross section of the produced test piece was confirmed with a field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”). Then, using an EDX device (resolution of 133 eV or less) (“JED-2300T” manufactured by JEOL Ltd.), an electron beam is emitted from the electron gun of this device, and a titanium oxide layer (barrier layer) to be analyzed The elemental component of the titanium oxide layer (barrier layer) was analyzed by making it incident near the center of the film thickness and detecting and analyzing the generated characteristic X-rays.
 また、合金層中の副元素Cuの含有量を次のようにして求めた。すなわち、各成膜条件において、別途、ガラス基板上にAg-Cu合金層を形成した試験片を作製し、この試験片を6%HNO溶液に浸漬し、20分間超音波による溶出を行った後、得られた試料液を用いて、ICP分析法の濃縮法により測定した。 Further, the content of the sub-element Cu in the alloy layer was determined as follows. That is, under each film forming condition, a test piece in which an Ag—Cu alloy layer was separately formed on a glass substrate was prepared, and this test piece was immersed in a 6% HNO 3 solution and eluted with ultrasonic waves for 20 minutes. Then, it measured by the concentration method of ICP analysis method using the obtained sample solution.
 また、各層の膜厚を、上記電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)による試験片の断面観察から測定した。また、金属層に形成された溝部の幅を、上記電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)による試験片の表面観察から測定した。 Moreover, the film thickness of each layer was measured from the cross-sectional observation of the test piece by the field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”). Further, the width of the groove formed in the metal layer was measured from the surface observation of the test piece by the field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例1では、高分子層の高分子の軟化温度が40℃未満である。比較例1では、1層目のゾルゲル硬化時に積層構造部に亀裂が発生して溝部が形成された。形成された溝部は目視にて視認されたため、外観不良であった。比較例2では、高分子層を設けないで易接着層の上に直接7層積層構造部を形成している。比較例2では、図3(a)に示すように、7層目のゾルゲル硬化時にも積層構造部に亀裂が発生せず溝部は形成されなかった。このため、電波透過性に劣っていた。 In Comparative Example 1, the polymer softening temperature of the polymer layer is less than 40 ° C. In Comparative Example 1, a crack was generated in the laminated structure portion when the first layer of sol-gel was cured, and a groove portion was formed. Since the formed groove was visually recognized, the appearance was poor. In Comparative Example 2, the 7-layer laminated structure is formed directly on the easy-adhesion layer without providing a polymer layer. In Comparative Example 2, as shown in FIG. 3A, no crack was formed in the laminated structure portion and no groove portion was formed even when the seventh layer of sol-gel was cured. For this reason, the radio wave permeability was inferior.
 これに対し、実施例では、高分子層の高分子の軟化温度が所望の範囲内にある。実施例1~5、7~8では、金属酸化物層の形成時に積層構造部に亀裂が形成された。積層構造部に亀裂が形成されている様子については、一例として図3(b)~(d)に示す。溝幅は、0.3~0.6μmであった。一方、実施例6では、7層目のゾルゲル硬化時にも積層構造部に亀裂が発生せず溝部は形成されなかった。この様子については、図3(e)に示す。実施例1~5、7~8は、フィルム単体で表面抵抗が高抵抗(100Ω/□以上)であり、フィルム単体でも電波透過性に優れることが確認された。一方、実施例6は、フィルム単体ではやや表面抵抗が低い(100Ω/□未満)結果となった。そして、実施例の全てにおいて、日射遮蔽性に優れ、外観も良好であった。 In contrast, in the examples, the softening temperature of the polymer in the polymer layer is within a desired range. In Examples 1 to 5 and 7 to 8, cracks were formed in the laminated structure portion when the metal oxide layer was formed. The manner in which cracks are formed in the laminated structure is shown in FIGS. 3B to 3D as an example. The groove width was 0.3 to 0.6 μm. On the other hand, in Example 6, no crack was generated in the laminated structure portion and no groove portion was formed even when the seventh layer of sol-gel was cured. This situation is shown in FIG. In Examples 1 to 5 and 7 to 8, the surface resistance of the film alone was high (100Ω / □ or more), and it was confirmed that the film alone was excellent in radio wave transmission. On the other hand, in Example 6, the surface resistance of the film alone was slightly low (less than 100Ω / □). And in all of the Examples, the solar shading was excellent and the appearance was also good.
 また、実施例5、7~8によれば、高分子層の高分子の軟化温度が70℃以上であり、7層目のゾルゲル硬化時に初めて積層構造部に亀裂が発生して溝部が形成された。一方、実施例1~4では、高分子層の高分子の軟化温度が60℃未満であり、3層目のゾルゲル硬化時に初めて積層構造部に亀裂が発生して溝部が形成された。これらの結果から、高分子層の高分子の軟化温度を調整することによって、積層構造部に亀裂を発生させるタイミングを制御できることが示された。 In addition, according to Examples 5 and 7 to 8, the softening temperature of the polymer in the polymer layer is 70 ° C. or higher, and cracks are formed in the laminated structure for the first time when the seventh layer of sol-gel is cured to form a groove. It was. On the other hand, in Examples 1 to 4, the softening temperature of the polymer in the polymer layer was less than 60 ° C., and cracks were formed in the laminated structure for the first time when the third layer of sol-gel was cured to form a groove. From these results, it was shown that by adjusting the softening temperature of the polymer in the polymer layer, it is possible to control the timing of generating cracks in the laminated structure.
 次に、作製した各透明積層フィルムを用いて合わせガラス化を行い、得られた合わせガラスの評価を行った。 Next, laminated glass was made using each of the produced transparent laminated films, and the obtained laminated glass was evaluated.
(合わせガラスの作製)
 作製した各透明積層フィルムを2枚のポリビニルブチラール膜(厚み380μm)で挟み、さらにポリビニルブチラール膜の外側から2枚のガラス板(厚み2mm)で挟んで得られる積層体をオートクレーブ内に入れ、135℃×13kgf/cm×20分の条件下で処理することにより、合わせガラス化を行った。
(Production of laminated glass)
Each of the produced transparent laminated films is sandwiched between two polyvinyl butyral membranes (thickness: 380 μm), and further, a laminate obtained by sandwiching between two glass plates (thickness: 2 mm) from the outside of the polyvinyl butyral membrane is placed in an autoclave. Laminated vitrification was performed by processing under the conditions of ° C. × 13 kgf / cm 2 × 20 minutes.
 作製した各合わせガラスについて、渦電流計(DELCOM社製)を用いて表面抵抗値を測定し、さらに下記に示す評価方法により、光学特性、電波透過性、外観を評価した。これらの結果を表4に示す。また、図4には、一例として、実施例2、4~6、比較例2のそれぞれについて、合わせガラス中の透明積層フィルムの表面をレーザー顕微鏡(Olympus社製3D測定レーザー顕微鏡LEXT「OLS 4000」)で撮影して得られた画像を示す。(図4(a):比較例2、図4(b):実施例2、図4(c):実施例4、図4(d):実施例5、図4(e):実施例6)。また、図5には、一例として、実施例2、4~6のそれぞれについて、合わせガラスの断面を電界放出走査型電子顕微鏡(FE-SEM、日立ハイテクノロジーズ社製「S-4800」)で撮影して得られた画像を示す。(図5(a):実施例2、図5(b):実施例4、図5(c):実施例5、図5(d):実施例6)。 About each produced laminated glass, the surface resistance value was measured using the eddy current meter (made by DELCOM company), and also the optical characteristic, the radio wave permeability, and the external appearance were evaluated by the evaluation method shown below. These results are shown in Table 4. Also, in FIG. 4, as an example, the surface of the transparent laminated film in the laminated glass for each of Examples 2, 4 to 6, and Comparative Example 2 is a laser microscope (3D measurement laser microscope LEXT “OLS 4000” manufactured by Olympus). ) Shows an image obtained by shooting. (FIG. 4 (a): Comparative example 2, FIG. 4 (b): Example 2, FIG. 4 (c): Example 4, FIG. 4 (d): Example 5, FIG. 4 (e): Example 6 ). Also, in FIG. 5, as an example, for each of Examples 2, 4 to 6, a cross section of the laminated glass was taken with a field emission scanning electron microscope (FE-SEM, “S-4800” manufactured by Hitachi High-Technologies Corporation). The obtained image is shown. (FIG. 5 (a): Example 2, FIG. 5 (b): Example 4, FIG. 5 (c): Example 5, FIG. 5 (d): Example 6).
(可視光線透過率、可視光線反射率)
 JIS R3212に準拠して、合わせガラスの可視光線透過率、可視光線反射率を求めた。
(Visible light transmittance, visible light reflectance)
Based on JIS R3212, the visible light transmittance and visible light reflectance of the laminated glass were determined.
(太陽光直接透過率)
 ISO 13837に準拠し、分光光度計(島津製作所(株)製、「UV3100」)を用いて、波長300~2500nmの透過スペクトルを測定し、太陽光直接透過率を計算することにより求めた。
(Direct sunlight transmittance)
Based on ISO 13837, a transmission spectrum at a wavelength of 300 to 2500 nm was measured using a spectrophotometer (manufactured by Shimadzu Corporation, “UV3100”), and the direct sunlight transmittance was calculated.
(電波透過性)
 電磁波シールド性電磁シールド特性試験機(アンリツ株式会社製、「MA8602B」とスペクトラムアナライザー(アンリツ株式会社製、「MS2661C」)を用いて、社団法人関西電子工業振興センター(KEC)法に準拠し、周波数1GHzにおける透過減衰量を測定した。
(Radio wave transmission)
An electromagnetic shielding characteristic tester (“MA8602B” manufactured by Anritsu Co., Ltd.) and a spectrum analyzer (“MS2661C” manufactured by Anritsu Co., Ltd.) are used to comply with the Kansai Electronics Industry Promotion Center (KEC) method. The transmission attenuation at 1 GHz was measured.
(外観)
 30cm離れた位置から目視にて溝部が視認されるか否かを確認した。溝部が視認されない場合を外観が良好であるとし、溝部が視認される場合を外観不良とした。
(appearance)
It was confirmed whether a groove part was visually recognized from the position 30 cm away. The appearance was good when the groove was not visually recognized, and the appearance was poor when the groove was visible.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1では、フィルム単体で外観不良であり、合わせガラス化により溝幅がさらに広がって、合わせガラスにおいても外観不良であった。比較例2では、フィルム単体において積層構造部に亀裂が形成されていなかったが、合わせガラス化によっても積層構造部に亀裂が形成されなかった。このため、合わせガラスにおいても電波透過性に劣っていた。 In Comparative Example 1, the appearance of the film alone was poor, the width of the groove was further expanded by vitrification, and the appearance of the laminated glass was also poor. In Comparative Example 2, no crack was formed in the laminated structure portion in the film alone, but no crack was formed in the laminated structure portion even by vitrification. For this reason, the laminated glass was inferior in radio wave transmission.
 これに対し、フィルム単体で積層構造部に溝部が形成されている実施例1~5、7~8では、合わせガラス化したことにより積層構造部(金属層)の分断化が進行した。積層構造部(金属層)の分断化が進行した様子については、一例として図4(b)~(d)に示す。一方、フィルム単体では積層構造部に溝部が形成されていなかった実施例6では、合わせガラス化したことにより積層構造部(金属層)に亀裂(溝部)が形成された。その様子については、図4(e)に示す。実施例6は、フィルム単体では表面抵抗値が100Ω/□未満であったが、合わせガラス化したことにより表面抵抗値が大きく上昇し、合わせガラスでは100Ω/□以上となり、電波透過性に優れることが確認された。そして、実施例の全てにおいて、日射遮蔽性にも優れ、外観も良好であった。 On the other hand, in Examples 1 to 5 and 7 to 8 in which the groove portion was formed in the laminated structure portion by a single film, the laminated structure portion (metal layer) was divided due to the laminated glass. An example of the progress of the segmentation of the laminated structure portion (metal layer) is shown in FIGS. 4B to 4D. On the other hand, in Example 6 in which the groove portion was not formed in the laminated structure portion with a single film, cracks (groove portions) were formed in the laminated structure portion (metal layer) due to the laminated glass. This is shown in FIG. In Example 6, the surface resistance value of the film alone was less than 100 Ω / □, but the surface resistance value greatly increased as a result of the laminated glass, and the laminated glass was 100 Ω / □ or more, and was excellent in radio wave transmission. Was confirmed. In all of the examples, the solar shading was excellent and the appearance was also good.
 実施例6は、フィルム単体では積層構造部に溝部が形成されていなかったため、合わせガラス化時に形成された溝部の近傍には凹みが形成されず、溝部の近傍で光の乱反射が生じるのが抑えられ、合わせガラスとしての外観に最も優れることがわかる。一方、実施例1~5、7~8では、フィルム単体で積層構造部に溝部が形成されていたため、その溝部の近傍において合わせガラス化時に凹みが形成されることがわかった。ただし、溝部の幅が小さいものほど形成される凹みは小さく、外観への影響が小さい。実施例1~5、7~8では溝部の幅が0.3~0.6μmであり、外観への影響が小さく、外観は良好であった。そして、溝幅が0.6μm以下のなかでも0.3μm以下のものはとりわけ外観が良好であった。 In Example 6, since the groove portion was not formed in the laminated structure portion in the film alone, no dent was formed in the vicinity of the groove portion formed at the time of forming the laminated glass, and the occurrence of irregular reflection of light near the groove portion was suppressed. It can be seen that it has the best appearance as a laminated glass. On the other hand, in Examples 1 to 5 and 7 to 8, since a groove was formed in the laminated structure portion of the film alone, it was found that a recess was formed in the vicinity of the groove portion when the laminated glass was formed. However, the smaller the width of the groove is, the smaller the recess is formed, and the less the influence on the appearance is. In Examples 1 to 5 and 7 to 8, the width of the groove was 0.3 to 0.6 μm, the influence on the appearance was small, and the appearance was good. Of the groove widths of 0.6 μm or less, those having a groove width of 0.3 μm or less were particularly good in appearance.
 以上、本発明の実施形態・実施例について説明したが、本発明は上記実施形態・実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。

 
Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. .

Claims (14)

  1.  透明高分子フィルムの面に高分子体層を形成し、該高分子体層の面に金属酸化物層と金属層とが積層される積層構造部を形成して透明積層フィルムを得るフィルム作製工程と、
     得られた透明積層フィルムを2枚の透明基材で挟み、加熱・加圧下にて2枚の透明基材を貼り合わせる合わせ化工程と、を有し、
     フィルム作製工程において、積層構造部の金属酸化物層を金属酸化物前駆体のゾルゲル硬化によって形成するとともに、高分子体層の高分子には、合わせ化工程の加熱温度よりも低い温度に軟化温度を有する高分子を用い、2枚の透明基材の貼り合わせ時に積層構造部の金属層を分断する溝部を形成することを特徴とする遮熱性合わせ構造体の製造方法。
    Film production process of forming a polymer layer on the surface of a transparent polymer film and forming a laminated structure in which a metal oxide layer and a metal layer are laminated on the surface of the polymer layer to obtain a transparent laminate film When,
    The obtained transparent laminated film is sandwiched between two transparent base materials, and has a bonding step of bonding the two transparent base materials together under heating and pressure,
    In the film production process, the metal oxide layer of the laminated structure is formed by sol-gel curing of the metal oxide precursor, and the polymer of the polymer layer has a softening temperature lower than the heating temperature of the laminating process. A method for producing a heat-insulating laminated structure, comprising: forming a groove part that divides a metal layer of a laminated structure part when two transparent substrates are bonded together.
  2.  高分子体層の高分子には、軟化温度が40~130℃の高分子を用いることを特徴とする請求項1に記載の遮熱性合わせ構造体の製造方法。 The method for producing a heat-insulating laminated structure according to claim 1, wherein a polymer having a softening temperature of 40 to 130 ° C is used as the polymer of the polymer layer.
  3.  高分子体層を0.05~1.0μmの厚みに形成することを特徴とする請求項1または2に記載の遮熱性合わせ構造体の製造方法。 3. The method for producing a heat shielding laminated structure according to claim 1, wherein the polymer layer is formed to a thickness of 0.05 to 1.0 μm.
  4.  フィルム作製工程において積層構造部の金属層を分断する溝部が形成されないようにする、あるいは、フィルム作製工程において形成される積層構造部の金属層を分断する溝部の幅を0.6μm以下にすることを特徴とする請求項1から3のいずれか1項に記載の遮熱性合わせ構造体の製造方法。 Do not form a groove that divides the metal layer of the laminated structure in the film production process, or make the width of the groove that divides the metal layer of the laminated structure formed in the film production process 0.6 μm or less. The manufacturing method of the heat insulation laminated structure of any one of Claim 1 to 3 characterized by these.
  5.  高分子体層の高分子には軟化温度が110~130℃の高分子を用いるとともに、高分子体層を0.05~0.5μmの厚みに形成することを特徴とする請求項4に記載の遮熱性合わせ構造体の製造方法。 5. The polymer according to claim 4, wherein a polymer having a softening temperature of 110 to 130 ° C. is used as the polymer of the polymer layer, and the polymer layer is formed to a thickness of 0.05 to 0.5 μm. Of manufacturing a heat-insulating laminated structure.
  6.  請求項1から5のいずれか1項に記載の製造方法により得られた遮熱性合わせ構造体。 A heat-insulating laminated structure obtained by the production method according to any one of claims 1 to 5.
  7.  透明高分子フィルムの面に、高分子体層と、金属酸化物層と金属層とが積層された積層構造部と、がこの順で積層されている透明積層フィルムと、
     貼り合わされる2枚の透明基材と、を備え、
     透明積層フィルムを挟んで2枚の透明基材が貼り合わされており、
     透明積層フィルムの積層構造部には金属層を分断する溝部が形成されていることを特徴とする遮熱性合わせ構造体。
    On the surface of the transparent polymer film, a polymer layer, a laminated structure in which a metal oxide layer and a metal layer are laminated, and a transparent laminated film laminated in this order;
    Two transparent substrates to be bonded together,
    Two transparent base materials are bonded together with a transparent laminated film in between.
    The laminated structure part of a transparent laminated film has the groove part which divides | segments a metal layer, The heat insulating laminated structure characterized by the above-mentioned.
  8.  高分子体層の高分子の軟化温度が40~130℃であることを特徴とする請求項7に記載の遮熱性合わせ構造体。 The heat insulating laminated structure according to claim 7, wherein the polymer softening temperature of the polymer layer is 40 to 130 ° C.
  9.  高分子体層の厚さが0.05~1.0μmであることを特徴とする請求項7または8に記載の遮熱性合わせ構造体。 9. The heat shielding laminated structure according to claim 7, wherein the polymer layer has a thickness of 0.05 to 1.0 μm.
  10.  高分子体層の材質がアクリル樹脂、フェノキシ樹脂あるいはブチラール樹脂であることを特徴とする請求項7から9のいずれか1項に記載の遮熱性合わせ構造体。 The heat insulating laminated structure according to any one of claims 7 to 9, wherein the material of the polymer layer is an acrylic resin, a phenoxy resin, or a butyral resin.
  11.  透明高分子フィルムの面に金属酸化物層と金属層とが積層された積層構造部を有し、透明高分子フィルムと積層構造部の間には軟化温度が40~130℃の高分子体層が配置されていることを特徴とする透明積層フィルム。 A polymer layer having a laminated structure in which a metal oxide layer and a metal layer are laminated on the surface of the transparent polymer film, and a softening temperature of 40 to 130 ° C. between the transparent polymer film and the laminated structure part The transparent laminated film characterized by the above-mentioned.
  12.  積層構造部には金属層を分断する溝部が形成されていないことを特徴とする請求項11に記載の透明積層フィルム。 The transparent laminated film according to claim 11, wherein a groove part for dividing the metal layer is not formed in the laminated structure part.
  13.  高分子体層の厚さが0.05~1.0μmであることを特徴とする請求項11または12に記載の透明積層フィルム。 The transparent laminated film according to claim 11 or 12, wherein the polymer layer has a thickness of 0.05 to 1.0 µm.
  14.  高分子体層の材質がアクリル樹脂、フェノキシ樹脂あるいはブチラール樹脂であることを特徴とする請求項11から13のいずれか1項に記載の透明積層フィルム。 The transparent laminated film according to any one of claims 11 to 13, wherein a material of the polymer layer is an acrylic resin, a phenoxy resin, or a butyral resin.
PCT/JP2013/072181 2012-09-25 2013-08-20 Process for producing heat-insulating laminated structure, heat-insulating laminated structure, and transparent laminated film WO2014050367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012211126 2012-09-25
JP2012-211126 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050367A1 true WO2014050367A1 (en) 2014-04-03

Family

ID=50387777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072181 WO2014050367A1 (en) 2012-09-25 2013-08-20 Process for producing heat-insulating laminated structure, heat-insulating laminated structure, and transparent laminated film

Country Status (1)

Country Link
WO (1) WO2014050367A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126135A1 (en) * 2013-02-13 2014-08-21 東洋紡株式会社 Heat ray-reflecting, radio wave-transmitting transparent laminate
JP2015205795A (en) * 2014-04-21 2015-11-19 王子ホールディングス株式会社 Heat ray-shielding glass laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005659A (en) * 2001-04-17 2003-01-08 Tokai Rubber Ind Ltd Transparent electromagnetic wave shield film for plasma display, front surface filter for plasma display panel using it, and plasma display
JP2006327177A (en) * 2005-04-26 2006-12-07 Tokai Rubber Ind Ltd Transparent laminated film, transparent laminate and plasma display
JP2010149347A (en) * 2008-12-25 2010-07-08 Tokai Rubber Ind Ltd Transparent laminated film
WO2011024756A1 (en) * 2009-08-26 2011-03-03 東海ゴム工業株式会社 Transparent laminate film and method for producing same
WO2012111367A1 (en) * 2011-02-14 2012-08-23 東海ゴム工業株式会社 Method for producing heat-shielding ply structure, heat-shielding ply structure, and transparent laminate film for ply structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005659A (en) * 2001-04-17 2003-01-08 Tokai Rubber Ind Ltd Transparent electromagnetic wave shield film for plasma display, front surface filter for plasma display panel using it, and plasma display
JP2006327177A (en) * 2005-04-26 2006-12-07 Tokai Rubber Ind Ltd Transparent laminated film, transparent laminate and plasma display
JP2010149347A (en) * 2008-12-25 2010-07-08 Tokai Rubber Ind Ltd Transparent laminated film
WO2011024756A1 (en) * 2009-08-26 2011-03-03 東海ゴム工業株式会社 Transparent laminate film and method for producing same
WO2012111367A1 (en) * 2011-02-14 2012-08-23 東海ゴム工業株式会社 Method for producing heat-shielding ply structure, heat-shielding ply structure, and transparent laminate film for ply structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126135A1 (en) * 2013-02-13 2014-08-21 東洋紡株式会社 Heat ray-reflecting, radio wave-transmitting transparent laminate
JP2015205795A (en) * 2014-04-21 2015-11-19 王子ホールディングス株式会社 Heat ray-shielding glass laminate

Similar Documents

Publication Publication Date Title
JP5197850B2 (en) Transparent laminated film and method for producing the same
JP5662824B2 (en) Method for producing heat-insulating laminated structure, heat-insulating laminated structure, transparent laminated film for laminated structure
JP5363508B2 (en) Transparent laminated film and method for producing the same
WO2014049891A1 (en) Transparent laminate film
JP2012207445A (en) Transparent rolling screen
JP5806836B2 (en) Transparent laminated film, transparent laminate using the same, and method of using the transparent laminated film
JP2014231199A (en) Transparent laminate film
JP2013209230A (en) Heat-insulating superposed structure, method of manufacturing heat-insulating superposed structure, and transparent laminate film for superposed structure
JP2012135888A (en) Transparent laminated film and method for using the same
WO2014050237A1 (en) Transparent laminated film and method for manufacturing transparent laminated film
JP4982149B2 (en) Transparent laminated film and transparent laminated body
WO2014050367A1 (en) Process for producing heat-insulating laminated structure, heat-insulating laminated structure, and transparent laminated film
JP2011133721A (en) Transparent laminated film
JP5143717B2 (en) Transparent laminated film
JP5926092B2 (en) Transparent laminated film
JP5314536B2 (en) Transparent laminated film
JP2009241581A (en) Transparent laminated film
JP2012207444A (en) Method for adjusting solar radiation in wire-reinforced window glass
JP2012161925A (en) Transparent laminated film and double-glazed glass
JP5421505B1 (en) Transparent laminated film
JP6134223B2 (en) Light transmissive laminate
WO2015029706A1 (en) Light-transmitting layered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP