JPH07333423A - Permselective membrane - Google Patents

Permselective membrane

Info

Publication number
JPH07333423A
JPH07333423A JP6126375A JP12637594A JPH07333423A JP H07333423 A JPH07333423 A JP H07333423A JP 6126375 A JP6126375 A JP 6126375A JP 12637594 A JP12637594 A JP 12637594A JP H07333423 A JPH07333423 A JP H07333423A
Authority
JP
Japan
Prior art keywords
film
titanium oxide
glass
permselective membrane
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6126375A
Other languages
Japanese (ja)
Inventor
Yukinori Yamada
幸憲 山田
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6126375A priority Critical patent/JPH07333423A/en
Publication of JPH07333423A publication Critical patent/JPH07333423A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce a permselective membrane which can be formed by a simple process by using an inexpensive material excellent in weather resistance by constituting the film of titanium oxide having an oxygen-deficient anatase structure. CONSTITUTION:This permselective membrane is obtd. by forming a single TiO2-x layer by using titanium oxide which is inexpensive and excellent in weather resistance and absorbs UV rays so that the film causes deficit of oxygen. The obtd. layer has a reflecting function for heat rays and can be produced by a simple process. In this case, for example, a thin film 2 of titanium oxide is formed by magnetron sputtering on a transparent glass substrate 1. When the glass coated with this permselective membrane is used as window glass, the glass absorbs UV rays to shield the inside of the window glass so that deterioration of foods or fiber can be prevented. Further, external heat rays are reflected by the glass to increase the cooling efficiency of the room, or heat rays inside the window are reflected to the inside so that the heating efficiency for the room is improved. This saves energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両のウィンドウガラ
スや建築物の窓ガラスなどに設けられる選択透過膜に係
わり、さらに詳しくはその材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permselective film provided on a window glass of a vehicle or a window glass of a building, and more particularly to a material thereof.

【0002】[0002]

【従来の技術】従来この種の膜においては、例えば特開
昭51−150507号公報に示されているように、ア
ルミニウムなどの金属薄膜の赤外線反射機能を利用した
もの、特開昭59−148654号公報に示されている
ように、酸化ジルコニウムなどの高屈折率物質と二酸化
珪素などの低屈折率物質を積層して光学干渉によって熱
線を反射するもの、特開昭58−12857号公報に示
されているように、酸化インジウムなどの透明導電材料
の選択透過性を利用したものなどがあった。
2. Description of the Related Art Conventionally, in this type of film, as shown in, for example, Japanese Patent Application Laid-Open No. 51-150507, a film utilizing the infrared reflecting function of a metal thin film such as aluminum is disclosed. Japanese Patent Laid-Open No. 58-12857, wherein a high refractive index substance such as zirconium oxide and a low refractive index substance such as silicon dioxide are laminated and heat rays are reflected by optical interference. As described above, there are some that utilize the selective permeability of a transparent conductive material such as indium oxide.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、金属薄
膜は耐候性が劣り、保護膜を設けなければ赤外線反射機
能が劣化してしまう。また、膜厚を非常に薄くしなけれ
ば可視光での透明性が低下する。光学干渉膜は各積層膜
での屈折率と膜厚の制御が厳密であり、製膜工程が複雑
である。さらに透明導電材料は特性的には優れている
が、材料が高価であるなどの問題点を有していた。
However, the metal thin film is inferior in weather resistance and the infrared reflection function is deteriorated unless a protective film is provided. In addition, the transparency with respect to visible light decreases unless the film thickness is made extremely thin. In the optical interference film, the control of the refractive index and the film thickness of each laminated film is strict, and the film forming process is complicated. Further, although the transparent conductive material is excellent in characteristics, it has a problem that the material is expensive.

【0004】本発明は、上記従来品が持っていた低い耐
候性、複雑な製膜工程、高価な材料といった欠点を解決
し、以て耐候性に優れた安価な材料を用い、簡単な工程
によって製膜できる選択透過膜を提供することを目的と
する。
The present invention solves the drawbacks of the above conventional products such as low weather resistance, complicated film forming process, and expensive material, and thus uses an inexpensive material excellent in weather resistance and uses a simple process. It is an object to provide a permselective membrane that can be formed into a film.

【0005】[0005]

【課題を解決するための手段】本発明は、前記の目的を
達成するため、紫外光を吸収し、安価で耐候性に優れた
材料である酸化チタンを用い、膜中に積極的に酸素欠損
を生成することで、TiO2-x 単層で熱線反射機能を持
たせて製膜工程を簡略化した、選択透過膜を得る。
In order to achieve the above-mentioned object, the present invention uses titanium oxide, which is a material that absorbs ultraviolet light, is inexpensive and has excellent weather resistance, and is positively oxygen-deficient in the film. By producing a TiO 2 -x single layer, a selective transmission film having a heat ray reflecting function and a simplified film forming process is obtained.

【0006】[0006]

【作用】ここでいう選択透過とは、0.3〜2.4μm
の波長領域を持つ太陽光のうち、人間の目が感じること
のできる可視光である0.38〜0.78μmの波長領
域の光は透過することで透明性を保ち、食品・繊維等を
劣化させる可視光よりも波長の短い紫外光を吸収し、主
に熱エネルギーに変換されて温度上昇を伴う熱線と称さ
れる可視光よりも波長の長い赤外光を反射することであ
る。
[Function] The selective transmission referred to here is 0.3 to 2.4 μm.
Of sunlight with a wavelength range of 0.38 to 0.78 μm, which is visible light that human eyes can perceive, keeps transparency by transmitting light and deteriorates food and fiber. That is, it absorbs ultraviolet light having a shorter wavelength than visible light and reflects infrared light having a longer wavelength than visible light, which is mainly converted into heat energy and called a heat ray accompanied by temperature rise.

【0007】このような選択透過膜を施した窓ガラスの
内側では、吸収によって紫外光を遮蔽して食品・繊維等
の劣化を防ぎ、外側からの熱線を外部に反射することに
より冷房効率が、内側での熱線を内部に反射することに
より暖房効率が上がり、省エネルギー化が図られる。
On the inside of the window glass provided with such a selective transmission film, ultraviolet light is blocked by absorption to prevent deterioration of foods, fibers and the like, and heat rays from the outside are reflected to the outside to improve cooling efficiency. By reflecting the heat rays from the inside, the heating efficiency is increased and energy saving is achieved.

【0008】波長の短い光(エネルギーの高い光)を吸
収するということは、光のエネルギーによって半導体の
価電子帯から伝導帯に電子が励起されるということであ
る。この電子を励起するための最低のエネルギー(吸収
される光の最も長い波長)は、価電子帯と伝導帯間のエ
ネルギーギャップ(バンドギャップ)に相当する。
The absorption of light having a short wavelength (light having high energy) means that electrons are excited from the valence band of the semiconductor to the conduction band by the energy of light. The lowest energy for exciting this electron (longest wavelength of absorbed light) corresponds to the energy gap (band gap) between the valence band and the conduction band.

【0009】本発明の酸化チタンのバンドギャップは約
3.5eV(0.35〜0.36μm)であり、紫外光
を吸収する。
The titanium oxide of the present invention has a band gap of about 3.5 eV (0.35-0.36 μm) and absorbs ultraviolet light.

【0010】波長の長い光(振動数の低い電磁波)を反
射するということは、低い振動数に反応できるような、
復元力を殆ど受けない自由電子が膜中に存在するという
ことである。酸化チタンのような半導体材料では、熱励
起によって僅かの自由電子が存在する程度であるが、積
極的に酸素欠損を誘発することで、結合相手を持たない
チタンの余剰電子が自由電子として反射を担うことがで
きる。ところが、自由電子が反射できる光の波長は、自
由電子の濃度に依存し、膜中に自由電子が多量に存在す
ると、金属膜のように可視光領域の光も反射して膜が不
透明になる。従って、赤外光領域以上の波長の光だけを
反射するためには、膜中の自由電子の濃度を制御する必
要があり、余剰電子を放出しうる、酸素と結合していな
い金属チタンの存在比率aは、 0.05≦a≦0.15 とする必要があり、さらに好ましくは0.05≦a≦
0.09の範囲である。
Reflecting light having a long wavelength (electromagnetic waves having a low frequency) means reacting to a low frequency,
This means that there are free electrons in the film that are hardly affected by the restoring force. In semiconductor materials such as titanium oxide, only a few free electrons are present due to thermal excitation, but by actively inducing oxygen deficiency, surplus electrons of titanium without a binding partner are reflected as free electrons. I can carry it. However, the wavelength of light that can be reflected by free electrons depends on the concentration of free electrons, and if a large amount of free electrons are present in the film, the light in the visible light region is also reflected and the film becomes opaque like a metal film. . Therefore, it is necessary to control the concentration of free electrons in the film in order to reflect only light with a wavelength in the infrared region or more, and the presence of metallic titanium that is not bonded to oxygen and that can emit excess electrons. The ratio a needs to be 0.05 ≦ a ≦ 0.15, and more preferably 0.05 ≦ a ≦
It is in the range of 0.09.

【0011】また、膜のシート抵抗ρ(Ω/□)は膜中
の自由電子濃度と移動度に依存し、酸化チタンにおいて
赤外光領域以上の波長の光だけを反射するためには、 1×103 ≦ρ≦1×104 でなければならず、好ましくは1×103 ≦ρ≦4×1
3 の範囲である。
Further, the sheet resistance ρ (Ω / □) of the film depends on the free electron concentration and mobility in the film, and in order to reflect only light having a wavelength in the infrared light region or more in titanium oxide, 1 X10 3 ≤ρ≤1 × 10 4 , preferably 1 × 10 3 ≤ρ≤4 × 1
It is in the range of 0 3 .

【0012】さらに、可視光での透明性を保つためには
膜厚はあまり厚くできず、赤外光での反射率を高めるた
めには膜厚はあまり薄くできない。従っての膜厚t(μ
m)としては、 0.01≦t≦10.0 が望ましく、好ましくは0.5≦t≦5の範囲である。
Further, the film thickness cannot be made too thick in order to maintain transparency in visible light, and cannot be made too thin in order to increase the reflectance in infrared light. Therefore, the film thickness t (μ
As m), 0.01 ≦ t ≦ 10.0 is desirable, and 0.5 ≦ t ≦ 5 is preferable.

【0013】[0013]

【実施例】酸化チタンの結晶形態にはアナターゼ、ブル
ーカイトならびにルチルの3種類があり、ルチルは最も
安定な結晶形である。アナターゼとルチルの物理的性質
を比較すれば下記の通りである。 アナターゼ形 ルチル形 結晶系 正方晶系 正方晶系 比 重 3.84 4.26 屈折率 2.52 2.71 モース硬さ 5.5 〜6 6〜7 誘電率 31 114 融 点 700 〜1000℃で 1640℃ ルチルに転移 次に具体的な製造方法について図1を用いて説明する。
透明なガラス基板1上にマグネトロンスパッタリング法
で酸化チタン薄膜2を製膜した。スパッタリング条件
は、5×10-6Torr以下まで排気した真空槽内に、
アルゴンに1.8%の酸素を混合したガスを、真空槽内
が5×10-3Torrとなる流量導入し、金属チタンを
ターゲットとして1.0kWのRF電力を投入して製膜
した。基板温度は室温、膜厚は0.2μmとした。この
膜の結晶構造は、X線回折パターンよりアナターゼ構造
のTiO2 がメインであった。また、膜中の酸素と結合
していない金属チタンの存在比率は、XPS分析により
0.07であった。膜のシート抵抗は、4探針法により
2×103 (Ω/□)であった。
EXAMPLE There are three types of crystal forms of titanium oxide, anatase, brookite and rutile, and rutile is the most stable crystal form. A comparison of the physical properties of anatase and rutile is as follows. Anatase type Rutile type Tetragonal system Tetragonal system Tetragonal system Specific gravity 3.84 4.26 Refractive index 2.52 2.71 Mohs hardness 5.5-6 6-7 Dielectric constant 31 114 Melting point 700-1000 ° C 1640 ° C Transfer to rutile Next, a specific manufacturing method will be described with reference to FIG.
The titanium oxide thin film 2 was formed on the transparent glass substrate 1 by the magnetron sputtering method. The sputtering conditions are as follows: in a vacuum chamber evacuated to 5 × 10 -6 Torr or less,
A gas in which 1.8% of oxygen was mixed with argon was introduced into the vacuum chamber at a flow rate of 5 × 10 −3 Torr, and RF power of 1.0 kW was applied to the metal titanium as a target to form a film. The substrate temperature was room temperature and the film thickness was 0.2 μm. The crystal structure of this film was mainly TiO 2 having an anatase structure from the X-ray diffraction pattern. In addition, the abundance ratio of metallic titanium not bonded to oxygen in the film was 0.07 by XPS analysis. The sheet resistance of the film was 2 × 10 3 (Ω / □) by the 4-probe method.

【0014】0.2〜2.6μmの波長領域における透
過率、反射率スペクトルを図2に示す。図から分かるよ
うに、可視光領域である0.38〜0.78μmでは透
過率が高く反射率は低い。赤外光領域である0.78μ
m以上では透過率が低く反射率が高い。また、紫外光領
域である0.38μm以下では吸収により透過率が低
い。従って、この膜は熱線反射機能を有する良好な選択
透過膜である。
FIG. 2 shows the transmittance and reflectance spectra in the wavelength range of 0.2 to 2.6 μm. As can be seen from the figure, the transmittance is high and the reflectance is low in the visible light region of 0.38 to 0.78 μm. 0.78μ in the infrared region
When it is m or more, the transmittance is low and the reflectance is high. Further, in the ultraviolet region of 0.38 μm or less, the transmittance is low due to absorption. Therefore, this film is a good selective transmission film having a heat ray reflecting function.

【0015】比較例として、製膜時の導入ガスの酸素混
合比率を2%として金属チタンの存在比率を0.04と
したものの透過率、反射率スペクトルを図3に、酸素混
合比率を1.5%として金属チタンの存在比率を0.1
7としたものの透過率、反射率スペクトルを図4に示
す。
As a comparative example, FIG. 3 shows the transmittance and reflectance spectra when the oxygen mixture ratio of the introduced gas during film formation is 2% and the abundance ratio of metallic titanium is 0.04. The oxygen mixture ratio is 1. The existence ratio of metallic titanium is set to 5% and is set to 0.1.
FIG. 4 shows the transmittance and reflectance spectra of the sample No. 7.

【0016】図3から分かるように、金属チタンの存在
比率が0.05以下では、熱線反射機能のない透明な酸
化チタンとなって干渉パターンしか現れない。
As can be seen from FIG. 3, when the abundance ratio of metallic titanium is 0.05 or less, the titanium oxide becomes transparent titanium oxide having no heat ray reflecting function and only the interference pattern appears.

【0017】また、図4から分かるように、金属チタン
の存在比率が0.15以上では金属膜に近い状態とな
り、可視光領域で不透明となる。従って、金属チタンの
存在比率を0.05〜0.15の範囲に規制することに
より、良好な熱線反射機能を有する選択透過膜を得るこ
とができる。
Further, as can be seen from FIG. 4, when the abundance ratio of metallic titanium is 0.15 or more, it becomes a state close to that of a metallic film and becomes opaque in the visible light region. Therefore, by controlling the abundance ratio of metallic titanium in the range of 0.05 to 0.15, it is possible to obtain a selective transmission film having a good heat ray reflecting function.

【0018】なお、薄膜の作製法としては、気相法であ
るスパッタリング法、真空蒸着法、CVD法等の他、浸
漬、スプレー、塗布等の湿式法も可能である。
As a method for forming the thin film, a vapor phase method such as a sputtering method, a vacuum vapor deposition method, a CVD method or the like, and a wet method such as dipping, spraying or coating can be used.

【0019】[0019]

【発明の効果】以上説明したように、本発明によると、
以下の効果を奏する。
As described above, according to the present invention,
The following effects are achieved.

【0020】(1)安定な材料である酸化チタンを使用
するため、耐候性が良好である。
(1) Since titanium oxide, which is a stable material, is used, the weather resistance is good.

【0021】(2)安価な材料である酸化チタンを使用
するため、コストが低減できる。
(2) Since titanium oxide, which is an inexpensive material, is used, the cost can be reduced.

【0022】(3)酸化チタン単層で選択透過性がある
ため、製膜工程の短縮化が図れ、作業性が極めてよい。
(3) Since the titanium oxide single layer has selective permeability, the film forming process can be shortened and the workability is extremely good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る選択透過膜を形成したガ
ラス基板の断面図である。
FIG. 1 is a cross-sectional view of a glass substrate on which a selective transmission film according to an embodiment of the present invention is formed.

【図2】本発明の実施例に係る選択透過膜の透過率、反
射率の特性図である。
FIG. 2 is a characteristic diagram of transmittance and reflectance of a selective transmission film according to an example of the present invention.

【図3】比較例に係る選択透過膜の透過率、反射率の特
性図である。
FIG. 3 is a characteristic diagram of transmittance and reflectance of a selective transmission film according to a comparative example.

【図4】比較例に係る選択透過膜の透過率、反射率の特
性図である。
FIG. 4 is a characteristic diagram of transmittance and reflectance of a selective transmission film according to a comparative example.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 酸化チタン薄膜 1 glass substrate 2 titanium oxide thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 E06B 9/24 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location E06B 9/24 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可視光に応じて透明で、紫外光を吸収
し、赤外光を反射する選択透過膜が、酸素欠損のアナタ
ーゼ構造を有する酸化チタンで構成されていることを特
徴とする選択透過膜。
1. A selective transmission film, which is transparent to visible light, absorbs ultraviolet light, and reflects infrared light, is composed of titanium oxide having an anatase structure with oxygen deficiency. Permeable membrane.
【請求項2】 請求項1において、前記酸化チタンTi
2-x のx値が、 0<x≦0.5 で、膜中に含まれる酸素と結合しない金属Tiの存在比
率aが、 0.05≦a≦0.15 であることを特徴とする選択透過膜。
2. The titanium oxide Ti according to claim 1,
The x value of O 2−x is 0 <x ≦ 0.5, and the abundance ratio a of the metal Ti that does not bind to oxygen contained in the film is 0.05 ≦ a ≦ 0.15. Selectively permeable membrane.
【請求項3】 請求項1または2において、選択透過膜
のシート抵抗ρ(Ω/□)が、 1×103 ≦ρ≦1×104 であることを特徴とする選択透過膜。
3. The selective permeation film according to claim 1, wherein the sheet resistance ρ (Ω / □) of the selective permeation film is 1 × 10 3 ≦ ρ ≦ 1 × 10 4 .
【請求項4】 請求項1ないし3の何れかにおいて、選
択透過膜の膜厚t(μm)が、 0.01≦t≦10.0 であることを特徴とする選択透過膜。
4. The selective permeation film according to claim 1, wherein a film thickness t (μm) of the selective permeation film is 0.01 ≦ t ≦ 10.0.
【請求項5】 請求項1ないし4の何れかにおいて、前
記選択透過膜がガラス板上に形成されていることを特徴
とする選択透過膜。
5. The selective permeation film according to claim 1, wherein the selective permeation film is formed on a glass plate.
JP6126375A 1994-06-08 1994-06-08 Permselective membrane Pending JPH07333423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6126375A JPH07333423A (en) 1994-06-08 1994-06-08 Permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6126375A JPH07333423A (en) 1994-06-08 1994-06-08 Permselective membrane

Publications (1)

Publication Number Publication Date
JPH07333423A true JPH07333423A (en) 1995-12-22

Family

ID=14933619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6126375A Pending JPH07333423A (en) 1994-06-08 1994-06-08 Permselective membrane

Country Status (1)

Country Link
JP (1) JPH07333423A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507618A (en) * 2003-10-07 2007-03-29 デポジション・サイエンシイズ・インコーポレイテッド Apparatus and method for depositing rutile titanium dioxide at high speed
EP2243750A1 (en) * 2009-03-31 2010-10-27 Schott AG Transparent glass or glass ceramic disc with a layer which reflects infrared radiation
JP2011102821A (en) * 2009-11-10 2011-05-26 Nitto Denko Corp Polarizing plate and image display device
JP2012066985A (en) * 2010-09-27 2012-04-05 Schott Ag Transparent glass or glass ceramic pane with layer that reflects infrared radiation
CN102723374A (en) * 2012-06-29 2012-10-10 苏州嘉言能源设备有限公司 Antireflection film for solar battery
US8861077B2 (en) 2010-04-14 2014-10-14 Nitto Denko Corporation Polarizing plate having ultraviolet shielding layer containing inorganic fine particles and image display apparatus comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756350A (en) * 1980-09-17 1982-04-03 Nippon Soken Inc Glass shielding ultraviolet light for vehicle
JPS6052939U (en) * 1983-09-14 1985-04-13 トヨタ自動車株式会社 Glass plate with UV blocking film
JPH05107403A (en) * 1991-10-16 1993-04-30 Asahi Glass Co Ltd High refractivity conductive film or low reflective anti-static film and manufacture thereof
JPH05213632A (en) * 1991-10-30 1993-08-24 Asahi Glass Co Ltd Production of heat-treated coated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756350A (en) * 1980-09-17 1982-04-03 Nippon Soken Inc Glass shielding ultraviolet light for vehicle
JPS6052939U (en) * 1983-09-14 1985-04-13 トヨタ自動車株式会社 Glass plate with UV blocking film
JPH05107403A (en) * 1991-10-16 1993-04-30 Asahi Glass Co Ltd High refractivity conductive film or low reflective anti-static film and manufacture thereof
JPH05213632A (en) * 1991-10-30 1993-08-24 Asahi Glass Co Ltd Production of heat-treated coated glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507618A (en) * 2003-10-07 2007-03-29 デポジション・サイエンシイズ・インコーポレイテッド Apparatus and method for depositing rutile titanium dioxide at high speed
EP2243750A1 (en) * 2009-03-31 2010-10-27 Schott AG Transparent glass or glass ceramic disc with a layer which reflects infrared radiation
JP2011102821A (en) * 2009-11-10 2011-05-26 Nitto Denko Corp Polarizing plate and image display device
US8861076B2 (en) 2009-11-10 2014-10-14 Nitto Denko Corporation Polarizing plate having polarizer and ultraviolet shielding layer containing inorganic fine particles and image display apparatus comprising the same
US8861077B2 (en) 2010-04-14 2014-10-14 Nitto Denko Corporation Polarizing plate having ultraviolet shielding layer containing inorganic fine particles and image display apparatus comprising the same
JP2012066985A (en) * 2010-09-27 2012-04-05 Schott Ag Transparent glass or glass ceramic pane with layer that reflects infrared radiation
CN102723374A (en) * 2012-06-29 2012-10-10 苏州嘉言能源设备有限公司 Antireflection film for solar battery

Similar Documents

Publication Publication Date Title
Jin et al. Design, formation and characterization of a novel multifunctional window with VO 2 and TiO 2 coatings
KR100909298B1 (en) Coating Compositions Having Solar Properties
JP4370396B2 (en) Multifunctional automatic light control insulation glass and air conditioning method
JP4426972B2 (en) Infrared reflective laminated structure
JP3849008B2 (en) High performance automatic light control window coating material
CZ20031642A3 (en) Glazing panel provided with a stack of thin layers for solar protection and/or heat insulation
JPH0370202B2 (en)
JPH05254887A (en) Transparent laminated substrate, its use and laminating method, method and device for laminating on base material, and hafnium oxynitride
US11086054B2 (en) Solid state thermochromic device, and method for producing said device
WO2019163340A1 (en) Radiative cooling device
Ebisawa et al. Solar control coating on glass
JPH08283044A (en) Heat ray cutoff glass
CN108726891A (en) Low radiation coated glass and preparation method thereof
JPH0859300A (en) Heat radiation-insulating glass
JPH07333423A (en) Permselective membrane
JP2014218426A (en) Thermochromic window
JPH05124839A (en) Heat insulating glass which can be thermally worked
JPS636504A (en) Heat control film
JPH0859301A (en) Ultraviolet heat shielding glass
GB2029861A (en) A heat reflecting pane and a method of manufacturing the same
Haacke Materials for transparent heat mirror coatings
JPH06247746A (en) Glass for vehicle
JPH0848545A (en) Low reflectivity heat ray reflection glass
JP7479734B1 (en) Radio-wave-transmitting heat-shielding double-glazed glass
JPH07138048A (en) Ultraviolet light heat screening glass

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030610