JP2014218426A - Thermochromic window - Google Patents

Thermochromic window Download PDF

Info

Publication number
JP2014218426A
JP2014218426A JP2014094818A JP2014094818A JP2014218426A JP 2014218426 A JP2014218426 A JP 2014218426A JP 2014094818 A JP2014094818 A JP 2014094818A JP 2014094818 A JP2014094818 A JP 2014094818A JP 2014218426 A JP2014218426 A JP 2014218426A
Authority
JP
Japan
Prior art keywords
thermochromic
thin film
glass
window
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014094818A
Other languages
Japanese (ja)
Inventor
永 秀 ▲鄭▼
永 秀 ▲鄭▼
Youngsoo Jung
スルギ ペ
Seulgi Bae
スルギ ペ
賢 斌 金
Hyun Bin Kim
賢 斌 金
映 振 ▲鄭▼
映 振 ▲鄭▼
Yung-Jin Jung
溶 元 崔
Yong-Won Choi
溶 元 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Samsung Corning Precision Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Precision Materials Co Ltd filed Critical Samsung Corning Precision Materials Co Ltd
Publication of JP2014218426A publication Critical patent/JP2014218426A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10477Variable transmission thermochromic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermochromic window having a hot-processed substrate without losing thermochromic properties, and a method of fabricating the same.SOLUTION: The thermochromic window includes: a flexible substrate; a thermochromic thin film formed on the flexible substrate; and a hot-processed substrate bonded to the thermochromic thin film.

Description

本発明は、サーモクロミックウィンドウ及びその製造方法に係り、より詳しくは、温度に応じて太陽光の透過率が調節されるサーモクロミックウィンドウ及びその製造方法に関する。   The present invention relates to a thermochromic window and a method for manufacturing the same, and more particularly to a thermochromic window in which the transmittance of sunlight is adjusted according to temperature and a method for manufacturing the same.

最近、石油等の化学エネルギー源の価格が急騰するとともに、新たなエネルギー源の開発の必要性が大きくなっている。また、これに劣らず、省エネルギー技術の重要性も増大している。実際に、一般家庭のエネルギー消費量のうち60%以上は、冷・暖房費として使用される。特に、一般住宅および建物において、窓を介して消費されるエネルギーは24%に達する。   Recently, the price of chemical energy sources such as petroleum has soared, and the need for the development of new energy sources has increased. In addition, the importance of energy saving technology is increasing. In fact, 60% or more of the energy consumption of ordinary households is used for cooling and heating. In particular, energy consumed through windows reaches 24% in ordinary houses and buildings.

これにより、窓の基本機能である建物の美観および眺望の特性を維持しつつ、かつ窓の気密および断熱特性を高めて、窓を介して消費されるエネルギーを減らすための多様な努力がなされており、その代表として、窓の大きさを調節する方法から高断熱窓を設置する方法等が実施されている。   As a result, various efforts are made to reduce the energy consumed through the windows while maintaining the aesthetics and view characteristics of the building, which are the basic functions of the windows, and improving the airtightness and thermal insulation characteristics of the windows. As a representative example, a method of installing a highly insulated window from a method of adjusting the size of the window has been implemented.

高断熱窓の種類には、複層ガラスにアルゴン(Ar)ガス等を注入して熱交換現象を防ぐアルゴンガス注入複層窓や、複層ガラスの間を真空状態にする真空窓、ローイー(Low−E)ウィンドウ等がある。この他にも、熱的特性を有する層をガラスにコートして、太陽光を通じたエネルギーの流入を調節するウィンドウ等が研究されている。   The types of highly insulated windows include argon gas injection multilayer windows that inject argon (Ar) gas into the multilayer glass to prevent heat exchange phenomenon, vacuum windows that evacuate between the multilayer glass, Low-E) window. In addition to this, research has been conducted on a window for controlling the inflow of energy through sunlight by coating glass with a layer having thermal characteristics.

特に、ローイーウィンドウは、ガラス表面に金属または金属酸化物を薄くコートして、ウィンドウを介して入ってくる可視光線の大部分を中に透過させて室内を明るく維持できるようにし、赤外領領域の輻射線は効果的に遮断して、冬場には建物内で発生した暖房熱が外に出ていかないように遮断し、夏場には建物外の熱気を遮断して冷・暖房費を減らす効果がある。しかし、可視光線以外の波長に対しては反射をする特性により、特に、冬場に太陽から放出される赤外線部分を室内に流入させることができず、季節(温度)に応じて太陽光の透過率が調節されないという短所を有している。   In particular, low-emission windows are coated with a thin layer of metal or metal oxide on the glass surface, allowing most of the visible light that enters through the window to pass through, keeping the room bright and infra-red. Effectively cut off the radiation of the area, block the heating heat generated in the building in the winter so that it does not go outside, and cut off the heat outside the building in the summer to reduce cooling and heating costs effective. However, due to the property of reflecting wavelengths other than visible light, the infrared part emitted from the sun cannot be allowed to flow into the room, especially in winter, and the transmittance of sunlight according to the season (temperature) Has the disadvantage of not being adjusted.

そこで、サーモクロミック(thermochromic)特性を持つ物質をガラス上にコートして、ガラスがある一定の温度以上になると、可視光線は入ってくるが近赤外線および赤外線は遮断して、室内温度が上昇しないようにすることで冷・暖房エネルギー効率を向上させることができるサーモクロミックウィンドウに関する多様な技術が開発されている。   Therefore, when a glass having a thermochromic property is coated on the glass, when the glass exceeds a certain temperature, visible light enters, but near infrared rays and infrared rays are blocked, and the room temperature does not rise. Various technologies related to thermochromic windows that can improve cooling and heating energy efficiency have been developed.

特に、相転移温度が68℃と比較的実用可能な温度に近く、且つ光学定数(n、k)値の変化が大きいため透過率の制御が容易な二酸化バナジウム(VO)をガラスにコートしたサーモクロミックウィンドウに関して多様な研究が進められている。 In particular, glass was coated with vanadium dioxide (VO 2 ), which has a phase transition temperature of 68 ° C., which is a relatively practical temperature and has a large change in optical constant (n, k) value, so that the transmittance can be easily controlled. Various studies on thermochromic windows are underway.

図1は、従来技術に従いガラス基板の片面に二酸化バナジウム薄膜をコートしたサーモクロミックウィンドウの相転移の前と後における温度に応じた太陽光の透過率の変化を示すグラフである。   FIG. 1 is a graph showing changes in sunlight transmittance according to temperature before and after a phase transition of a thermochromic window in which a vanadium dioxide thin film is coated on one side of a glass substrate according to the prior art.

図1に示すように、二酸化バナジウムをガラス基板にコートすることで、相転移の前(30℃)と相転移の後(90℃)における太陽光の透過率、特に近赤外線領域での透過率が変わることが分かり、これによって建物などの冷・暖房エネルギー効率を向上させることができる。   As shown in FIG. 1, by coating the glass substrate with vanadium dioxide, the transmittance of sunlight before the phase transition (30 ° C.) and after the phase transition (90 ° C.), particularly the transmittance in the near infrared region. It can be seen that the cooling and heating energy efficiency of buildings and the like can be improved.

一方、建築向けガラスの場合は強化または半強化ガラスが使用され、自動車向けガラスの場合は自動車の流線形に合わせて曲げ成形されたガラスが使用される。
サーモクロミックウィンドウをこのような建築向けまたは自動車向けガラスに使用するためには、サーモクロミックウィンドウを強化または半強化したり、曲げ成形したりするための後熱処理工程が必ず必要になる。
On the other hand, in the case of architectural glass, tempered or semi-tempered glass is used, and in the case of glass for automobiles, glass that is bent according to the streamline of the automobile is used.
In order to use a thermochromic window for such architectural or automotive glass, a post-heat treatment step is necessarily required for strengthening or semi-strengthening or bending the thermochromic window.

しかしながら、コーティングガラスの特性上、大気中で700℃前後の後熱処理工程を施すとその特性が変質する場合が多く、それは、サーモクロミックコーティングでも同様に生じる。すなわち、サーモクロミック物質が基板上にコートされたサーモクロミックウィンドウを高温加工すると、サーモクロミックコーティング膜が劣化することで、サーモクロミック機能が失われるだけではなく、変色、ピンホール、ヘイズ、割れ、映像歪みなどの不良が発生するようになる。図2は、サーモクロミックウィンドウの後熱処理による劣化を概念的に示す概念図である。    However, due to the properties of the coating glass, when a post-heat treatment process is performed in the atmosphere at around 700 ° C., the properties often change, and this also occurs in thermochromic coating. That is, when a thermochromic window with a thermochromic material coated on a substrate is processed at high temperature, the thermochromic coating film deteriorates, not only the thermochromic function is lost, but also discoloration, pinholes, haze, cracks, video Defects such as distortion occur. FIG. 2 is a conceptual diagram conceptually showing deterioration due to post-heat treatment of a thermochromic window.

このような問題を解決するために、サーモクロミック薄膜の上・下部に酸化膜、窒化膜、または金属膜などを積層し、サーモクロミック薄膜が高温熱加工されても特性を保持できるようにする方法が用いられる場合があるが、このような方法では、高温熱加工の条件に好適な材料の選定、積層膜の膜厚の調節などを極めて細かく制御しなければならないという不具合を有する。    In order to solve such problems, a method of stacking an oxide film, a nitride film, or a metal film on the upper and lower portions of the thermochromic thin film so that the characteristics can be maintained even if the thermochromic thin film is subjected to high temperature thermal processing. However, such a method has a disadvantage that the selection of a material suitable for the conditions of the high-temperature thermal processing and the adjustment of the film thickness of the laminated film must be controlled very finely.

大韓民国公開特許第10-2008-0040439号(2008.05.08)Korean Published Patent No. 10-2008-0040439 (2008.05.08)

本発明は、上述したような従来技術の問題点を解決するためになされたものであって、その目的は、サーモクロミック特性を失うことなく熱加工された基板を有するサーモクロミックウィンドウ及びその製造方法を提供することである。    The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a thermochromic window having a substrate thermally processed without losing thermochromic characteristics, and a method of manufacturing the same. Is to provide.

このために、本発明は、フレキシブル基板と;前記フレキシブル基板上に形成されたサーモクロミック薄膜と;及び前記サーモクロミック薄膜上に接着された熱加工された基板とを含むことを特徴とするサーモクロミックウィンドウを提供する。
ここで、前記熱加工された基板は、強化ガラス、半強化ガラス、及び曲げ成形されたガラスのうちのいずれか一つであってよい。
そして、前記サーモクロミック薄膜と熱加工された基板とは、接着剤または接合フィルムによって接合されていてよい。
また、前記サーモクロミック薄膜は、二酸化バナジウムを含んでなるものであってよい。
そして、前記サーモクロミックウィンドウは、前記サーモクロミック薄膜の上面及び下面のうちのいずれか一方の面に形成される反射防止膜をさらに含んでいてよい。
ここで、前記反射防止膜は、Ti、Zn、Nb、Sn、及びZrのうちのいずれか一つの酸化物またはSiの窒化物からなるものであってよい。
また、前記サーモクロミック薄膜は、ドーパントがドープされたサーモクロミック物質からなるものであってよい。
ここで、前記ドーパントは、Mo、W、Nb、Ta、Fe、Al、Ti、Sn、及びNiのうちの少なくともいずれか一つであってよい。
そして、前記フレキシブル基板は、フレキシブルガラスであってよい。
また、本発明は、熱加工された基板及びサーモクロミック薄膜が形成されたフレキシブル基板を準備する段階;及び前記熱加工された基板を前記サーモクロミック薄膜に接合する段階を含むことを特徴とするサーモクロミックウィンドウの製造方法を提供する。
ここで、前記サーモクロミック薄膜と熱加工された基板とは、接着剤または接合フィルムによって接合されていてよい。
To this end, the present invention includes a thermochromic, comprising: a flexible substrate; a thermochromic thin film formed on the flexible substrate; and a heat-processed substrate bonded on the thermochromic thin film. Provide a window.
Here, the thermally processed substrate may be any one of tempered glass, semi-tempered glass, and bent glass.
The thermochromic thin film and the thermally processed substrate may be bonded with an adhesive or a bonding film.
The thermochromic thin film may comprise vanadium dioxide.
The thermochromic window may further include an antireflection film formed on one of the upper surface and the lower surface of the thermochromic thin film.
Here, the antireflection film may be made of any one of Ti, Zn, Nb, Sn, and Zr, or a nitride of Si.
The thermochromic thin film may be made of a thermochromic material doped with a dopant.
Here, the dopant may be at least one of Mo, W, Nb, Ta, Fe, Al, Ti, Sn, and Ni.
The flexible substrate may be flexible glass.
The present invention also includes a step of preparing a heat-processed substrate and a flexible substrate on which a thermochromic thin film is formed; and a step of bonding the heat-processed substrate to the thermochromic thin film. A method for manufacturing a chromic window is provided.
Here, the thermochromic thin film and the thermally processed substrate may be bonded by an adhesive or a bonding film.

本発明によれば、強化、半強化、曲げ成形などのために熱加工が必要な基板の熱加工とサーモクロミック薄膜形成とを別途の工程にて行った後、これにより得られたものを互いに接合させることで、サーモクロミック特性を失うことなく熱加工された基板を有するサーモクロミックウィンドウを製造することができる。    According to the present invention, after performing thermal processing of a substrate that requires thermal processing for strengthening, semi-strengthening, bending molding, etc. and thermochromic thin film formation in separate steps, those obtained by this are mutually connected. By bonding, a thermochromic window having a thermally processed substrate can be manufactured without losing thermochromic properties.

図1は、従来技術に従いガラス基板の片面に二酸化バナジウム薄膜をコートしたサーモクロミックウィンドウの相転移の前と後における温度に応じた太陽光の透過率の変化を示すグラフである。FIG. 1 is a graph showing changes in sunlight transmittance according to temperature before and after a phase transition of a thermochromic window in which a vanadium dioxide thin film is coated on one side of a glass substrate according to the prior art. 図2は、サーモクロミックウィンドウの後熱処理による劣化を概念的に示す概念図である。FIG. 2 is a conceptual diagram conceptually showing deterioration due to post-heat treatment of a thermochromic window. 図3は、本発明の一実施例に係るサーモクロミックウィンドウの概念的な断面図である。FIG. 3 is a conceptual cross-sectional view of a thermochromic window according to an embodiment of the present invention.

以下、添付の図面を参照して本発明の実施例に係るサーモクロミックウィンドウ及びその製造方法について詳しく説明する。
なお、本発明を説明するにあたって、関連公知機能あるいは構成についての具体的な説明が本発明の要旨を不要に曖昧にし得ると判断された場合、その詳細な説明は省略することにする。
Hereinafter, a thermochromic window and a method of manufacturing the same according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In describing the present invention, if it is determined that a specific description of a related known function or configuration can unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

図3は、本発明の一実施例に係るサーモクロミックウィンドウの概念的な断面図である。
図3に示すように、本発明の一実施例に係るサーモクロミックウィンドウは、フレキシブル基板100と、サーモクロミック薄膜200、及び熱加工された基板300とを含んでなるものであってよい。
FIG. 3 is a conceptual cross-sectional view of a thermochromic window according to an embodiment of the present invention.
As shown in FIG. 3, the thermochromic window according to an embodiment of the present invention may include a flexible substrate 100, a thermochromic thin film 200, and a thermally processed substrate 300.

フレキシブル基板100は、サーモクロミック薄膜200がコートされる基材であって曲げられるという特性を持つ。
フレキシブル基板100は、サーモクロミック薄膜200の形成のための高温工程(一般にサーモクロミック薄膜が二酸化バナジウムからなる場合、250℃以上)に耐えられる必要があるため、PET、PVA、PIなどのポリマー系の材質は適当なものではなく、フレキシブルガラスが好ましい。
The flexible substrate 100 is a base material on which the thermochromic thin film 200 is coated and has a characteristic of being bent.
The flexible substrate 100 needs to be able to withstand a high temperature process for forming the thermochromic thin film 200 (generally, when the thermochromic thin film is made of vanadium dioxide, 250 ° C. or higher). The material is not suitable and flexible glass is preferred.

フレキシブルガラスは、薄膜であるため割れることなく曲げることができる。このようなフレキシブルガラスとしては、約0.1mmの厚さを有するコーニング社製のウィロー・ガラス(Willow Glass)を用いていてよい。   Since flexible glass is a thin film, it can be bent without breaking. As such a flexible glass, a Willing Glass manufactured by Corning having a thickness of about 0.1 mm may be used.

サーモクロミック薄膜200が前記フレキシブル基板100上にコートされることで、後で熱加工された基板300との接合の際に該熱加工された基板300の形態に制約を受けなくて済む。
サーモクロミック薄膜200はフレキシブル基板100上に形成される。
Since the thermochromic thin film 200 is coated on the flexible substrate 100, the shape of the heat-processed substrate 300 does not have to be restricted when it is joined to the heat-processed substrate 300 later.
The thermochromic thin film 200 is formed on the flexible substrate 100.

サーモクロミック薄膜200は、サーモクロミック物質をフレキシブル基板100上にスパッタリング(sputtering)コートすることで形成されていてよい。サーモクロミック物質は、特定の温度(相転移温度)で相転移するサーモクロミック現象によって結晶構造が変わって物理的性質(電気伝導度、赤外線透過率など)が急変する物質であって、相転移の前と後において太陽光、特に、近赤外線の透過率ないし反射率が変化する特性を持つ。これにより、サーモクロミック薄膜200は気温の高い夏季には赤外線を遮断することで熱エネルギーの流入を阻止して冷房負荷を低減させ、気温の低い冬季には赤外線を透過させることで暖房負荷を低減させることができる。   The thermochromic thin film 200 may be formed by applying a thermochromic material to the flexible substrate 100 by sputtering. A thermochromic substance is a substance whose crystal structure changes due to a thermochromic phenomenon that undergoes a phase transition at a specific temperature (phase transition temperature), and whose physical properties (electrical conductivity, infrared transmittance, etc.) change suddenly. It has the characteristic that the transmittance or reflectance of sunlight, particularly near infrared rays, changes before and after. As a result, the thermochromic thin film 200 blocks the infrared rays in summer when the temperature is high, thereby preventing the inflow of heat energy to reduce the cooling load, and reduces the heating load by transmitting the infrared rays in the winter when the temperature is low. Can be made.

サーモクロミック物質は、二酸化バナジウム(VO)、酸化チタン(III)(Ti)、酸化ニオブ(NbO)、及び硫化ニッケル(NiS)のうちのいずれか一つの物質を含んでなるものであってよい。好ましくは、サーモクロミック物質は、二酸化バナジウムであってよい。 The thermochromic material includes any one of vanadium dioxide (VO 2 ), titanium (III) oxide (Ti 2 O 3 ), niobium oxide (NbO 2 ), and nickel sulfide (NiS). It may be. Preferably, the thermochromic material may be vanadium dioxide.

また、サーモクロミック薄膜200は、ドーパントがドープされたサーモクロミック物質からなるものであってよい。
サーモクロミック物質にドーパントをドープすることで、サーモクロミック物質の相転移温度を制御することができ、一般に、ドーパントのドーピング比(doping ration)が高いほどサーモクロミック物質の相転移温度は低くなる。
ドープされるドーパントは、Mo、W、Nb、Ta、Fe、Al、Ti、Sn、及びNiのうちの少なくともいずれか一つであってよい。
The thermochromic thin film 200 may be made of a thermochromic substance doped with a dopant.
By doping the thermochromic material with a dopant, the phase transition temperature of the thermochromic material can be controlled. In general, the higher the dopant doping ratio, the lower the phase transition temperature of the thermochromic material.
The dopant to be doped may be at least one of Mo, W, Nb, Ta, Fe, Al, Ti, Sn, and Ni.

熱加工された基板300は、サーモクロミック薄膜200上に接着される。
熱加工された基板は、熱処理によって強化または半強化されたガラス、または流線形に曲げ成形されたガラスであってよい。
The thermally processed substrate 300 is bonded onto the thermochromic thin film 200.
The thermally processed substrate may be glass that has been tempered or semi-strengthened by heat treatment, or glass that has been streamlined and bent.

熱加工された基板300は、接着剤によってサーモクロミック薄膜200と接合されていてよく、またはポリビニルブチラール(PVB)、ポリビニルアルコール(PVA)、ポリエチレンビニルアセテート(EVA)などのような接合フィルムによってサーモクロミック薄膜に接合されていてよい。   The thermally processed substrate 300 may be bonded to the thermochromic thin film 200 by an adhesive, or thermochromic by a bonding film such as polyvinyl butyral (PVB), polyvinyl alcohol (PVA), polyethylene vinyl acetate (EVA), or the like. It may be joined to a thin film.

また、本発明の一実施例に係るサーモクロミックウィンドウは、サーモクロミック薄膜200の上面及び下面のうちの少なくとも一方の面に形成される反射防止膜(図示せず)をさらに含んでいてよい。   In addition, the thermochromic window according to the embodiment of the present invention may further include an antireflection film (not shown) formed on at least one of the upper surface and the lower surface of the thermochromic thin film 200.

反射防止膜(図示せず)は、サーモクロミックウィンドウに入射する可視光の反射を低減してサーモクロミックウィンドウの可視光透過率を向上させる。   The antireflection film (not shown) reduces the reflection of visible light incident on the thermochromic window and improves the visible light transmittance of the thermochromic window.

このような反射防止膜(図示せず)は、Ti、Zn、Nb、Sn、及びZrのうちのいずれか一つの酸化物またはSiの窒化物からなるものであってよい。   Such an antireflection film (not shown) may be made of any one of Ti, Zn, Nb, Sn, and Zr, or a nitride of Si.

一方、サーモクロミックウィンドウの下面に形成される反射防止膜(図示せず)は、フレキシブル基板100中のイオンがサーモクロミック薄膜200へと拡散することを防止する拡散障壁(diffusion barrier)の役割を果たすことができる。一般に、サーモクロミック薄膜200を形成する工程は高温で行われ、このとき、フレキシブル基板100上にサーモクロミック薄膜200を直接コートすると、フレキシブル基板100中のイオンがコートされるサーモクロミック薄膜200へと拡散していき、サーモクロミック薄膜200がサーモクロミック特性を失うことがある。特に、フレキシブル基板100がソーダライム系ガラスの場合、ガラス中のナトリウム(Na)イオンがサーモクロミック薄膜へとナトリウム拡散(sodium diffusion)するようになる。これに対し、フレキシブル基板100とサーモクロミック薄膜200との間に形成された反射防止膜(図示せず)がフレキシブル基板100中のイオンのサーモクロミック薄膜200への拡散を遮断することで、サーモクロミック薄膜200がサーモクロミック特性を失うようになることを防止することができる。   Meanwhile, an antireflection film (not shown) formed on the lower surface of the thermochromic window serves as a diffusion barrier that prevents ions in the flexible substrate 100 from diffusing into the thermochromic thin film 200. be able to. In general, the process of forming the thermochromic thin film 200 is performed at a high temperature. At this time, when the thermochromic thin film 200 is directly coated on the flexible substrate 100, the ions in the flexible substrate 100 are diffused into the thermochromic thin film 200 to be coated. Accordingly, the thermochromic thin film 200 may lose thermochromic characteristics. In particular, when the flexible substrate 100 is soda lime glass, sodium (Na) ions in the glass diffuse into the thermochromic thin film. On the other hand, an antireflection film (not shown) formed between the flexible substrate 100 and the thermochromic thin film 200 blocks diffusion of ions in the flexible substrate 100 to the thermochromic thin film 200, thereby making the thermochromic. It is possible to prevent the thin film 200 from losing thermochromic characteristics.

上述したサーモクロミックウィンドウは、熱加工された基板300及びサーモクロミック薄膜200が形成されたフレキシブル基板100を準備した後、熱加工された基板300をサーモクロミック薄膜200に接合することで製造されていてよい。   The thermochromic window described above is manufactured by preparing the heat-processed substrate 300 and the flexible substrate 100 on which the thermochromic thin film 200 is formed, and then bonding the heat-processed substrate 300 to the thermochromic thin film 200. Good.

すなわち、強化、半強化、曲げ成形などのために熱加工が必要な基板の熱加工とサーモクロミック薄膜形成とを別途の工程にて行った後、これにより得られたものを互いに接合させることで、サーモクロミックウィンドウを製造することができる。   In other words, after the thermal processing of the substrate that requires thermal processing for strengthening, semi-strengthening, bending molding, etc. and the thermochromic thin film formation are performed in separate steps, the obtained ones are joined together Thermochromic windows can be manufactured.

このようにしてサーモクロミックウィンドウを製造することで、サーモクロミック特性を失うことなく熱加工された基板を有するサーモクロミックウィンドウを製造することができる。   By manufacturing a thermochromic window in this way, a thermochromic window having a thermally processed substrate can be manufactured without losing thermochromic properties.

具体的に、サーモクロミック薄膜が形成されたフレキシブル基板は、直接熱加工工程に露出することなく、実際に強化、半強化、曲げ成形などの熱加工が必要になる建築向け、自動車向け基板のみを別途に熱加工した後、該熱加工された基板にサーモクロミック薄膜を接合させることで、熱加工された基板を有するサーモクロミックウィンドウを製造することができる。   Specifically, flexible substrates on which thermochromic thin films are formed are not exposed directly to the thermal processing process, but are used only for architectural and automotive substrates that actually require thermal processing such as strengthening, semi-strengthening, and bending. A thermochromic window having a thermally processed substrate can be manufactured by thermally processing separately and then bonding a thermochromic thin film to the thermally processed substrate.

表1は、従来のサーモクロミックウィンドウと本発明の一実施例に係るサーモクロミックウィンドウの熱処理前後の可視光透過率を示す表である。
Table 1 is a table showing the visible light transmittance before and after heat treatment of a conventional thermochromic window and a thermochromic window according to an embodiment of the present invention.

表1の比較例及び実施例で用いられたガラス(Glass)はソーダライム系ガラスであって、実施例で用いられたフレキシブル基板はコーニン社製のウィロー(Willow)・ガラスである。
比較例1、2、3における熱処理後の可視光透過率は、積層膜の全体を熱処理した後に測定した可視光透過率であり、実施例1、2における熱処理後の可視光透過率はガラスのみを熱処理した後に測定した可視光透過率である。なお、熱処理は、大気雰囲気下、700℃の温度で10分間施した。
比較例1を見ると、積層膜の熱処理の前後における可視光透過率の増大が著しいことが分かる。これは二酸化バナジウムが酸化したことを意味し、このことから、二酸化バナジウムのサーモクロミック特性が失われたことが分かる。比較例2を見ると、二酸化バナジウムを保護するために二酸化バナジウム薄膜の上・下部にTiO薄膜を形成しても二酸化バナジウムが酸化することが分かる。比較例3の積層膜は二酸化バナジウムが酸化することを防止するために二酸化バナジウム薄膜の上・下部にNiCr薄膜を形成した。これによると、熱処理によって二酸化バナジウムが酸化することをある程度は抑制できるものの、その構造が複雑になるという短所を持つ。
一方、実施例1及び2を見ると、二酸化バナジウムの酸化がほとんど生じていないことが分かる。これは、二酸化バナジウムが直接的に熱処理に露出していなかったからである。
The glass used in the comparative examples and examples in Table 1 is soda-lime glass, and the flexible substrate used in the examples is Willow glass manufactured by Corning.
The visible light transmittance after heat treatment in Comparative Examples 1, 2, and 3 is the visible light transmittance measured after heat treating the entire laminated film, and the visible light transmittance after heat treatment in Examples 1 and 2 is only glass. Is the visible light transmittance measured after heat treatment. The heat treatment was performed for 10 minutes at a temperature of 700 ° C. in an air atmosphere.
From the comparison example 1, it can be seen that the increase in the visible light transmittance before and after the heat treatment of the laminated film is remarkable. This means that vanadium dioxide was oxidized, and this indicates that the thermochromic properties of vanadium dioxide were lost. From Comparative Example 2, it can be seen that vanadium dioxide is oxidized even if a TiO 2 thin film is formed on and under the vanadium dioxide thin film in order to protect the vanadium dioxide. In the laminated film of Comparative Example 3, NiCr thin films were formed on and under the vanadium dioxide thin film in order to prevent vanadium dioxide from being oxidized. According to this, although the oxidation of vanadium dioxide by heat treatment can be suppressed to some extent, the structure is complicated.
On the other hand, when Example 1 and 2 are seen, it turns out that the oxidation of vanadium dioxide has hardly arisen. This is because vanadium dioxide was not directly exposed to heat treatment.

以上のように本発明を限定された実施例と図面に基づいて説明してきたが、本発明は前記実施例に限定されるものではなく、本発明の属する分野における通常の知識を有する者であれば、かかる記載から種々の修正や変形が可能である。
したがって、本発明の範囲は説明された実施例に局限されて決められるものではなく、特許請求の範囲及び特許請求の範囲と均等なものなどによって決められるべきである。
As described above, the present invention has been described based on the limited embodiments and drawings. However, the present invention is not limited to the above-described embodiments, and a person having ordinary knowledge in the field to which the present invention belongs. Accordingly, various modifications and variations can be made from this description.
Therefore, the scope of the present invention should not be limited to the embodiments described, but should be determined by the claims and their equivalents.

100 フレキシブル基板
200 サーモクロミック薄膜
300 熱加工された基板
100 Flexible substrate
200 Thermochromic thin film 300 Thermally processed substrate

Claims (9)

フレキシブル基板と;
前記フレキシブル基板上に形成されたサーモクロミック薄膜と;及び
前記サーモクロミック薄膜上に接着された熱加工された基板とを含むことを特徴とするサーモクロミックウィンドウ。
With flexible substrate;
A thermochromic window, comprising: a thermochromic thin film formed on the flexible substrate; and a heat-processed substrate bonded on the thermochromic thin film.
前記熱加工された基板は、強化ガラス、半強化ガラス、及び曲げ成形されたガラスのうちのいずれか一つであることを特徴とする請求項1に記載のサーモクロミックウィンドウ。   The thermochromic window according to claim 1, wherein the heat-processed substrate is one of tempered glass, semi-tempered glass, and bent glass. 前記サーモクロミック薄膜と熱加工された基板とは、接着剤または接合フィルムによって接合されることを特徴とする請求項1又は2に記載のサーモクロミックウィンドウ。   The thermochromic window according to claim 1 or 2, wherein the thermochromic thin film and the heat-processed substrate are bonded by an adhesive or a bonding film. 前記サーモクロミック薄膜は、二酸化バナジウムを含んでなることを特徴とする請求項1〜3のいずれか1項に記載のサーモクロミックウィンドウ。   The thermochromic window according to any one of claims 1 to 3, wherein the thermochromic thin film comprises vanadium dioxide. 前記サーモクロミック薄膜の上面及び下面のうちの少なくとも一方の面に形成される反射防止膜をさらに含むことを特徴とする請求項1〜4のいずれか1項に記載のサーモクロミックウィンドウ。   The thermochromic window according to any one of claims 1 to 4, further comprising an antireflection film formed on at least one of an upper surface and a lower surface of the thermochromic thin film. 前記反射防止膜は、Ti、Zn、Nb、Sn、及びZrのうちのいずれか一つの酸化物またはSiの窒化物からなることを特徴とする請求項5に記載のサーモクロミックウィンドウ。   The thermochromic window according to claim 5, wherein the antireflection film is made of any one of Ti, Zn, Nb, Sn, and Zr, or a nitride of Si. 前記サーモクロミック薄膜は、ドーパントがドープされたサーモクロミック物質からなることを特徴とする請求項1〜6のいずれか1項に記載のサーモクロミックウィンドウ。   The thermochromic window according to claim 1, wherein the thermochromic thin film is made of a thermochromic material doped with a dopant. 前記ドーパントは、Mo、W、Nb、Ta、Fe、Al、Ti、Sn、及びNiのうちの少なくともいずれか一つであることを特徴とする請求項7に記載のサーモクロミックウィンドウ。   The thermochromic window according to claim 7, wherein the dopant is at least one of Mo, W, Nb, Ta, Fe, Al, Ti, Sn, and Ni. 前記フレキシブル基板は、フレキシブルガラスであることを特徴とする請求項1〜8のいずれか1項に記載のサーモクロミックウィンドウ。   The thermochromic window according to any one of claims 1 to 8, wherein the flexible substrate is flexible glass.
JP2014094818A 2013-05-03 2014-05-01 Thermochromic window Withdrawn JP2014218426A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130050124A KR20140144326A (en) 2013-05-03 2013-05-03 Thermocromic window and manufacturing method thereof
KR10-2013-0050124 2013-05-03

Publications (1)

Publication Number Publication Date
JP2014218426A true JP2014218426A (en) 2014-11-20

Family

ID=50639309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094818A Withdrawn JP2014218426A (en) 2013-05-03 2014-05-01 Thermochromic window

Country Status (5)

Country Link
US (1) US20140327953A1 (en)
EP (1) EP2805819A1 (en)
JP (1) JP2014218426A (en)
KR (1) KR20140144326A (en)
CN (1) CN104129121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188939A (en) * 2015-03-30 2016-11-04 コニカミノルタ株式会社 Optical film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105799276B (en) * 2014-12-31 2018-03-16 中国科学院广州能源研究所 A kind of thermocolour smart membrane and preparation method thereof
CN106145701A (en) * 2015-03-27 2016-11-23 中国科学院广州能源研究所 A kind of energy-conservation laminated glass and preparation method thereof
CN110551459A (en) * 2019-09-27 2019-12-10 武汉工程大学 Temperature-control glass film and thermochromic intelligent window
CN110963718B (en) * 2019-12-27 2022-06-14 上海天马微电子有限公司 Manufacturing method of 3D glass cover plate with anti-reflection film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084702A (en) * 1998-10-15 2000-07-04 Pleotint, L.L.C. Thermochromic devices
FR2809388B1 (en) * 2000-05-23 2002-12-20 Saint Gobain Vitrage GLAZING COMPRISING AT LEAST ONE LAYER WITH THERMOCHROMIC PROPERTIES
US6906842B2 (en) * 2000-05-24 2005-06-14 Schott North America, Inc. Electrochromic devices
JP4608682B2 (en) * 2006-06-07 2011-01-12 独立行政法人産業技術総合研究所 Production method and product of functional film
KR20080040439A (en) 2006-11-03 2008-05-08 주식회사 엘지화학 Energy saving smart window and process for producing the same
US7768693B2 (en) * 2007-01-24 2010-08-03 Ravenbrick Llc Thermally switched optical downconverting filter
EP2151877A1 (en) * 2008-08-04 2010-02-10 General Electric Company Light-emitting device and article
WO2011034034A1 (en) * 2009-09-18 2011-03-24 日本電気硝子株式会社 Method for producing glass film, method for processing glass film, and glass film laminate
US20120003489A1 (en) * 2010-07-01 2012-01-05 Sipix Chemical Inc. Decoration film, decoration device and method for fabricating decoration film
KR101258563B1 (en) * 2011-04-18 2013-05-02 삼성코닝정밀소재 주식회사 Post-heatable substrate
CN102886927A (en) * 2012-10-08 2013-01-23 蒙特集团(香港)有限公司 Flexible high definition intelligent curtain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188939A (en) * 2015-03-30 2016-11-04 コニカミノルタ株式会社 Optical film

Also Published As

Publication number Publication date
EP2805819A1 (en) 2014-11-26
KR20140144326A (en) 2014-12-19
CN104129121A (en) 2014-11-05
US20140327953A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6367528B2 (en) Method for manufacturing a thermochromic window doped with a dopant
JP6498202B2 (en) Low radiation coating and functional building materials for joinery including the same
JP2020514240A (en) Low emissivity coating for glass substrates
EP2679556A1 (en) Method of manufacturing thermochromic window
JP2014218426A (en) Thermochromic window
US9146408B2 (en) Thermochromic window
JP6259711B2 (en) Thermochromic window and method for manufacturing the same
JP7038868B2 (en) Laminated glazing for solar control
CN109457228A (en) A kind of temperature automatically controlled smart membranes and preparation method thereof
US20130194652A1 (en) Reflective substrate and method of manufacturing the same
KR20140133985A (en) Manufacturing method of vo_2 coated substrate
CN115259689B (en) High-transmittance, high-efficiency, energy-saving and low-radiation three-silver coated glass
JP2012036076A (en) Double glazing, and window sash using the same
CN108821604B (en) Low-emissivity glass with multifunctional composite characteristics
CN206418032U (en) A kind of low radiation coated glass
RU2642753C1 (en) Blue product with hybrid energy-saving coating on glass substrate
JP2014124815A (en) Low-radiation film
KR102261133B1 (en) Transparent substrate having an anti-reflective multilayered coating thereon and method for preparing the same
KR20140073882A (en) Thermocromic window
KR101398603B1 (en) Themochromic window and themochromic multi-layer window
KR101367828B1 (en) Method for manufacturing thermochromic window
JP2006143525A (en) Multiple glass
WO2015009060A1 (en) Thermochromic window
Meng et al. Study on Optical and Thermal Properties of Low-E Glass
KR20180118945A (en) Low-emissivity glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160520

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170214